
ORIGINAL RESEARCH
published: 22 March 2019

doi: 10.3389/fevo.2019.00076

Frontiers in Ecology and Evolution | www.frontiersin.org 1 March 2019 | Volume 7 | Article 76

Edited by:

Angela McGaughran,

Australian National University, Australia

Reviewed by:

Bettine Van Vuuren,

University of Johannesburg,

South Africa

Katy Morgan,

University of Bath, United Kingdom

*Correspondence:

Ian D. Hogg

ian.hogg@polar.gc.ca

orcid.org/0000-0002-6685-0089

†Andrew Barnes

orcid.org/0000-0002-6499-381X

Specialty section:

This article was submitted to

Biogeography and Macroecology,

a section of the journal

Frontiers in Ecology and Evolution

Received: 08 August 2018

Accepted: 28 February 2019

Published: 22 March 2019

Citation:

Collins GE, Hogg ID, Convey P,

Barnes AD and McDonald IR (2019)

Spatial and Temporal Scales Matter

When Assessing the Species and

Genetic Diversity of Springtails

(Collembola) in Antarctica.

Front. Ecol. Evol. 7:76.

doi: 10.3389/fevo.2019.00076

Spatial and Temporal Scales Matter
When Assessing the Species and
Genetic Diversity of Springtails
(Collembola) in Antarctica
Gemma E. Collins 1, Ian D. Hogg 1,2*, Peter Convey 3, Andrew D. Barnes 1† and

Ian R. McDonald 1
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Seven species of springtail (Collembola) are present in Victoria Land, Antarctica and

all have now been sequenced at the DNA barcoding region of the mitochondrial

cytochrome c oxidase subunit I gene (COI). Here, we review these sequence data

(n = 930) from the GenBank and Barcode of Life Datasystems (BOLD) online databases

and provide additional, previously unpublished sequences (n = 392) to assess the

geographic distribution of COI variants across all species. Four species (Kaylathalia

klovstadi, Cryptopygus cisantarcticus, Friesea grisea, and Cryptopygus terranovus) are

restricted to northern Victoria Land and three (Antarcticinella monoculata, Cryptopygus

nivicolus, and Gomphiocephalus hodgsoni) are found only in southern Victoria Land,

the two biogeographic zones which are separated by the vicinity of the Drygalski Ice

Tongue. We found highly divergent lineages within all seven species (range 1.7–14.7%)

corresponding to different geographic locations. Levels of genetic divergence for the

southern Victoria Land species G. hodgsoni, the most widespread species (∼27,000

km2), ranged from 5.9 to 7.3% divergence at sites located within 30 km, but separated

by glaciers. We also found that the spatial patterns of genetic divergence differed

between species. For example, levels of divergence were much higher for C. terranovus

(>10%) than for F. grisea (<0.2%) that had been collected from the same sites in

northern Victoria Land. Glaciers have been suggested to be major barriers to dispersal

and two species (C. cisantarcticus and F. grisea) showed highly divergent (>5%)

populations and over 87% of the total genetic variation (based on AMOVA) on either

side of a single, 16 km width glacier. Collectively, these data provide evidence for

limited dispersal opportunities among populations of springtails due to geological and

glaciological barriers (e.g., glaciers and ice tongues). Some locations harbored highly

genetically divergent populations and these areas are highlighted from a conservation

perspective such as avoidance of human-mediated transport between sites. We

conclude that species-specific spatial and temporal scales need to be considered when

addressing ecological and physiological questions as well as conservation strategies for

Antarctic Collembola.

Keywords: Antarctica, biogeography, collembola, dispersal, mitochondrial DNA barcodes, population genetic

structure, species diversity, springtails
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INTRODUCTION

Due to the extreme environmental conditions that characterize
Antarctica (Convey, 2013), as well as the geographical, and
island-like, isolation of suitable terrestrial habitats (Bergstrom
and Chown, 1999), long-range dispersal events for Antarctic
Collembola (springtails) are rare and they usually rely on
liquid water for transport via flotation (Hawes et al., 2008;
McGaughran et al., 2011a; Carapelli et al., 2017). It is likely
that springtails are currently unable to disperse among the
three Antarctic Conservation Biogeographic Regions (ACBRs;
Terauds and Lee, 2016) in the Ross Sea Sector of Antarctica:
northern Victoria Land (NVL), southern Victoria Land (SVL),
and the Transantarctic Mountains (TAM), owing to various
physical obstacles in the marine and terrestrial realms (e.g., the
Drygalski Ice Tongue; Figure 1). Within each of these three
ACBRs, available habitat is patchy and local microhabitats are
likely to be important for long-term persistence of populations
(Sinclair and Sjursen, 2001). These small “island” populations
can thus accumulate genetic mutations resulting in distinct
genetic patterns across the landscape. Previous studies on the
diversity patterns of lichen communities within the Antarctic
have suggested that distributions are likely to have been driven
by geological or glaciological features rather than environmental
gradients that are associated with latitudinal or longitudinal
distances (Adams et al., 2006; Peat et al., 2007; Green et al.,
2011; Colesie et al., 2014). Similarly, the distributions of Antarctic
springtail species may not follow a pattern of decreasing species
diversity with increasing latitude (e.g., Caruso et al., 2009). The
spatial scales at which sampling is undertaken are, therefore,
important as genetic differences between populations do not
necessarily increase proportionately with distance. However,
until now a broader synthesis of genetic data for multiple
species across larger spatial scales has not been undertaken.
This is unfortunate as such an analysis could help to assess the
relative role of geographic barriers in structuring populations of
Antarctic springtails.

Terrestrial invertebrates were first discovered in the Ross Sea
sector of Antarctica during the early 1900s (e.g., Carpenter,
1902, 1908; Willem, 1902; Gregory, 1909; Macnamara, 1919).
Further entomological research was undertaken during the
1960s and 1970s and provided morphological descriptions and
distributional ranges as well as general ecological observations
and physiological studies, particularly for the most widespread
species in this area—Gomphiocephalus hodgsoni (Gressitt and
Leech, 1961; Salmon, 1962; Gressitt et al., 1963; Janetschek, 1963,
1967, 1970). More recently, molecular approaches including
allozyme analyses (e.g., Frati et al., 1996; Stevens and Hogg, 2003)
and DNA sequencing of mitochondrial cytochrome c oxidase
subunit II (e.g., Frati and Dell’Ampio, 2000; Frati et al., 2001;
McGaughran et al., 2010) and cytochrome c oxidase subunit
I (COI) gene regions (e.g., Nolan et al., 2006; Stevens and
Hogg, 2006; McGaughran et al., 2010) have been undertaken for
Antarctic springtails. These data have enhanced understanding
of their evolutionary histories and allowed testing of hypotheses,
such as endemism of the fauna, proposed by earlier researchers
(e.g., Wise, 1967). Further, they have provided insights into

the long-term persistence of endemic taxa, their survival in
refugia and subsequent expansion during interglacial periods
(e.g., Convey et al., 2008; McGaughran et al., 2011b; Beet
et al., 2016; Carapelli et al., 2017). In turn, this has facilitated
predictions as to how populations may respond to future changes
in habitat availability and environmental conditions (e.g., Chown
and Convey, 2007; Lee et al., 2017). While these studies either
focus on a single species or have made comparisons between
two species, none has assessed the full range of COI sequences
available for all known species in the area.

Based on early studies of springtail distribution using
morphological taxonomy, the Ross Sea sector (longitude 160–
175◦E) was subdivided into five areas (Wise, 1967), although
more recent data have confirmed that some of the described
species distributions within these five areas were incorrect
(e.g., Ross Island contains only G. hodgsoni). Studies focused
on specific taxa (e.g., Cryptopygus terranovus) have suggested
additional landscape divisions based on genetic evidence for
geographical isolation (Stevens et al., 2006b; Hawes et al., 2010;
Carapelli et al., 2017). However, other species present in the
same area do not necessarily exhibit the same divergence patterns
(Caruso et al., 2009). For example, in an area of NVL where
Friesea grisea and C. terranovus have overlapping ranges, the two
species have very different levels of genetic divergence; <0.2%
for F. grisea (Torricelli et al., 2010b) and >10% for C. terranovus
(Carapelli et al., 2017).

Our current study compiled and consolidated all available
COI sequences and collection information for each of the seven
species found in Victoria Land; Cryptopygus cisantarcticus, C.
terranovus, Friesea grisea, and Kaylathalia klovstadi in NVL, and
Antarcticinella monoculata, C. nivicolus, and Gomphiocephalus
hodgsoni in SVL (Table 1). We provide a comprehensive list of
collection sites for each haplotype to assess spatial variability. We
also examined whether spatially isolated populations would be
distinct at the COI gene region, and if so, whether landscape
features (such as particularly large glaciers and ice tongues) may
provide contemporary barriers to dispersal. Where relevant, we
highlight instances of possible cryptic speciation as indicated by
highly distinct genetic lineages, as well as identify priority sites
from a conservation perspective.

METHODS

Existing Sequence Data
All publicly available sequences were downloaded from
the BOLD and GenBank databases (n = 930 sequences),
covering the seven springtail species present in Victoria Land.
Supporting information was also downloaded from BOLD
where possible, although in many instances these data were
absent, particularly for sequences that had been obtained
directly from GenBank. Where possible, we endeavored to
manually retrieve collection details from original research
articles. To maximize sequence length of previously-analyzed
specimens, original trace files (where possible) were imported
into Geneious v11.1.5 (https://www.geneious.com) for complete
re-analysis. Forward and reverse sequence reads were assembled,
any discrepancies were edited and then consensus sequences
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FIGURE 1 | Map with all 21 sites in northern Victoria Land labeled, including (A) an overview map showing the location of Victoria Land within the Antarctic continent,

(B) all 88 sites within Victoria Land from which COI sequences were obtained and presented in the current study, for the seven species in this area, and (C) a

zoomed-in portion of NVL to display site names. Generated in ArcMap v10.5.1. See Table 2 and Table S1 for GPS co-ordinates.

were extracted. For cases where no trace files were available,
final sequences that had been uploaded to GenBank or BOLD
were used.

New Sequence Data
A total of 392 previously unpublished sequences have been
included in the current study (Tables 2–4 and Table S2). Of
these, 56 were obtained from individuals collected from NVL
in January 2004 (C. Beard and R. Seppelt), January 2015 (C.
Cary) and November 2017 (I. Hogg). For previously unpublished
sequences of G. hodgsoni, specimens were collected from sites in
the vicinities of Mackay Glacier (n = 60), Taylor Valley (n = 21)
and the southern Dry Valleys (n = 249) from 2009 to 2016 (I.
Hogg, G. Collins, C. Beet and N. Demetras). An additional six
specimens of C. nivicolus were collected from Mount Seuss in
2008 (I. Hogg), and Mount Seuss and Tiger Island in 2015 (G.
Collins, C. Beet, I. Hogg and D. Cowan). For a full list of sites

where specimens were collected, see Figures 1, 2; Tables 2, 3, and
Tables S1–S9.

These previously unpublished sequences were from specimens
collected in pitfall traps (described in McGaughran et al., 2011a),
using modified aspirators (Stevens and Hogg, 2002), or isolated
by flotation from soil samples (Freckman and Virginia, 1993).
In all cases, individual specimens were immediately preserved
in 100% ethanol for later DNA extraction. DNA extractions,
PCR amplifications and COI sequencing were carried out at the
University of Waikato following procedures outlined in Collins
and Hogg (2015) or at the Canadian Centre for DNA Barcoding
following established protocols (see http://ccdb.ca/resources/).

Data Analyses
A separate alignment was made for each species using ClustalW
within Geneious. After forward (LCO or LepF1) and reverse
(HCO or LepR1) primer regions (26 bp each) were removed,
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TABLE 1 | The seven springtail species present in the two Antarctic Conservation Biogeographic Regions (ACBRs) in Victoria Land (NVL and SVL), within the Ross Sea

sector of Antarctica.

ACBR Species code Order Family Genus species

Northern Victoria Land (NVL) KKLO Entomobryomorpha Isotomidae Kaylathalia klovstadi (Carpenter, 1902)

CCIS Entomobryomorpha Isotomidae Cryptopygus cisantarcticus (Wise, 1967)

FGRI Entomobryomorpha Neanuridae Friesea grisea (Schaeffer, 1891)

CTER Entomobryomorpha Isotomidae Cryptopygus terranovus (Wise, 1967)

Southern Victoria Land (SVL) AMON Entomobryomorpha Isotomidae Antarcticinella monoculata (Salmon, 1965)

CNIV Entomobryomorpha Isotomidae Cryptopygus nivicolus (Salmon, 1965)

GHOD Poduromorpha Hypogastruridae Gomphiocephalus hodgsoni (Carpenter, 1908)

Refer to Sinclair and Stevens (2006) for additional taxonomic and distributional detail, and Register of Antarctic Species (RAS; raw.biodiversity.aq) for history of name changes for

each species.

TABLE 2 | Collection sites in northern Victoria Land, grouped by region, including the number of COI sequences at each site for the four species in this area; Cryptopygus

cisantarcticus (CCIS), Cryptopygus terranovus (CTER), Friesea grisea (FGRI), and Kaylathalia klovstadi (KKLO).

Region Site name Site code Latitude Longitude CCIS CTER FGRI KKLO

N Tucker Gl. Cape Adare CAD −71.48170 170.38813 8 (8)

Cape Hallett CHA −72.31986 170.23404 14 (10) 20 (10) 24 (19)

Redcastle Ridge RCR −72.44110 169.94400 1 (1) 3 (3)

S Tucker Gl. Crater Cirque CCI −72.63333 169.36667 10 6

Emerging Island EMI −73.38333 168.03333 10

Apostrophe Island API −73.51667 167.43333 10

Cape King CAK −73.58333 166.61667 10 7

S Aviator Gl. Baker Rocks BAR −74.23333 164.75000 10

Cape Washington CAW −74.65000 165.41667 10

Harrow Peaks HPE −74.10000 164.80000 5

Hayes Head HHE −74.01667 165.30000 5

Kay Island KAI −74.06667 165.31667 10 10

Tinker Glacier a TGA −74.03333 164.81667 7

Tinker Glacier b TGB −74.03333 165.06667 10 6

S Campbell Gl. Cape Sastrugi CAS −74.61667 163.68333 10

Inexpressible Island INI −74.90000 163.65000 10

O’Kane Glacier OKG −74.43070 162.89700 1 (1)

Shield Nunatak SHN −74.55000 164.50000 10

Terra Nova Bay/Jang Bogo Station TNB −74.62390 164.22890 53 (4)

Springtail Valley SVA −74.74725 164.01435 9

Vegetation Island VEI −74.78333 163.61667 10

The number of sequences newly generated in the current study are shown in parentheses. See Table S1 for additional details, such as correlation of site codes used in previous studies.

each species’ alignment was individually assessed and trimmed
accordingly to maximize alignment length but also retain
maximum sequence coverage for each species. Final alignments
varied in length, from 422 to 586 bp. Based on these final trimmed
alignments, unique haplotypes for each species were then
manually assigned codes in order of the date they were sequenced
(e.g., GHOD-001 for Gomphiocephalus hodgsoni, haplotype
1). Future haplotypes can therefore be added sequentially to
this dataset.

The numbers of duplicate sequences for each haplotype were
manually calculated based on the number of replicates within
our trimmed alignments, as well as from original tables and

figures provided in published papers for cases where only unique
sequences were originally deposited online (Nolan et al., 2006;
Demetras, 2010; McGaughran et al., 2010). This was particularly
problematic for G. hodgsoni, as the numbers of each haplotype
from each specific location could only be determined by a
process of elimination through cross-referencing all available
tables, figures and supplementary data. Unfortunately, collection
information is absent for 46 G. hodgsoni specimens (see
Table S9), outlined as follows. The precise collection location
is uncertain for the two full mitochondrial genomes that have
been previously assembled for G. hodgsoni (GenBank accessions
AY191995 and NC005438; Nardi et al., 2003) as well as the three
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TABLE 3 | List of collection sites in southern Victoria Land, grouped by region, including the number of COI sequences at each site for the three species in this area;

Antarcticinella monoculata (AMON), Cryptopygus nivicolus (CNIV) and Gomphiocephalus hodgsoni (GHOD).

Region Site name Latitude Longitude AMON CNIV GHOD

N Mawson Gl. Cliff Nunatak −76.11000 162.01400 12

Mt Murray −76.16100 162.01600 11

Tripp Island −76.11667 162.41667 8

Mackay Gl. region Benson Glacier a −76.82200 162.10700 1 21 (4)

Benson Glacier b −76.87000 161.75400 3

Botany Bay −77.00000 162.65000 15

Cape Geology −77.01438 162.60143 12

Cape Ross −76.73333 162.96667 5

Depot Island −76.70000 162.96667 5

Flatiron −77.00500 162.40800 28 (6)

Mount England −77.03333 162.46667 2 11

Mount Gran −76.96600 161.17900 7 3

Mount Seuss a −77.03333 161.73333 12 (4) 45

Mount Seuss b −77.01500 161.75000 3 64 (49)

Pegtop Mountain −77.04600 161.36200 2

Sperm Bluff −77.08333 161.71667 8

Springtail Point −77.16700 160.71000 7 11

Tiger Island −76.78400 162.45200 3(1) 14(2)

Towle Glacier −76.65500 161.09300 2 6(1)

Northern Dry Valleys Clark Glacier −77.41667 162.11667 4

Lake Brownworth −77.45000 162.71667 6

Marble Point −77.43537 163.82615 3

Mautrino Peak −77.51667 162.41667 6

Saint John’s Range a −77.28000 161.73100 23

Saint John’s Range b −77.20800 161.70000 5

Saint John’s Range c −77.28500 161.72600 4

Saint John’s Range d −77.33333 161.90000 7

Taylor Valley Borns Glacier −77.76665 162.01999 16

Canada Glacier −77.60965 163.00913 2

Commonwealth Glacier a −77.61238 163.40228 1

Commonwealth Glacier b −77.61667 163.40000 3

Delta Stream −77.64295 163.13297 8 (4)

Goldman Glacier a −77.68665 162.87223 1

Goldman Glacier b −77.68590 162.92163 1

Goldman Glacier c −77.68707 162.94993 6

Goldman Glacier d −77.68870 162.97068 1

Howard Glacier −77.66225 163.09725 25 (8)

Lake Chad a −77.64285 162.77487 1

Lake Chad b −77.64567 162.76300 1

Lake Fryxell a −77.62665 163.11502 1

Lake Fryxell b −77.63220 163.21262 1

Lake Fryxell c −77.61998 163.18502 2

Lake Fryxell d −77.63333 163.21667 27

Mount Barnes a −77.60715 163.50088 3

Mount Barnes b −77.61283 163.52695 1

Mount Barnes c −77.61930 163.49298 1

Mount Barnes d −77.62112 163.48913 1

Mount Cerberus −77.70000 162.58333 2

Mount Coleman −77.55142 163.34123 6

Mount Falconer a −77.58107 163.10958 1

(Continued)
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TABLE 3 | Continued

Region Site name Latitude Longitude AMON CNIV GHOD

Mount Falconer b −77.56892 163.15578 1

Mount Falconer c −77.57725 163.09210 1

Spaulding Pond a −77.65861 163.10808 65 (3)

Spaulding Pond b −77.65789 163.12044 35 (1)

Spaulding Pond c −77.65889 163.12539 56 (1)

Taylor Valley 389 −77.73400 162.28100 2 (2)

Upper Taylor Valley −77.74100 162.34200 2 (2)

Southern Dry Valleys Garwood Valley −78.01965 164.05673 74 (61)

Lake Penny −78.30992 163.40788 4

Marshall Valley −78.06988 164.03370 8 (8)

Miers Valley −78.09603 163.75900 173 (164)

Shangri La −78.05425 163.77730 16 (16)

Ross Island area Beaufort Island −76.93177 166.91347 12

Cape Bird −77.22110 166.44683 12

Cape Crozier −77.46325 169.19687 11

Cape Evans −77.63388 166.44252 4

Cape Royds −77.54600 166.16298 10

The number of sequences newly generated in the current study are shown in parentheses. See Table S1 for additional details, such as correlation of site codes used in previous studies.

TABLE 4 | Sequence details for the seven species of Collembola present in NVL and SVL, showing alignment lengths used in the current study (which vary for each

species).

ACBR Species code Alignment length (bp) n (new) h (new) % A-T Intraspecific divergence

(maximum)

n divergent lineages

(mean)

NVL

(n = 299)

KKLO 582 35 (30) 19 (15) 59.0% 2.7% 2 (1.7%)

CCIS 567 25 (11) 14 (9) 62.6% 6.4% 3 (5.8%)

FGRI 478 66 (10) 11 (1) 64.5% 9.8% 2 (9.2%)

CTER 577 173 (5) 68 (1) 63.1% 15.4% 4 (6.9–14.7%)

SVL

(n = 1023)

AMON 530 33 (0) 5 (0) 58.3% 10.4% 2 (10.1%)

CNIV 586 40 (6) 16 (0) 61.7% 4.6% 3 (3.3–4.3%)

GHOD 422 950 (330) 88 (12) 64.6% 7.3% 3 (5.9–7.3%)

TOTAL 1322 (392) 222 (38)

Of the number of sequences (n) within each alignment, the number of sequences new to this study are shown in parentheses. The number of unique haplotypes are also shown (h),

along with relative proportion of A and T nucleotides (% A–T) and maximum divergences (uncorrected p-distance) for each species. We also highlight the potential for multiple divergent

lineages within each of the species, with mean divergences (uncorrected p-distance) provided in parentheses.

sequences from Greenslade et al. (2011). GenBank accession
numbers for the five sequences new to McGaughran et al. (2008)
could not be linked with their respective site data, and 41
specimens from McGaughran et al. (2010) which include those
from McGaughran et al. (2008) were also lacking site data. For
specimens from Demetras (2010) where collection data were
not resolved to precise site, we have used the broader “valley-
level” locations (i.e., Garwood, Marshall and Miers Valleys, and
Shangri La) in our analyses. Overall, sequences from a total of
88 sites were assessed in this study (Figures 1, 2; Tables 2, 3 and
Table S1). For specimens with collection data absent, sequences
were included in the initial alignment for phylogenetic tree
construction and haplotype assignments, and were then removed
for subsequent biogeographic analyses.

Each of the individual alignments for the seven species were
then assembled into one master alignment which was trimmed
to 422 bp and a Maximum Likelihood tree was generated in
MEGA v7.0.26 (Kumar et al., 2016) based on the sequence
model GTR+I+G (Guindon and Gascuel, 2003; Darriba et al.,
2012; JModelTest2), including 1,000 bootstrap replicates. All
sequence divergence values included in the current study were
also generated in MEGA based on uncorrected p-distances.

Haplotype pie charts (Figures 4–7) were generated in
R v3.5.1 utilizing the packages “mapdata” (Becker et al.,
2016) and “mapplots” (Gerritsen, 2014) based on the
individual species alignments which were each trimmed
to different lengths, depending on the sequences. To
retain haplotype-level resolution, phylogenetic tree excerpts
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FIGURE 2 | Map with all 67 sites in southern Victoria Land labeled, generated in ArcMap v10.5.1. See Table 3 and Table S1 for GPS co-ordinates.

included in these figures were based on the individual species
alignments (422–586 bp).

To determine potential barriers to dispersal, Analysis
of Molecular Variance (AMOVA) analyses were performed
separately for each species in R v3.5.1 utilizing the package

“poppr” with 16,000 permutations (Kamvar et al., 2014, 2015).
For this, species alignments that had each been trimmed to
between 422 and 586 bp (Table 4) were used, and haplotypes were
grouped according to their occurrence at sites within particular
regions (listed in Tables 2, 3) to test the amount of genetic
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variability occurring within and between regions. As specimens
of Cryptopygus nivicolus were all found within the Mackay
Glacier region, we performed the AMOVA for this species
with the sites Towle Glacier and Springtail Point designated as
separate regions.

RESULTS AND DISCUSSION

We compiled all available COI sequences for the seven
springtail species in Victoria Land. Sequence coverage ranged
from 25 to 950 individuals per species (total n = 1,322),
with between 5 and 88 haplotypes identified for each species
(Figure 3; Table 4). The final alignments for each species
varied in length (422–586 bp), largely due to variation in
sequence quality, and we treated each species separately for
biogeographic analyses to maximize variability within the
datasets, although a final alignment trimmed to 422 bp was
used to construct the phylogenetic tree (Figure 3). Relative
proportions of AT-richness ranged from 58.3 to 64.6% for each
species (Table 4), and no insertions or deletions were found.
Maximum intraspecific sequence divergences ranged from 2.7 to
15.4% (uncorrected p-distance) and for all seven species, high
divergence values (1.7–14.7%) were found among individuals
from different geographic locations (Table 4), supported
by AMOVAs.

Northern Victoria Land Taxa
Northern Victoria Land is the northern-most Antarctic
Conservation Biogeographic Region (ACBR) of the Ross Sea
sector and extends from Cape Adare (71.3◦S) to the Drygalski
Ice Tongue (75.3◦S) (Figure 1). We recovered a total of 299
COI sequences from the four springtail species that are present
in this area; Kaylathalia klovstadi (KKLO; n = 35 sequences),
Cryptopygus cisantarcticus (CCIS; n = 25), Friesea grisea (FGRI;
n = 66), and Cryptopygus terranovus (CTER; n = 173). Each
species was collected from a different range of sampling locations
and also showed contrasting population genetic structures. For
example, two genetically distinct lineages (clades C and D) of
C. terranovus from sites in the central and northern zones as
designated by previous studies (e.g., Fanciulli et al., 2001; Hawes
et al., 2010; Carapelli et al., 2017), were highly divergent (>10%)
whereas F. grisea specimens from the same area all had identical
sequences (Figures 4, 5). Similarly, sequences ofK. klovstadiwere
only 0.7% divergent between Cape Hallett and Redcastle Ridge,
whereas C. cisantarcticus specimens differed by 4.3% between
the same two collection sites. The Tucker Glacier is a significant
barrier to dispersal for Antarctic springtails in the area, with
highly distinct (>5%) populations present on either side of this
glacier and no shared haplotypes between populations, consistent
across species.

Kaylathalia klovstadi (Carpenter, 1902)
The first collections of this species (originally described as
Isotoma klovstadi) were obtained from Geikie Ridge during the
British Antarctic Expedition (1898–1901), after which it was not
collected again until 1965 from Ridley Beach at Cape Adare
(Wise, 1971). The first five COI sequences obtained for K.

klovstadi were from individuals collected at Cape Hallett and
published in a study that reclassified the genus from Isotoma
to Desoria (Stevens et al., 2006a). The same five sequences
were further used to again reclassify the genus to Kaylathalia
(Stevens and D’Haese, 2016).

We now include a further 30 previously unpublished
COI sequences from three locations (including Cape Hallett),
revealing 15 new haplotypes (KKLO-005 to KKLO-019; Tables 2,
4; Tables S2, S3). By expanding the sequence coverage and
including two additional sites, we are now able to demonstrate
geographical isolation of distinct genetic lineages (2%) for K.
klovstadi (Figure 4B). When haplotypes in the combined dataset
were grouped by region, an AMOVA showed that 75% of the
sequence variation occurred between the northern Cape Adare
group (n = 8), and the southern Cape Hallett and Redcastle
Ridge group (n = 27) (Table 5; p < 0.01). No haplotypes were
shared between sites, although Redcastle Ridge was represented
by only 3 sequences which were similar to those from Cape
Hallett (0.7% divergence).

Based on a study of 40 COII gene sequences, Frati et al.
(2001) suggested that the Tucker Glacier was as a major barrier
to dispersal for K. klovstadi. Currently, no COI sequences were
available for K. klovstadi from the southern side of the Tucker
Glacier and this would benefit from further attention, particularly
as strong population genetic structure for the COI gene was
observed for C. cisantarcticus and F. grisea on opposing sides of
this glacier (see sections Cryptopygus cisantarcticus Wise, 1967
and Friesea grisea Schaeffer, 1891).

Cryptopygus cisantarcticus (Wise, 1967)

The first four COI sequences of C. cisantarcticus were from
specimens collected at Cape Hallett and included in Stevens
et al. (2006b), who suggested this species has been isolated
for 18–11 MY based on comparisons with other Southern
Hemisphere springtail species. An additional 10 sequences were
obtained from Crater Cirque and presented as an outgroup in
Carapelli et al. (2017).

Here, we added a further 10 sequences from Cape Hallett and
a single sequence from Redcastle Ridge, representing nine new
haplotypes (CCIS-006 to CCIS-014), and provide comparison
among all COI sequences currently available for C. cisantarcticus
(Tables 2, 4; Tables S2, S4). When haplotypes in the combined
dataset were grouped by location, an AMOVA showed that 87%
of the sequence variation occurred across the Tucker Glacier,
between the northern Cape Hallett and Redcastle Ridge group
(n = 15) and the southern Crater Cirque population (n = 10)
(Table 5; p < 0.01).

Population genetic structure differed for C. cisantarcticus as
compared to other species in the area where their sequence
distributions overlapped (Figure 4). Sites at Redcastle Ridge and
Cape Hallett are in relatively close proximity (<16 km), and
divergence between these two locations was very low for K.
klovstadi (0.7%) while much higher for C. cisantarcticus (4.3%).
Furthermore, mean divergence for C. cisantarcticus across the
Tucker Glacier was 5.8%, whereas divergence was higher for F.
grisea, at >9%.
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FIGURE 3 | Maximum Likelihood tree (GTR + Ŵ + I; 1,000 bootstrap replicates) based on the trimmed alignment (422 bp) for all 1,322 COI sequences available for

the seven springtail species in Victoria Land. Clades are collapsed proportionately, where each collapsed clade represents a potential cryptic species (>1.7%

divergence), and number of sequences are shown in parentheses. Geographic distances within and between clades are provided, along with p-distances between

clades, to highlight geographical isolation of well-supported clades (bootstrap values provided on branches, where relevant).

Friesea grisea (Schaeffer, 1891)

This species has been considered “pan-Antarctic” until very
recently; specimens of Friesea grisea from the Antarctic Peninsula
were found to be morphologically distinct to those in Eastern
Antarctica (Greenslade, 2018) in agreement with the absence of
haplotype sharing between the two locations (>15% divergence;
Torricelli et al., 2010b). A total of 55 COI sequences for F. grisea

have been published (Torricelli et al., 2010b). In addition, the
full mitochondrial genome has previously been assembled for F.
grisea (GenBank accession KR180288) collected from Kay Island
(Torricelli et al., 2010a) and we have included the COI gene
region from this sequence in our analyses.

We added an additional 10 unpublished sequences from
Cape Hallett (situated to the north of Tucker Glacier;
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FIGURE 4 | Geographical distribution of COI sequences for three of the four springtail species within northern Victoria Land, with (A) an overview of collection sites

and major glacial barriers, (B) geographical distribution of the 19 haplotypes of Kaylathalia klovstadi (KKLO; n = 35; 582 bp), (C) geographical distribution of the 14

haplotypes of Cryptopygus cisantarcticus (CCIS; n = 25; 567 bp), and (D) geographical distribution of the 11 haplotypes of Friesea grisea (FGRI; n = 66; 478 bp). Pie

charts are proportionate to the number of sequences, centered at collection site co-ordinates. Tucker Glacier is a major barrier of dispersal for CCIS and FGRI, and no

sequences of KKLO have been obtained from south of the Tucker Glacier.
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FIGURE 5 | Geographical distribution within northern Victoria Land of COI sequences for Cryptopygus terranovus (CTER; n = 173; 577 bp) showing (A) distributional

barriers (Campbell and Aviator Glaciers), and (B) clade groupings as previously suggested by Carapelli et al. (2017) and Hawes et al. (2010). Pie charts are

proportionate to the number of sequences, centered at collection site co-ordinates.

Figure 4), including one new haplotype, for a total of 20
sequences from this site (Table 2; Tables S2, S5). When
haplotypes in the combined dataset were grouped by location,
an AMOVA showed that 98.3% of the sequence variation
occurred across the Tucker Glacier (Table 5; p < 0.01),
between the northern Cape Hallett population (n = 20)
and the southern group (n = 46) comprised of seven sites
across approximately 220 km of coastal terrain (Figure 4D).
Individuals of F. grisea along that entire coastal area south
of the Tucker Glacier were within 0.2% divergence, while
the population at Cape Hallett was highly differentiated
(9.2% divergence), further supporting a lack of dispersal
across the Tucker Glacier, in agreement with our findings
for C. cisantarcticus.

Cryptopygus terranovus (Wise, 1967)

An analysis of allozymes for Cryptopygus terranovus (previously
known as Gressittacantha terranova; Greenslade, 2015) showed
northern, central and southern zones of genetic differentiation
within the vicinity of Terra Nova Bay that were separated by the
Aviator and Campbell Glaciers (Figure 5A; Fanciulli et al., 2001).
It was also suggested that the population at Apostrophe Island
(API; northern zone) was comprised of individuals that hadmore
recently migrated from the central zone. The first COI sequences

(n = 4) for this species were collected from near the Mario
Zuchelli station (C. Beard, pers. comm.) and were reported in
Stevens et al. (2006b). Hawes et al. (2010) provided 54 sequences
and 25 new haplotypes from fine-scale (∼15 km2) sampling in
the southern zone (Terra Nova Bay). Broader-scale sampling by
Carapelli et al. (2017) provided a further 114 sequences from 11
sites, including 38 new haplotypes. Each of these three genetic
studies provided additional evidence to support the division
of C. terranovus into the three zones as first suggested by
Fanciulli et al. (2001) and our AMOVA analyses found that 59.8%
of the sequence variation occurred between the three zones
(Table 5; p < 0.01).

We provide a further five sequences (no new haplotypes)
from near Jang Bogo Station in Terra Nova Bay, and O’Kane
Glacier (Table 2; Tables S2, S6). We analyzed a total of
173 COI sequences for C. terranovus and identified 68
unique haplotypes from the 577 bp alignment. Sequences
were grouped into the four distinct clades that have been
previously identified for this species (Hawes et al., 2010;
Carapelli et al., 2017). Overall, each clade contained between
20 and 78 sequences, mean sequence divergences within
each clade ranged from 0.48 to 2.09%, and mean sequence
divergences between clades ranged from 6.9 to 14.7%
(Figure 5; Table 4; Table S6).
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TABLE 5 | Analysis of molecular variance (AMOVA) (Excoffier et al., 1992) results for the seven species of Collembola in Victoria Land, as implemented in R v3.5.1 using

the package “poppr” (Kamvar et al., 2014, 2015).

Species Source of variation df Sum of squares Variance components Percentage of variation p

Kaylathalia klovstadi Among regions 1 58.47 4.61 75.02 <0.001

Within regions 33 50.68 1.54 24.98

Cryptopygus cisantarcticus Among regions 1 185.33 15.25 87.00 <0.001

Within regions 23 52.41 2.28 13.00

Friesea grisea Among regions 1 565.35 20.27 98.27 <0.001

Within regions 64 22.88 0.36 1.73

Cryptopygus terranovus Among regions 2 1136.31 11.53 59.80 <0.001

Within regions 170 1317.57 7.75 40.20

Antarcticinella monoculata Among regions 1 369.12 26.46 98.75 <0.001

Within regions 31 10.40 0.34 1.25

Cryptopygus nivicolus Among regions 2 42.26 1.89 35.03 <0.001

Within regions 37 129.69 3.51 64.97

Gomphiocephalus hodgsoni Among regions 4 409.03 0.63 39.86 <0.001

Within regions 899 859.23 0.96 60.14

Sites were grouped into regions according to Tables 2, 3, while Towle Glacier and Springtail Point were each designated as separate regions for C. nivicolus. Statistical significance of

variance components were tested with 16,000 permutations.

Southern Victoria Land Taxa
This region extends from the Drygalski Ice Tongue to the north
and the Koettlitz Glacier to the south, and includes the Mackay
Glacier region as well as the Victoria Land Dry Valleys including
Victoria, Wright, Taylor, Garwood, Marshall, and Miers Valleys
(Figures 1, 2). We analyzed a total of 1,023 COI sequences
from the three springtail species that are currently known
from this region; Antarcticinella monoculata (AMON; n = 33),
Cryptopygus nivicolus (CNIV; n = 40), and Gomphiocephalus
hodgsoni (GHOD; n= 950). All three species are range-restricted,
with genetic differentiation found among different geographic
locations. However, patterns of population structure vary among
the three species. For example, individuals of G. hodgsoni at
Mount Gran (n = 3) showed sequence divergences of 7.6%
(Bennett et al., 2016), while individuals of C. nivicolus from
Mount Gran (n = 7) were similar to those from other nearby
sites such as Mount Seuss and Mount England (Beet et al.,
2016). No sites were found with all three species present.
Both C. nivicolus and A. monoculata were found at Springtail
Point, while C. nivicolus and G. hodgsoni were both found at
5 sites (Towle Glacier, Tiger Island, and Mounts Seuss, Gran
and England).

Antarcticinella monoculata (Salmon, 1965)

In total, 33 COI sequences were available for A. monoculata
(Beet et al., 2016; Bennett et al., 2016) and all specimens
were collected from within a 250 km2 range of the Mackay
Glacier (Figure 6A; Table 3; Table S7). Sequences from the two
northern-most sites, Mount Murray and Cliff Nunatak, were all
the same haplotype (AMON-005) and were divergent from the
other four haplotypes that were found at the more southerly sites
(10.1% mean p-distance). An AMOVA revealed that 98.7% of
the genetic variation occurred between these two geographically
isolated populations (Table 5; p < 0.01).

Cryptopygus nivicolus (Salmon, 1965)

The first COI sequences (n = 2) for this species were obtained
from Mount England (Stevens et al., 2006b). More recently,
Bennett et al. (2016) and Beet et al. (2016) contributed another 32
sequences from an additional 5 sites, showing genetic divergence
among habitats.

A further 6 sequences were included as part of our study
(Tables 3, 4; Tables S2, S7). In total, we identified 16 haplotypes
from the 40 COI sequences for this species, clustering into three
distinct groups (3.3–4.3% mean divergence) corresponding to
different geographic locations (Figure 6B). Springtail Point and
the Towle Glacier site each had uniqueC. nivicolus sequences that
were not found at any other site. The remaining nine haplotypes
(n = 27 sequences) occurred across four sites in the vicinity of
the Mackay Glacier (Mounts Gran, Seuss, England and Tiger
Island; Figure 6B), suggesting individuals may have recently
dispersed among hese sites (within 40 km of each other). Possible
explanations for connectivity among these sites include dispersal
via meltwater streams or in marine, nearshore environments
when sea ice is absent along coastal boundaries. An AMOVA
found that when sites at Springtail Point and Towle Glacier were
designated as separate regions, only 35% of the genetic variation
occurred between each of the three regions (Table 5; p < 0.01).
However, genetically divergent populations of C. nivicolus were
found at Springtail Point and the Towle Glacier site (Figure 6B),
highlighting the importance of conservation strategies to prevent
human-mediated transport of genetic variants between these
currently isolated populations.

Gomphiocephalus hodgsoni (Carpenter, 1908)

Previous Studies
The first COI sequences for G. hodgsoni were contributed by
a study that also examined allozymes and was focused on
phylogeography (Stevens and Hogg, 2003). COI sequences were
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FIGURE 6 | Geographical distribution within the vicinity and to the north of Mackay Glacier in southern Victoria Land of (A) the two distinct (10.1% mean divergence)

lineages of Antarcticinella monoculata (AMON; n = 33; 530 bp), and (B) the three distinct (3.3–4.3% mean divergence) lineages of Cryptopygus nivicolus (CNIV;

n = 40; 586 bp), highlighting differing population genetic structure for the two springtail species. Pie charts are proportionate to the number of sequences, centered at

collection site co-ordinates.

obtained for 45 individuals from 21 localities, and 14 unique
haplotypes were identified (A-N). Among their findings it was
suggested that two sympatric populations were present in Taylor
Valley (1.5% divergence), and that recent transport (possibly
by birds or humans) had occurred between Ross Island and
Granite Harbor as similar haplotypes were shared between
these locations. Sequences from Stevens and Hogg (2003)
were included in their subsequent study (Stevens and Hogg,
2006), where genetically divergent populations were identified
at Beaufort Island and in Taylor Valley, when compared to the
remaining sites on Ross Island (n = 5 sites) and the continental
mainland (n = 11 sites, including Taylor Valley). However, the
Beaufort Island haplotype (our haplotype GHOD-010) has since
been found at additional sites on the continent (see Table S9),
while the unique Taylor Valley haplotype (our haplotype GHOD-
011) remains restricted to Taylor Valley and belongs to Group Y
in Collins and Hogg (2015) and Nolan et al. (2006).

A following study of G. hodgsoni (Nolan et al., 2006) targeted
the two sympatric groups in Taylor Valley that had previously
been identified by Stevens and Hogg (2003). The eight Taylor
Valley sequences from Stevens and Hogg (2003) were also
incorporated into their dataset, and 10 unique haplotypes (A–J)
were identified from the combined dataset (n = 48). The study
concluded that the two sympatric phylogroups (haplotypes A–
F = group X; G–J = group Y) probably diverged less than 1
million years ago, around the time when ancient Lake Washburn
flooded the Valley (40 kya). Ancestors of the two populations
probably survived in isolated refugia at either end of the Valley
(group Y inland and group X in higher elevation coastal areas),
recolonizing the Valley and reconnecting following the retreat of
Lake Washburn.

An additional five COI sequences and two new haplotypes
were recovered from GenBank (McGaughran et al., 2008).
Unfortunately, we were unable to determine which sequences
corresponded to haplotype codes referred to in the manuscript.
As these sequences were included in the subsequent study of
McGaughran et al. (2010), they have also been included in our
study. The McGaughran et al. (2008) study included sequences
from Stevens and Hogg (2003) and identified 20 haplotypes
(G1-G20) from a total dataset of 96 sequences from the wider
McMurdo Dry Valleys and Ross Island area. Divergences of
G. hodgsoni COI sequences were up to 2.1%, suggesting the
populations had diverged within the last million years (based on
molecular clock calibration of 1.5–2.3%/my e.g., Brower, 1994;
Juan et al., 1996; Quek et al., 2004). Further, haplotype diversity
tended to be higher at more inland sites and particularly at
higher altitudes, suggesting this was a result of persistence in
refugial habitats. McGaughran et al. (2008) also suggested that
Ross Island individuals were derived from a founder population
that originated from the Dry Valleys.

McGaughran et al. (2010) compared patterns of sequence
divergences of G. hodgsoni to those of Cryptopygus antarcticus
from the Antarctic Peninsula and provided COI and COII
sequences for both taxa. Existing G. hodgsoni COI sequences
from Stevens and Hogg (2003) and McGaughran et al. (2008)
were also included, and 45 haplotypes (H1–H45) were identified
from their final alignment of 289 individuals (471 bp). In
reviewing these sequences, we were able to identify exact site
information for all but 31 specimens (see Table S9). Key findings
from McGaughran et al. (2010) included limited haplotype
sharing between local sites within both the Peninsula and
continental areas, and that survival in refugial habitats was
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likely to have occurred on a Pleistocene timescale. However, the
Peninsula contained more rare haplotypes and it was suggested
that differences in population structure were a result of landscape
differences and colonization events between the two localities.
Greenslade et al. (2011) provided three additional COI sequences
(658 bp) for the existing haplotype H43 from McGaughran et al.
(2010) (our haplotype GHOD-046) in a study which confirmed
Gomphiocephalus as a distinct genus.

A further 90 G. hodgsoni COI sequences were contributed by
Demetras (2010) from the southern Dry Valleys area (Marshall,
Garwood and Miers Valleys) with limited diversity found (10
haplotypes TABS Gh1—Gh10; <0.8% divergence). Based on
a haplotype network analysis, it was suggested that all 10
haplotypes were derived from a single lineage (300–500 kya).
Possible reasons for the low diversity in G. hodgsoni from the
southern Dry Valleys include more recent recolonization of
this area or bottleneck events and differences in landscapes as
compared to the larger Dry Valleys (e.g., Taylor) where there is
much higher COI diversity. As the data from Demetras (2010)
were previously unpublished, we have now uploaded them to
BOLD and added them to our analyses.

Collins and Hogg (2015) provided a further 151 G. hodgsoni
COI sequences as part of a two-hourly time-series of pitfall
trap collections from Spaulding Pond in Taylor Valley. This
study targeted the two main “X” and “Y” haplotype groupings
previously reported by Nolan et al. (2006), known to occur in
sympatry at Spaulding Pond (Gh1-Gh12 = Y; Gh13-Gh19 = X).
More individuals were found from group Y (n = 120) relative
to group X (n = 31). As group Y is thought to have recolonized
from inland “colder” refugial sites, this study inferred that the
site was dominated by intrinsically cold-adapted individuals,
and that the relative proportions of X and Y individuals
could change with a warming climate. Furthermore, activity of
individuals from the X and Y haplotype lineages during each
two-hourly pitfall trap collection was more closely linked to
air temperature than any of the other measured environmental
variables. This highlights the potential for temporal shifts
in the genetic structure of populations as a consequence of
environmental changes.

An additional 67 sequences (658 bp; 16 haplotypes, 8 new)
were contributed by Bennett et al. (2016), along with sequences
from A. monoculata and C. nivicolus. This study was focused
on past isolation events using a molecular clock analysis. They
concluded that isolation was likely to have occurred during the
last 4 million years and that glaciation events since that time
have further contributed to the high COI diversity within bothG.
hodgsoni and C. nivicolus. In particular, specimens of G. hodgsoni
from Mount Gran (our haplotype GHOD-071) were found to
be highly divergent (>7%) from the remaining sampled dataset.
In a study focused on genetic diversity of Collembola from sites
in the vicinity of Mackay Glacier and further north, Beet et al.
(2016) contributed 66 new sequences (527 bp; 5 new haplotypes).
Sequences from Bennett et al. (2016) were also included in Beet
et al. (2016) analyses and, based on the combined dataset, it was
hypothesized that populations may have been isolated for 3–5
million years, consistent with a collapse and reformation of the
West Antarctic Ice Sheet.

Our Findings
As the most widespread and well-studied springtail in the
Ross Sea region, the dataset of COI sequences for G. hodgsoni
(n = 950) was larger than that of any other species and
represented specimens from 67 sites (Tables 3, 4; Tables S8, S9).
Overall, 620 sequences were available from nine published studies
as outlined above, and a further 330 previously unpublished
sequences have now been added here (Table S2). The majority
of sequences were <2.6% divergent, while distinct populations
were present at Towle Glacier (n = 6; 5.9% divergence) and
Mount Gran (n = 3; 7.3% divergence) which are located further
inland (Figure 7). Similarly, genetically divergent populations
of C. nivicolus were present at the inland sites Towle Glacier
and Springtail Point, suggesting that greater connectivity occurs
among coastal sites. Overall, an AMOVA revealed that the
majority (>60%) of haplotype diversity occurred within regions
(Table 5; p< 0.01), particularly as the highly diverged individuals
from sites Towle Glacier and Mount Gran were sequenced at
low numbers.

Tripp Island is approximately 70 km from other sites and
located to the north of Mawson glacier which appeared to be a
dispersal barrier forA. monoculata (>10% divergence). However,
individuals of G. hodgsoni from Tripp Island were not genetically
divergent (<0.5%) relative to other locations. In contrast,
individuals of G. hodgsoni at Mount Gran <10 km from other
sites (Figure 7) were highly genetically divergent (>7%). These
findings highlight that geographical barriers to dispersal such as
glaciers, and lack of water transport between locations, which
is unlikely for sites further inland, have a stronger influence on
the population genetic structures of Antarctic springtails than
distance alone.

CONCLUDING DISCUSSION

In this study we examined the available COI sequence data for all
seven of the Collembola species that occur within Victoria Land
(71◦ to 78.5◦S). All species harbored distinct lineages (1.4–14.7%
mean sequence divergences) that were isolated by geological or
glaciological features, rather than by distance alone. Such levels
of COI diversity are suggestive of long-term isolation and lack of
dispersal among locations.

In several cases, the distribution of genetic variants among
sites differed for the different species. Indeed, differing
distributional patterns were previously reported in a large-
scale study of the three species C. terranovus, F. grisea, and
G. hodgsoni (Caruso et al., 2009). Here, we showed that
sequence divergence for F. grisea (0.2%) and C. terranovus
(10.8%) differed greatly among the same sites in northern
Victoria Land. As a possible explanation, F. grisea may
have more recently dispersed throughout this area whereas
C. terranovus may have remained isolated by the Aviator
and Campbell Glaciers (e.g., Fanciulli et al., 2001; Carapelli
et al., 2017). In southern Victoria Land (SVL), Springtail
Point harbored a distinct lineage (>3.3% divergence) of C.
nivicoluswhereasA.monoculata from Springtail Point was highly
similar (<0.9% divergence) to individuals from nearby sites.
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FIGURE 7 | Geographical distribution of the three distinct (5.9–7.3% mean divergence) lineages of Gomphiocephalus hodgsoni within southern Victoria Land for

specimens where collection data were available (GHOD; n = 904; 422 bp), showing widespread distribution (500 km reach) of the main group of haplotypes (n = 895;

2.6% mean divergence) and distinct populations at both Mount Gran and Towle Glacier sites, further inland. Pie charts are proportionate to the number of sequences,

centered at collection site co-ordinates. See Tables S8, S9 for further haplotype and collection details for each specimen.

Similarly, the Mount Gran population of G. hodgsoni was highly
distinct (7.3% divergence) whereas sequences of C. nivicolus
from Mount Gran were identical to those from other sites.
Populations to the north of Mawson Glacier were genetically
distinct for A. monoculata (>10% sequence divergence; Cliff
Nunatak and Mount Murray) while the G. hodgsoni population
(Tripp Island) was genetically similar (0.5%), even though

these sites are geographically isolated from other sites by
>70 km (Figures 2, 6, 7).

Given the high levels of genetic divergence among populations
for all seven springtail species (1.7–14.7%), we highlight the
potential that these distinct lineages could be cryptic species.
Cryptic diversity has been suggested for C. terranovus in NVL
(Hawes et al., 2010; Carapelli et al., 2017) and G. hodgsoni,
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C. nivicolus, and A. monoculata in SVL (Beet et al., 2016).
Suggestions of cryptic diversity for the springtail F. grisea
between NVL and the Antarctic Peninsula (Torricelli et al.,
2010a,b) have now been validated through morphological
differences and redescription of the species (Greenslade, 2018).
However, the potential for cryptic variability among Victoria
Land specimens of F. grisea has not previously been suggested,
although the Cape Hallett population has been identified
as genetically distinct, possibly resulting from pre-Pleistocene
isolation (Torricelli et al., 2010b).

The Tucker Glacier in NVL provides an example of a small-
scale (<16 km) barrier to springtail dispersal as genetically
distinct (>5% sequence divergence) populations of both C.
cisantarcticus and F. grisea have been found either side of
the glacier. Previous studies using the COII gene have also
demonstrated this for K. klovstadi (Frati et al., 2001; Stevens
et al., 2007), suggesting the potential for microspeciation
processes occurring at these sites. In SVL, we show that the
phylogeographic patterns differed for each of the three species,
and we highlight Springtail Point, Towle Glacier, Mount Gran
and sites to the north of Mawson Glacier as possible sites
of conservation focus, as these locations harbored genetically
divergent (3.3–10.1%) populations. The vicinity of the Drygalski
Ice Tongue continues to provide a current barrier to dispersal for
springtail taxa between NVL and SVL and we found no evidence
of gene flow or species sharing between these regions.

Future studies focused on longer COI sequences (or indeed,
additional genetic markers), are likely to reveal further genetic
diversity for springtails in Victoria Land. The potential for
temporal changes in genetic diversity as a consequence of
environmental changes such as climate warming has also been
highlighted. Next generation sequencing and metabarcoding
approaches for genomic monitoring will be important for
future studies, particularly to detect spatial and temporal shifts
in genetic diversity. With a warming climate, future glacier
melt will provide additional opportunities for the dispersal
of springtails (via flotation) while also exposing new habitats
for colonization.

The Antarctic Conservation Biogeographic Regions
(Terauds et al., 2012; Terauds and Lee, 2016) provide a
geographical framework for assessing broad-scale biological
diversity. However, we suggest that knowledge of local-scale
patterns of genetic diversity will be critical for addressing
ecological and physiological questions, such as those
pertaining to dispersal, and responses to climate changes.
The understanding of relevant temporal and spatial scales as
well as the current distribution of genetic diversity is essential
to identify current barriers to dispersal as well as sites that
harbor unique genetic resources and, therefore, areas of
conservation value.
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