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Ecological theories often encompass multiple levels of biological organization, such as

genes, individuals, populations, and communities. Despite substantial progress toward

ecological theory spanning multiple levels, ecological data rarely are connected in

this way. This is unfortunate because different types of ecological data often emerge

from the same underlying processes and, therefore, are naturally connected among

levels. Here, we describe an approach to integrate data collected at multiple levels

(e.g., individuals, populations) in a single statistical analysis. The resulting integrated

models make full use of existing data and might strengthen links between statistical

ecology and ecological models and theories that span multiple levels of organization.

Integrated models are increasingly feasible due to recent advances in computational

statistics, which allow fast calculations of multiple likelihoods that depend on complex

mechanistic models. We discuss recently developed integrated models and outline a

simple application using data on freshwater fishes in south-eastern Australia. Available

data on freshwater fishes include population survey data, mark-recapture data, and

individual growth trajectories. We use these data to estimate age-specific survival and

reproduction from size-structured data, accounting for imperfect detection of individuals.

Given that such parameter estimates would be infeasible without an integratedmodel, we

argue that integrated models will strengthen ecological theory by connecting theoretical

and mathematical models directly to empirical data. Although integrated models remain

conceptually and computationally challenging, integrating ecological data among levels

is likely to be an important step toward unifying ecology among levels.

Keywords: Bayesian statistics, ecological modeling, population ecology, community ecology, ecological

dynamics, integrated models, inverse models, individual based model

INTRODUCTION

The search for unifying principles in ecology has spawned many ecological theories (Scheiner and
Willig, 2011). These theories often span multiple levels of organization, connecting individuals to
population, communities, and ecosystems (e.g., Brown et al., 2004; Falster et al., 2017). Although
ecologists regularly translate theoretical models into mathematical frameworks (e.g., Hubbell,
2001; Brown et al., 2004; Kooijman, 2010), it has proven difficult to parameterize these complex,
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mathematical frameworks so that the resulting models are
accurate, realistic, and applicable to real-world challenges
(Marquet et al., 2014). We believe that attempts to parameterize
complex, process-explicit models have been hampered by the
isolation of data collected at different levels of organization.
Although theoretical models regularly span multiple levels of
organization, statistical models rarely connect data in this way.

Most models of ecological processes are fitted as “forward
models,” where model parameters are estimated from data
measured at the level of the parameter (e.g., individual survival
estimated from data on individuals through time) (Caswell,
2001; Tredennick et al., 2017). Although forward models usually
support unique parameter estimates, it is challenging to collect
the data required to parameterize forward models reliably
while maintaining generality (Manning and Goldberg, 2010;
Tredennick et al., 2017). Recently, several statistical advances
have enabled “inverse models,” where model parameters are
estimated from data measured at higher levels of organization
than the model parameters (e.g., Ghosh et al., 2012; González
et al., 2016). For example, inverse modeling approaches have
been used to estimate individual survival and fecundity from time
series of population abundances rather than individual recapture
histories (Ghosh et al., 2012). Inverse models make use of widely
available data on higher levels of organization (e.g., population
abundance surveys), which overcomes issues of data availability
(Ghosh et al., 2012; Ovaskainen et al., 2016). However, inverse
models often fail to identify unique parameter combinations
because observed patterns at one level of organization are often
consistent with multiple sets of parameters at lower levels of
organization, leading to problems of non-identifiability (Peng
et al., 2011; Ghosh et al., 2012).

In general, both forward and inverse models focus on a
single type of data. For example, forward models of population
dynamics typically are parameterized with data on survival
and recruitment (e.g., life tables) (Fujiwara and Diaz-Lopez,
2017). By contrast, inverse models of population dynamics often
are parameterized with data on populations (e.g., abundance
time series) (Ghosh et al., 2012). Forward and inverse models
face different challenges; a lack of data hampers forward
models whereas a lack of specificity hampers inverse models.
Importantly, these challenges are complementary, which suggests
that a potential route is to combine forward and inverse
modeling approaches to parameterize models from data collected
at multiple levels of organization (Evans, 2012; Dietze, 2017).
Connecting data collected at multiple levels—an “integrated”
modeling approach—makes full use of available data and enables
reliable parameter estimates without loss of generality (Besbeas
et al., 2002; Schaub et al., 2007; Maunder and Punt, 2013).

Integrated models potentially overcome the practical
challenge of estimating reliable, realistic parameters in complex
mathematical models, such as dynamic energy budget models
(Kooijman, 2010) or matrix population models (Caswell, 2001).
This practical benefit has implications for fundamental ecology.
For example, widespread estimates of demographic vital rates
in natural conditions might give substantial new insights into
spatial and temporal variation in life histories (e.g., McIntyre
and Hutchings, 2003). Similarly, simultaneous analysis of data

on individuals, populations, communities, and ecosystems
might support realistic, data-driven models of biodiversity
and ecosystem function (Isbell et al., 2018), and would bridge
ecological analyses across distinct spatial scales, which is critical
to the development of general ecological theory (Chave, 2013).
In the following sections, we give a general introduction to
integrated models, outline an illustrative application to real data,
and discuss several open challenges.

CONNECTING MULTIPLE DATA TYPES
WITH INTEGRATED MODELS

Integrated models connect multiple data types through a
composite likelihood function (Maunder and Punt, 2013).
Central to this approach is a core process model that connects
multiple data types through appropriate likelihoods (Besbeas
et al., 2002). With an appropriate process model, a component
likelihood can be defined for each data type:

Li = fi(process),

where the subscript i indexes different data types and the
function fi(x) is specific to the ith data type. Multiple
component likelihoods can be combined into a composite (joint)
likelihood function:

Lcomposite = g(L1,L2, . . . , Ln),

where the function g(. . . ) takes multiple component likelihoods
and returns a single value for the composite likelihood.
Commonly, component likelihoods are assumed to be
independent, in which case the function g(. . . ) is the product of
all component likelihoods:

Lcomposite = L1×L2× . . .× Ln.

The composite likelihood Lcomposite can be used
with any likelihood-based methods of inference (e.g.,
maximum likelihood, Markov chain Monte Carlo)
(Maunder and Punt, 2013).

The choice of process model is critical to an integrated model.
The process model must connect data collected at multiple levels
of organization (e.g., individuals and communities) and must
be computationally tractable. Existing applications of integrated
models have focused predominantly on population processes
(e.g., species’ occurrences, demographic models; Bird et al., 2014;
Koons et al., 2017; Lahoz-Monfort et al., 2017; Zipkin et al.,
2017), which facilitates computation while remaining relevant
to multiple levels. However, any process model that connects
multiple data types could be used (e.g., models of individual or
ecosystem dynamics). A potentially useful focus is individual-
based models, which could be connected to many data types at
the expense of increased computational demands (Grimm and
Railsback, 2005).

The primary challenge in the development of an
integrated model is computational. Integrated models
include potentially complex and dynamic process models,
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as well as multiple likelihoods that differ in complexity.
Although a composite likelihood function is suited to
many inference methods, high computational demands
mean that fully Bayesian implementations are rare (but
see Brooks et al., 2004; Zipkin et al., 2017). In addition,
many implementations are hard-coded for particular
case studies (Maunder and Punt, 2013), and generalizing
these models typically requires knowledge of software for
Bayesian hierarchical models (e.g., BUGS or AD Model
Builder; Maunder and Punt, 2013; Koons et al., 2017).
Recent advances in computational statistics and software
are enabling more flexible implementations of integrated
models, and we give an example of one such model in the
following section.

EXAMPLE: ESTIMATING FISH
POPULATION DYNAMICS FROM
MULTIPLE DATA TYPES

Background
Globally, freshwater river ecosystems are stressed by a
combination of water extraction, changes to flow regimes,
commercial and recreational fishing, the introduction of exotic
species, and chemical and thermal pollution (Nilsson et al., 2005;
Koehn et al., 2014). In many regions of the world, increased
frequency of droughts and increases in consumptive water use
have led to widespread water shortages, further exacerbating
stresses on river ecosystems (Nilsson et al., 2005). In response
to water shortages, many government agencies have invested
heavily in programs to deliver environmental flows—releases
of water to protect biological resources—often with an explicit
focus on the viability of fish populations (Beesley et al., 2014;
Koehn et al., 2014).

The Murray-Darling Basin in south-eastern Australia is
highly valued environmentally, economically, and socially.
Environmental values have been heavily affected by river
regulation, particularly through the seasonal reversal of the
timing of flows and reduced frequency andmagnitude of flooding
(Maheshwari et al., 1995). The Murray-Darling Basin supports
over 40 native fish species, many of which have experienced
substantial declines in abundance over the past century (Koehn,
2015). Here, we focus on Murray cod (Maccullochella peelii
Mitchell, 1838), a large-bodied freshwater fish species listed as
vulnerable under the Australian Commonwealth Environment
Protection and Biodiversity Conservation Act, 1999. Murray cod
are included in several state and federal conservation programs,
which aim to identify management actions that will maintain
viable populations, often with an explicit focus on environmental
flows (Koehn, 2015). A key requirement of these programs is
reliable models of population dynamics that can be used to
predict population dynamics in different locations and under
different management scenarios (Yen et al., 2013).

Data Types
We used data collected over 20 years in six rivers in the Murray-
Darling Basin: the Murray (1999–present), Ovens (2007–
present), Loddon (2007–present), Goulburn (2008–present),
Campaspe (2007–present), and Broken (2008–present). Available
data included sizes of all individuals captured in a given survey,
size-at-age data from otoliths collected from 55 individuals
from 1999–present, and mark-recapture data from 1999–2017
at several locations in the Murray River. All three data sets had
similar ranges of individual sizes and ages.

Statistical Analysis
Our aim was to parameterize an age-structured model of
population dynamics from data on size-abundance distributions,

FIGURE 1 | Overview of the integrated modeling approach used here. Different data types (in rectangles) are connected to one another through a

density-dependent Leslie matrix model (oval). Several sub-models (diamonds) incorporate density dependence, a conversion from sizes to ages, and detectability.

New data types (dashed rectangles) could be included in this model without altering the overall modeling approach. Similarly, data and sub-models could be added or

removed as needed, and the main Leslie matrix model could be replaced with an alternative process model (e.g., an integral projection model or individual-based

model).
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size-at-age data, and binary recapture histories (Figure 1). The
underlying process model was a density-dependent Leslie matrix
model with variation in vital rates among rivers (Caswell, 2001).
We used five age classes and binned size-abundance data into
eight size classes (round brackets exclude endpoints): [(0 , 200 g),
(200 , 500 g), (500 , 1000 g), (1000 , 2000 g), (2000 , 5000 g), (5000
, 10,000 g), (10,000 , 20,000 g), and (20,000 , 60,000 g)]. These
bins were chosen arbitrarily, with unequal bin widths to avoid
the majority of individuals falling into one or a few size classes.

We connected size-abundance data, size-at-age data, and
recapture histories to the underlying Leslie matrix with three
component likelihoods (Figure 1). First, we assumed size-class
abundances were independently Poisson-distributed, conditional
on a detection probability, a conversion from size classes to
age classes, and the matrix population model (i.e., dependencies
among age classes are captured in the Leslie matrix). Second,
we used binary recapture histories to estimate the probability
of detection, assuming a Cormack-Jolly-Seber model with

FIGURE 2 | Posterior distributions of survival and fecundity from age-structured population models of Murray cod. Values are shown for each of six rivers in

south-eastern Australia (black points and lines), along with independent estimates from Yen et al. (2013) (gray points and lines). Points are median values and bars

span 95% credible intervals.
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time-varying survival probabilities (Lebreton et al., 1992). Third,
we used size-at-age data to relate size-class abundances to age-
class abundances, assuming that the distribution of individuals
in a given size class among all age classes followed a multinomial
distribution. We provide a detailed description of this model,
including specification of prior distributions, in Appendix S1.

We assumed the three component likelihoods were
independent, so that the composite likelihood was the product of
all three component likelihoods:

Lcomposite = Lgrowth×Labundance× Lcapture.

Constructing models in this way is fully modular, and allows any
or all elements of a given model to be changed (Figure 1). For
example, the matrix population model could be replaced with an
integral projection model or individual-based model, data sets of
the same or different type could be added to the analysis, and data
sets could be removed to estimate parameters using a forward or
inverse modeling approach (Figure 1). The only requirement is
that the component likelihoods can be defined; all other aspects
of the modeling process are unchanged.

We used the greta R package to generate fully Bayesian
parameter estimates (Golding, 2018). We based parameter
estimates on 40000 random-walk Metropolis-Hastings Monte
Carlo iterations (four chains of 100000 iterations, retaining
every tenth sample), following a 100000 iteration warm-up and
burn-in period. We assessed model convergence through visual
inspection of chains and used Bayesian r2 values to summarize
model fit (Gabry and Goodrich, 2018). We did not use more-
rigorousmodel validation (e.g., cross validation) because our goal
was to illustrate the implementation of a simple integrated model
rather than to present a full analysis of these data. Links to model
code are in Data availability.

RESULTS AND DISCUSSION

The integrated model fitted observed abundances moderately
well in five of six rivers, with median Bayesian r2 values > 0.4
in all rivers except the Murray river (Figure S1, Table S1).
Model fit was very poor in the Murray river (median Bayesian
r2 = 0.00) (Figure S1, Table S1). Poor model fit in the Murray
river, which had the highest observed abundances, might be
due to shared priors on vital rates drawing estimates toward
those of other rivers. Fitted abundances did not always track
observed abundances closely (Figure S1), due primarily to the
constraints imposed by the matrix population model. Although
a process-explicit approach might not match observed data as
closely as alternative methods (e.g., a purely statistical regression
model), the use of an explicit process model potentially guards
against overfitting and, therefore, might be expected to yield
more-accurate long-term predictions (Cuddington et al., 2013).
We acknowledge that more-detailed model validation would be
required to test this claim.

Median survival probabilities ranged from 0.32–0.67 in one
and two year age classes, with the lowest values in the Murray
river and highest in the Loddon river (Figure 2). Median survival
probabilities of three and four year age classes was generally

between 0.5 and 0.8, with lower values in the Ovens river
(0.16 and 0.41 for three and four year age classes, respectively)
(Figure 2). Median survival probabilities of the five year old age
class were mostly between 0.4 and 0.6, with a slightly lower
value in the Loddon river (0.37) and a slightly higher value
in the Goulburn river (0.66) (Figure 2). Estimates of survival
probabilities in one, two, and four year age classes were similar
to values reported in the literature, but estimates in three and five
year age classes were generally lower than values in the literature
(Figure 2). Median fecundity estimates, which encompass egg
and larval survival, ranged from 1 to 5, with low values (<2)
in the Campaspe, Goulburn, Ovens, and Loddon rivers, and
relatively high values (>4) in the Broken and Murray rivers
(Figure 2). These higher estimates of fecundity in the Broken
and Murray rivers match closely with existing estimates in
the literature (Figure 2). Density dependence was weak in the
Murray, Ovens, Goulburn, and Broken rivers (k < 10−4) but
strong in the Campaspe (k= 0.01) and Loddon rivers (k= 0.02),
indicating relatively low carrying capacities in the Campaspe and
Loddon systems (Figure S2, Table S2).

There are several possible extensions to this model. A
relatively straightforward extension would consider temporal
variation in vital rates, particularly in response to local or
regional environmental conditions (Figure 1). Incorporating
temporal variation in this way would enable projections of
population abundances that are linked closely to contemporary
and projected future environments (e.g., Yen et al., 2013). More
challenging extensions might include size- or age-structured
models of recapture histories or spatially explicit variation in vital
rates. Although extensions such as these introduce computational
challenges, it is conceptually straightforward to incorporate new
data and models into the integrated modeling approach used
here (Figure 1).

NEXT STEPS IN THE DEVELOPMENT OF
INTEGRATED MODELS

The example presented here illustrates the use of an integrated
model to estimate the parameters of a complex, process-
explicit model. This approach enabled simultaneous estimates
of demographic vital rates, detection probabilities, and size-age
associations, which would not be possible without an integrated
modeling approach. However, this example also illustrates
several challenges. These include the computational demands
of increasingly complex model structures (e.g., individual-based
models), the development of generalizable likelihoods that
allow novel data types to be included in arbitrarily complex
model structures, and the development of more-sophisticated
composite likelihoods that incorporate dependencies among data
types. Rapid development of integrated modeling techniques
suggest that these challenges will soon be overcome, enabling
many new applications of integrated models. Two particularly
exciting applications are the use of integrated models to connect
data among many levels, and the use of integrated models to
support advances in ecological theory.
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Connecting Data Flexibly Among
Many Levels
Most integrated models have focused on data collected at
one or two levels. For example, integrated models of species
distributions use data on populations (e.g., Lahoz-Monfort
et al., 2017; Pacifici et al., 2017; Zipkin et al., 2017), while
integrated models of demography use data on individuals and
populations to estimate demographic vital rates (e.g., Brooks
et al., 2004; Schaub et al., 2007; Bird et al., 2014; Koons
et al., 2017). Few studies have moved beyond two levels to
consider data spanning many levels (but see Péron and Koons,
2012). Given that individual behavior andmovement, population
dynamics, interspecific interactions, and ecosystem processes
are all connected to the same underlying processes, it seems
plausible that an integrated model could connect data among
many levels.

Although integrated models are restricted by the
computational demands of complex process models and
likelihood functions, recent advances in computational software
and hardware are rapidly overcoming these barriers. High-
performance software libraries such as TensorFlow (Abadi et al.,
2015) are enabling rapid computation of complex, dynamic
models, supported by accessible libraries and packages in
the R and Python computing environments (e.g., Golding,
2018). In addition, increasing availability and accessibility of
high-performance computing environments is allowing non-
specialists to undertake computationally demanding analyses. A
major advance will be the development of flexible and modular
software for integrated models that include different amounts
and types of data.

Advancing Theory With Integrated Models
Integrated models have been used largely as a practical solution
to data shortages and non-identifiable models (e.g., Maunder
and Punt, 2013; Zipkin et al., 2017). However, a broader benefit
of integrated models is their capacity to link ecological data
directly with ecological processes. Ecological theory often is
quantified through a mathematical process model. Therefore,
connecting data with ecological processes supports close ties
between theory and data, with theory informing the process
models that underpin integrated data analyses. Similarly, an
inability to parameterize process models from available data
often limits the development of ecological theory. In this case,
using all available data to parameterize complex process models
has the potential to hasten the development of ecological
theory. Examples include the refinement of life-history theory
through more accurate demographic models and new insight
into biodiversity-ecosystem function theory through models
that connect population, community, and ecosystem dynamics.
Although it is not entirely clear whether ecologists should
emphasize theory developed from first principles or theory

derived from data (Marquet et al., 2014), it is likely that close
ties between theory and data will improve inferences, predictions,
and understanding of ecological processes (Marquet et al., 2014;
Rillig et al., 2015; Dietze, 2017).
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