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Due to human perceptional bias in favor of air-borne sounds, substrate-borne vibrational

signaling has been traditionally regarded as a highly specialized, inherently short-range

and, consequently, a private communication channel, free from eavesdropping by

sexual competitors and predators. In this review, we synthesize current knowledge

pertinent to the view that most animals live in a rich vibratory world, where vibrational

information is available to unintended receivers. In recent years, we realized that

vibrational signaling is one of the oldest and taxonomically most widespread forms of

communication by mechanical waves and that receptors detecting substrate vibrations

are ubiquitous. In nature, substrate vibrations are reliable source of information readily

available to all members of the animal community able to detect them. Viewing vibrational

communication in more relevant ecological context reveals that animals relying on

substrate vibrations live in complex communication networks. Long evolutionary history

of this communication channel is reflected in varied and sophisticated predator-prey

interactions guided by substrate-borne vibrations. Eavesdropping and exploitation of

vibrational signals used in sexual communication have been so far largely neglected;

however, existing studies show that generalist arthropod predators can intercept

such signals emitted by insects to obtain information about prey availability and use

that information when making foraging decisions. Moreover, males which advertise

themselves for longer periods than females and with vibrational signals of higher

amplitude face higher predation risk. It is likely that eavesdropping and exploitation of

vibrational signals are major drivers in the evolution taking place in the vibratory world

and we believe that studies of interspecific interactions guided by substrate vibrations

will, in the future, offer numerous opportunities to unravel mechanisms that are central to

understanding behavior in general.

Keywords: biotremology, vibrational communication, communication network, predator-prey interactions,

eavesdropping

INTRODUCTION

Signals produced by mechanical vibrations and transmitted from the signaller to the receiver
through the medium (air, water or solid substrate) via mechanical waves are an important
part of animal communication (Bradbury and Vehrencamp, 1998). Speech (i.e., air-borne sound
communication) is such an important element of human interactions that our strong bias in
favor of this form of mechanical communication is inevitable, in particular, since our hearing
also allows us to perceive most of air-borne mechanical waves (i.e., sounds) emitted by other
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animals. Although cutaneous mechanoreceptors in human skin
are capable of detecting substrate-borne mechanical waves (e.g.,
Brisben et al., 1999; O’Connell-Rodwell et al., 2001; Stuart et al.,
2003), our own experience of the vibratory world around us
depends almost exclusively on the use of sensitive equipment. It
is therefore not surprising that in contrast to air-borne sound,
substrate-borne vibrations have been traditionally considered
a highly specialized and rare form of animal communication,
and consequently, even regarded as an adaptation to avoid
detection by eavesdropping enemies (Belwood and Morris, 1987;
Lima and Dill, 1990; Henry, 1994; Zuk and Kolluru, 1998;
Cooley, 2001; Lang et al., 2005; Römer et al., 2010), at best
accessible only to specialized parasitoids (Hughes et al., 2012).
Although the evidence emerging in the last decade shows
that enemies and rivals use vibrational information available
in their environment to guide their behaviors crucial for
reproduction and survival (reviewed in Virant-Doberlet et al.,
2014), the unfortunate general misconception that vibrational
signaling is a private mode of communication (i.e., inaccessible
to eavesdroppers sharing the same habitat) is unexpectedly
hard to put at rest. This persistence is surprising, since it
is widely accepted that incidental vibrational cues induced
in the substrates by activities like moving and feeding are
used by predators and parasitoids to find their prey or host
(e.g., Barth, 1998; Meyhöfer and Casas, 1999; Brownell and
van Hemmen, 2001; Devetak, 2014), although such vibrations
are generally less conspicuous than vibrational signals used in
sexual communication.

Here, we aim to provide a synthesis of the current state of
knowledge relevant to the view that the majority of animals
lives in a rich vibratory world, where vibrational information is
readily available to eavesdroppers. While the body of existing
literature supporting this view is large, the available information
is scattered across different research topics and often does not
directly address the issue of ecological context of vibrational
communication. There are so far only a few studies directly
dealing with exploitation of vibrational signals used in sexual
communication by eavesdropping predators or parasitoids and
to challenge the view that vibrational signaling is a safe
mode of communication (e.g., Henry, 1994; Zuk and Kolluru,
1998; Hughes et al., 2012), we also review the evidence that
substrate vibrations guide many behaviors related to predator-
prey interactions. As it has been first proposed by Cocroft
and Rodríguez (2005), we argue that in this communication
modality eavesdropping may be particularly common and we
wish to convey that besides our perceptional bias and general
lack of understanding of the importance of the vibrational
channel, there is no reason for a persisting view that enemies
ignore vibrational signals as a source of information helping
them to find their prey or host. In this review, it is not our
intention to focus on a distinction between air-borne sounds and
substrate-borne vibrations and differences between acoustic and
vibrational communication, since this topic has been subject of
several commentaries (e.g., Cocroft et al., 2014; Endler, 2014; Hill
and Wessel, 2016; Hill et al., 2019) and comprehensive reviews
(e.g., Cocroft and Rodríguez, 2005; Hill, 2008; Caldwell, 2014;
Yack, 2016).

Due to their diversity, abundance and reliance on substrate
vibrations, arthropods are the best animal group to provide
an insight into life in the vibratory world and various aspects
of their behavior that is guided by substrate vibrations have
been studied in detail. In line with the existing literature and
our own research, the review is therefore focused primarily on
interactions in arthropods; however, we also include the evidence
from other animal groups whenever appropriate. Throughout
the review, we use eavesdropping in accordance with the
existing literature, where it is defined as “extracting information
from signaling interactions between others” (McGregor and
Peake, 2000). Consequently, we do not consider interactions
that do not include interception of vibrational signals used
in communication (e.g., incidental vibrational cues, mimicry)
as eavesdropping. We further define exploiters as a subset
of eavesdroppers that use extracted information to gain
advantage over the signallers thus incurring direct or indirect
costs (Bradbury and Vehrencamp, 1998). In this context,
eavesdropping rivals that may extract from vibrational signals
relative information about the size and dominance of signaling
males and use this information to avoid direct encounters, are
not considered exploiters.

VIBRATIONAL COMMUNICATION
NETWORKS

Viewing communication in a more ecological context, it becomes
clear that in nature communication occurs not only in a signaller-
intended receiver dyad but in a group of several animals
within signaling and receiving range of each other (i.e., in a
network environment) (McGregor and Peake, 2000; McGregor,
2005; Virant-Doberlet et al., 2014). Taking into account that
each signal can be received by several receivers and that
each receiver can receive signals from several signallers, an
emerging property of the network environment is that signals
can be exploited by eavesdropping receivers (e.g., rivals, enemies)
(Peake, 2005) (Figure 1). The complexity of the overall network
structure depends on the identities and numbers of signallers
and receivers able to detect the emitted signals (i.e., ultimately
on the animal community present in the habitat). The still
prevailing perception that vibrational signaling may be a safer
communication channel than air-borne sounds (e.g., Hughes
et al., 2012; Römer, 2013; Yack, 2016) mainly results from an
impression that substrate vibrations are a rare and inherently
short-range form of communication and consequently, the
opportunities for eavesdropping and exploitation are severely
limited. The first step in changing this perception is therefore
to raise the awareness that vibrational signaling is one of the
most widespread forms of animal communication and that the
emitted signals are accessible to many heterospecifics, including
potential enemies.

How Common Is Vibrational Signaling and
Reception?
As are substrate vibrations ubiquitous in the environment (Hill,
2009; Šturm et al., 2019), so are vibration receptors ubiquitous
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FIGURE 1 | Schematic presentation of insect vibrational communication network. Natural habitat contains other conspecific and heterospecific signallers, as well as

eavesdropping exploiters like rivals and enemies. The complexity of any real world communication network depends on the identities and numbers of signallers and

receivers able to detect the emitted signals. In a duetting communication system, the same individual is the emitter and the receiver (A1, A2). From potential

interactions within such a communication network, it emerges that both, signallers and receivers take on a range of costs and benefits that may have fundamental

implications for their communication strategies.

in organisms (e.g., Hill, 2008; Narins et al., 2016; Sugi et al.,
2018) and vibrational signaling is now considered one of themost
ancient forms of communication (Cocroft et al., 2014; Endler,
2014). It is likely that it is present in bacteria (e.g., Reguera, 2011)
and vibrational stimuli affect plants as well (Appel and Cocroft,
2014). So far, behavioral response to vibrational stimuli has been
documented in nematodes (Torr et al., 2004), molluscs (Roberts
et al., 2015), annelids (Mitra et al., 2009), arthropods (Hill, 2008),
and vertebrates (Narins et al., 2016).

Vibrational signaling, vibration reception and behavior
guided by substrate-borne vibrations have been best studied in
vertebrates and arthropods. In vertebrates, the use of vibrational
signaling in intraspecific interactions has been described in all
major groups (e.g., Whang and Janssen, 1994; Barnett et al.,
1999; O’Connell-Rodwell, 2007; Caldwell et al., 2010a; Ota
et al., 2015). The frequency range of vertebrate vibrational
signals spans from infrasonic range below 20Hz up to 1 kHz,
with most of the energy found in the range below 500Hz
(Lewis and Narins, 1985; Narins et al., 1992; O’Connell-Rodwell,
2007; Caldwell et al., 2010a; Mason and Narins, 2010; Bishop
et al., 2015; Halfwerk et al., 2016). Vertebrates detect substrate
vibrations via somatosensory mechanoreceptors in their skin and
joints and/or via an extratympanic pathway to their auditory
system (reviewed in Hill, 2008; Narins et al., 2016). Greatest
frequency and amplitude sensitivity to vibrations is species-
specific and usually lies between 50 and 500Hz, where animals
can detect substrate displacements as small as 1 nm (reviewed

in Gridi-Papp and Narins, 2010; Mason and Narins, 2010;
Narins et al., 2016).

Relying on substrate-borne vibrations to gather information
from the environment is particularly common in arthropods.
Vibrational behavior is prevalent in insects (reviewed in Virant-
Doberlet and Čokl, 2004; Cocroft and Rodríguez, 2005) and
spiders (reviewed in Uhl and Elias, 2011). Studies suggest
that it may also be common in crustaceans (Taylor and
Patek, 2010), scorpions (Brownell and van Hemmen, 2001)
and millipedes (Wesener et al., 2011). All arthropods possess
sensitive mechanoreceptors to detect substrate vibrations (Hill,
2008, 2009) and it is currently estimated that around 200,000
insect and 40,000 spider species use vibrational communication
in a variety of intraspecific interactions (Virant-Doberlet and
Čokl, 2004; Cocroft and Rodríguez, 2005; Uhl and Elias,
2011). While many arthropods use vibrational signaling in
combination with other modalities, a conservative estimate is
at least 150,000 insect species rely exclusively on vibrational
communication (Cocroft and Rodríguez, 2005). Vibrational
signals used in sexual communication are species- and sex-
specific and characterized by their distinct temporal and spectral
properties (e.g., Barth and Schmitt, 1991; Čokl, 2008; Cocroft
et al., 2010; Elias et al., 2012; Henry et al., 2013; Derlink
et al., 2014). Frequency range of insect vibrational signals is
usually between 50Hz and 5 kHz; however, most energy is
limited to the frequency range below 500Hz. The morphological
and physiological characteristics of vibration receptors differ
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greatly among groups (reviewed in Barth, 1998; Brownell and
van Hemmen, 2001; Taylor and Patek, 2010; Lakes-Harlan and
Strauß, 2014). Arthropods are most sensitive to vibrations below
1 kHz and they can detect displacements in the range of 0.1 nm
(e.g., Barth, 1998; Čokl et al., 2006; Eriksson et al., 2011;
Lakes-Harlan and Strauß, 2014).

Importantly, besides the signaller’s identity, vibrational signals
also provide information that enables the receiver to determine
in which direction the source of vibration is positioned and to
locate the signaller (Barth, 1993; Virant-Doberlet et al., 2006;
Hebets, 2008; Gibson and Cocroft, 2018; Prešern et al., 2018).
At least in some cases, vibrational signals most likely also enable
individuals to estimate the distance to the source (e.g., Lewis and
Narins, 1985; Hill and Shadley, 2001; Gridi-Papp and Narins,
2010). In arthropods, the most important directional cues are
time differences in a signal’s arrival to spatially separated sensory
inputs (i.e., vibroreceptors located in each leg) and differences
in amplitude resulting from signal damping during propagation
through the substrate (reviewed in Virant-Doberlet et al., 2006).
Propagation velocity and attenuation depend on signal frequency
and signals of lower frequency propagate more slowly and with
less attenuation (Michelsen et al., 1982; Barth, 1998; Elias and
Mason, 2014; Mortimer, 2017). Vibrational signals are therefore
well adapted for transmission through the substrate, as well as
creating relevant time delays that can be processed in the central
nervous system. Even insects with body size around 1 cm can
accurately locate the source of vibrational signals by processing
time delays between 0.2 and 0.5ms (Hager and Kirchner, 2014;
Prešern et al., 2018).

Perhaps the most impressive example of versatility
of vibrational modality has been described in the blind
mole rat Nannospalax ehrenbergi. This species produces
vibrational signals by striking the head against the tunnel
roof and uses these self-generated substrate vibrations
to assess the size, physical properties and location of an
obstacle blocking its underground tunnel. It can than dig an
optimal bypass tunnel around it (Kimchi and Terkel, 2003a,b;
Kimchi et al., 2005).

Active Space of Vibrational Signals
The probability that the emitted signal is intercepted by
eavesdroppers does not increase only with the number of
potential receivers, but also with the distance the signal travels
through the habitat. The active space (i.e., effective range) of
vibrational signals has been defined as the “area in which the
signal amplitude is sufficiently above the detection threshold of
potential receivers to have an effect on their behavioral response”
(Mazzoni et al., 2014; Šturm et al., 2019). Signal active space
therefore depends, on the one hand, on intrinsic factors like the
signal amplitude at the source (i.e., “loudness” of the signaller)
and the sensitivity of a receiver’s vibroreceptors, and, on the
other hand, on environmental factors like attenuation of the
signal during the transmission through the substrate and the
amplitude of interfering background noise. Behavioral studies
show that active space of vibrational signals broadly depends on
the size of the animal and differs enormously, from a few cm

in fruitflies (Mazzoni et al., 2013), to several km in elephants
(Narins et al., 2016).

The amplitude of arthropod vibrational signals may be low at
the source; however the sensitivity of their vibroreceptors is well
above the amplitude of emitted signals (Michelsen et al., 1982).
For example, the amplitude of vibrational signals emitted by the
green stink bug Nezara viridula, recorded from the vibrating
body and expressed as velocity is in the range 0.3–0.8 mm/s,
while the threshold sensitivity of its receptors in the relevant
frequency range is between 0.01 and 0.03 mm/s (Čokl et al.,
2007). Nevertheless, the environment imposes severe constraints
on the effective range of vibrational signals and, in contrast
to air-borne sound, the size and shape of the active space are
highly unpredictable.

One limitation is continuity of the substrate. It is generally
assumed that for plant-dwelling animals the active space of
vibrational signals is limited to the plant on which the animal
is signaling. However, at least in meadows, the effective range
also extends to the neighboring plants connected by roots
and touching leaves (Čokl and Virant-Doberlet, 2003; Šturm
et al., 2019) and even across a several-cm-wide air gap between
overlapping leaves (Eriksson et al., 2011). Moreover, many
small plant-dwelling insects increase the effective range of their
vibrational signals using the behavioral strategy “fly/jump-call,”
where they randomly move through the habitat and emit
vibrational signals from different plants (e.g., Šturm et al., 2019).
It should also be pointed out that the plant on which the animal is
signaling is not necessarily a small herbaceous plant, but can also
be a shrub or a tree, and in this case the active space of vibrational
signals can extend up to 4m even within one plant (McVean and
Field, 1996; Barth, 2002b).

The effective range of vibrational signals is also limited
by damping due to transmission properties of the substrate,
which ultimately result in reduced amplitude (Mortimer,
2017). Moreover, heterogeneity of the natural substrates
encountered in the habitat imposes unpredictable changes to
signal structure observed in selective frequency filtering and
temporal distortions (reviewed in Elias and Mason, 2014;
Mortimer, 2017). Consequently, the longer the distance a
vibrational signal travels from the source, the more likely it
will be degraded to the extent that it cannot be recognizable
by the receiver. Nevertheless, studies have shown that animal
vibrational signals are tuned and adapted to specific transmission
properties of their environment (host plants, leaf litter, soil)
(Günther et al., 2004; Čokl, 2008; Hebets et al., 2008; McNett and
Cocroft, 2008; Elias et al., 2010; Narins et al., 2016). Heterogeneity
of the substrate can also affect availability and reliability of
directional cues, since besides frequency, signal propagation
velocity and attenuation, which create time delays and amplitude
differences at sensory inputs, are strongly dependent on physical
properties of the transmission medium (reviewed in Virant-
Doberlet et al., 2006).

Studies of the natural vibroscape (i.e., vibrations emanating
from a given landscape) show that the vibrational channel is
dominated by frequencies below 1 kHz. This frequency range
also includes the majority of arthropod vibrational signals used
in communication (Šturm et al., 2019). In this frequency range,
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FIGURE 2 | Complexity of meadow vibroscape. Vibrational signals were registered with a laser vibrometer on Carex hirta during 2-h (14:30–16:30) recording session

on July 9, 2018. (A) Species accumulation curve of vibrational taxonomic units (VTU). VTU is equivalent to species and each 10min of the recording was taken as a

sample. Orange area around the curve indicates 95% confidence interval. The curve approaches 20 VTUs; however, it does not reach the plateau. (B) Visualization in

the form of spectrogram of vibroscape, which includes overlapping vibrational signals of two unknown insect species (red and purple frames) and vibrational

component of a bird air-borne song (blue frame).

interfering background vibrational noise results from wind and
rain (e.g., Barth et al., 1988; Caldwell et al., 2010b; McNett et al.,
2010). Vertebrates and arthropods can distinguish incidental
vibrations induced by wind and rain from incidental vibrational
cues resulting from animal movements (e.g., Warkentin, 2005;
Castellanos and Barbosa, 2006; Guedes et al., 2012). One
known exception is the túngara frog Physalaemus pustulosus,
which appears not to discriminate between vibrations used in
intraspecific communication and incidental vibrations induced
by rain (Halfwerk et al., 2016). Nevertheless, the frequency
overlap of spectra of vibrational signals, vibroreceptor frequency
sensitivity and frequency range of abiotic environmental noise
indicates that the active space of vibrational signals is likely to be
reduced. While it has been shown that wind-induced vibrations
had a negative effect on frog and insect vibrational behavior
(McNett et al., 2010; Hamel and Cocroft, 2012; Tishechkin,
2013; Halfwerk et al., 2016), current evidence suggests that some
arthropod predators exploit background vibrational noise that
impairs the ability of prey to detect incidental vibrational cues
induced by their approach (Wilcox et al., 1996; Wignall et al.,
2011; Soley, 2016).

In summary, laboratory and field studies show that animals
live in a complex vibrational environment. The ongoing studies
of the natural meadow vibroscape show that substrate vibrations
are a constantly available, rich and reliable source of information

(Šturm et al., 2019). The complexity of vibrational information
available in the environment is best exemplified by the diversity
of a vibrational community (i.e., the assemblage of animals in a
particular habitat that produce vibrational signals and are active
over a specified time). Assessment of species richness reflected
in species-specific vibrational signals revealed that on a single
plant the vibrational channel can be shared daily by more than
20 species (Figure 2).

PREDATOR-PREY AND
PARASITOID-HOST INTERACTIONS
GUIDED BY SUBSTRATE VIBRATIONS

Taking into account that every movement of the body induces
incidental vibrations in the substrate and that animals possess
highly sensitive receptors to detect them, it is not surprising that
one of the most widespread functions of substrate vibrations
in interspecific interactions directly linked to survival and
reproductive success is to avoid predators, capture prey or
find the host to deposit eggs. In these contexts, detecting,
identifying and locating the source is crucial. In this section
we provide an overview of interactions guided by substrate
vibrations that do not include eavesdropping on prey or
host vibrational communication. Humans are aware of such
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interactions, since we can observe them in the field; either orb-
weaving spiders approaching their struggling prey caught in the
web, or crickets ceasing singing when they detect vibrations
created by our footsteps.

Finding Prey or Host
Arthropod predators often rely on incidental vibrational cues to
capture their prey. Spiders and scorpions locate their arthropod
prey using incidental vibrations created by prey movements
(reviewed in Barth, 1998, 2002b; Brownell and van Hemmen,
2001). Incidental vibrational cues induced by moving prey
have, in general, lower amplitude than vibrational signals used
in communication and also contain higher frequencies that
are subject to stronger attenuation and higher propagation
velocities (Barth et al., 1988). Nevertheless, spiders and scorpions
can accurately orient toward and locate the source of such
vibrations. Although both groups can also use amplitude cues
to determine the location of the vibrational source (reviewed in
Barth, 1998, 2002a; Brownell and van Hemmen, 2001), at least
for scorpions, the more reliable directional cue is the difference
in arrival times of a vibrational wave reaching receptors located
in eight legs positioned on the substrate and they can detect
time delays as short as 0.2ms. The predatory stinkbug Podisus
maculiventris (Hemiptera, Pentatomidae) reliably locates the
source of vibrations created by chewing caterpillars (Pfannenstiel
et al., 1995). The use of incidental vibrational cues to locate
endophytic hosts appears to be widespread among parasitoid
wasps (reviewed in Meyhöfer and Casas, 1999). However, wasp
parasitoids of pupae locate their immobile hosts by using self-
generated vibrations induced by tapping the substrate with
modified antennae and detecting the echoes with enlarged
subgenual vibration receptors in their legs (vibrational sounding)
(reviewed in Broad and Quicke, 2000). It was suggested that
wasps find the position of a hidden host by analyzing the contrast
in resonance between hollow and solid sections of the substrate
(Wäckers et al., 1998).

Antlion larvae (Neuroptera, Myrmeleontidae) wait for their
prey at the bottom of funnel-shaped pit traps and their reaction
to incidental vibrational cues generated by walking prey is to
accurately toss the sand in its direction, in order to prevent its
escaping from the sand pit (Fertin and Casas, 2009; Devetak,
2014). Moreover, studies show that antlions can associate a
behaviourally neutral vibrational cue with the arrival of the
prey and that such learning increases fitness by improving their
digestive efficiency and, ultimately also decrease the time spent in
the larval stage (Guillete et al., 2009; Hollis et al., 2011).

In arthropods, the use of substrate vibrations to catch the
prey or find the host can also involve more complex behavioral
strategies that do not include accurate location of the prey. The
orb weaving spider Nephila pilipes uses incidental vibrational
cues induced by prey caught in the web to assess the type of
prey available in its environment and modify web architecture
accordingly (Blamires et al., 2011). Araneophagic jumping
spiders from the genus Portia produce deceptive vibrational
signals to capture their prey (aggressive mimicry) (reviewed
in Jackson and Cross, 2013). Portia is also well known for its
cognitive abilities and uses a trial-and-error approach to generate

vibrational signals that elicit appropriate responses from each
prey spider species. The aggressive mimicry repertoire includes
male vibrational courtship display of another jumping spider
species (Jackson andWilcox, 1990), incidental vibrations induced
by prey caught in the web adapted according to the species
and size of the spider prey (Jackson et al., 1998; Tarsitano
et al., 2000; Jackson and Nelson, 2011), as well as female
courtship display by subadult females to prey on conspecific
males (Jackson and Cross, 2013). Similarly, the assassin bug
Stenolemus bituberus (Hemiptera, Reduviiidae), which preys on
web-building spiders, mimics incidental vibrations generated by
struggling prey to attract the spider within striking distance
(Wignall and Taylor, 2011). In playback experiments, the ambush
bug Phymata crassipes (Hemiptera, Phymatidae) alternated with
vibrational stimuli and imitated their duration (Gogala et al.,
1984). The authors suggested that by imitation of heterospecific
courtship vibrational signals this sit-and-wait predatory bug
may attract their potential prey; however, this hypothesis was
not tested. Acoustic signals emitted by pupae and larvae of
the parasitic butterfly Maculinea rebeli mimic distinct sounds
produced by queen ants, thus providing them superior treatment
from workers (Barbero et al., 2009). Although these authors did
not describe these stridulatory signals as substrate vibrations, it
is likely that this social parasite-host communication is mediated
by a vibrational component of these signals (DeVries et al., 1993),
since most of the current evidence suggests that ants perceive
only substrate-borne mechanical waves (Hunt and Richard, 2013;
Golden and Hill, 2016).

Reliance on vibrational cues for finding prey is not limited
to arthropods. Entomopathogenic nematodes use vibrational
cues induced by insects moving in the soil to locate their
hosts (Torr et al., 2004). In vertebrates, the use of vibrational
information in prey detection has been documented in reptiles
and mammals. The sandfish lizard Scincus scincus and sand viper
Cerastes cerastes detect and locate their prey using incidental
vibrations (Hetherington, 1989; Young and Morain, 2002). For
the Namib Desert golden mole (Eremitalpa granti namibiensis)
dune termites that live among the roots of grass are the principal
insect prey. The blind and nocturnal golden mole relies on
substrate vibrations to locate its food; however, for orientation
it uses vibrations created by grass rattling in the wind, since
these distinct vibrations with dominant frequency around 300Hz
transmit well through the sand and golden moles may detect
them at distances of 20–25m (Narins et al., 1997; Lewis et al.,
2006). Golden moles also possess hypertrophied ossicles in the
middle ear and such adaptation enables them better directional
hearing in the frequency range up to 300Hz (Mason and Narins,
2010; Narins et al., 2016).

Avoiding Enemies
While some insects appear to be able to walk near the predator
without inducing typical incidental vibrations associated with
locomotion (vibrocrypticity) (Barth et al., 1988), remaining
still is probably the most common prey behavior in response
to incidental vibrational cues arising from a potential enemy,
since it also ceases to provide vibrational cues that reveal prey
location (e.g., Meyhöfer et al., 1997; Djemai et al., 2001; Kojima
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et al., 2012a). Wolf spiders freeze in response to perceived
presence of a predator and they are not only able to discriminate
between incidental vibrations emanating from predators and
non-predators, but also can perceive the substrate component
of bird calls and use it to differentiate between threatening and
non-threatening species (Lohrey et al., 2009; Sitvarin et al., 2016).
Interestingly, non-predators can also exploit such a defense
freezing response. Pupae of the soil-living beetle Trypoxylus
dichotoma emit vibrational signals that mimic vibrations induced
by a foraging mole to stop burrowing of the conspecific larvae
in order to protect themselves from accidental damage to their
pupal cell (Kojima et al., 2012a,b). Another form of passive
defense is avoidance. Termites rely on avoiding ant predators by
hiding behind clay walls and they monitor incidental vibrations
generated by ant footsteps and discriminate them from incidental
vibrational cues from other sources (Oberst et al., 2017).

Another common reaction is escape behavior that in
arthropods includes dropping from the plant (e.g., Losey and
Denno, 1998). Larvae of the moth Semiothisa aemulataria
living on leaves escape invertebrate predators walking on the
leaf by hanging from silk threads and they can differentiate
between incidental vibrations induced by predator and non-
predators or abiotic environmental sources, as well as adapt the
length of the thread according to the identity of the predator
(Castellanos and Barbosa, 2006). Similar behavior has been
observed in treefrog embryos, where vibrational cues emanating
from predator attack trigger early hatching and escape behavior
from the egg clutch deposited on vegetation, and result in
tadpoles falling into the water (Warkentin, 2005; Caldwell
et al., 2010b). To avoid false alarms, embryos assess incidental
vibrations to distinguish between lethal and benign sources.
Earthworms emerge from soil in response to incidental vibrations
resulting from digging moles; however, their escape is clearly
directional away from the source of vibrations (i.e., a foraging
mole) (Catania, 2008; Mitra et al., 2009).

Some animals use vibrational signals as part of an active
defense strategy. Kangaroo rats footdrum in the presence
of snakes, where drumming functions as a direct signal to
the predator. In response to the vibrational component of
drumming, snakes cease their stalking behavior (Randall, 2001,
2010). Vibrational signaling is often part of antipredator behavior
in group-living insects (reviewed in Cocroft and Hamel, 2010).
For example, when attacked by parasitoid wasps, an aphid colony
produces coordinated collective kicking and twitching response
that induces substrate vibrations. These substrate vibrations
play a role in recruiting colony members, synchronizing a
defense and potentially also repelling attackers (Hartbauer,
2010). However, besides synchronized signaling within a group,
vibrational signaling as part of anti-predator protection has also
been described in parent-offspring interactions (Cocroft, 1996;
Ramaswamy and Cocroft, 2009; Hamel and Cocroft, 2012), as
well as interactions between insects and their ant mutualists,
where ant attendance increases the signaller’s survival (e.g.,
Travassos and Pierce, 2000; Morales et al., 2008).

Alarm signals used to inform members of the group about
danger can also be considered as a part of defense behavior.
Vibrational signals that function to warn conspecifics have been

described in termites (e.g., Rosengaus et al., 1999; Hager and
Kirchner, 2013; Delattre et al., 2015) and elephants (O’Connell-
Rodwell et al., 2007). At present, it is not clear whether
footdrumming alarm signals emitted by many mammals in the
presence of a predator are perceived as air-borne sound or
substrate vibrations, or both (Randall, 2001, 2010).

EAVESDROPPING VIBRATIONAL
COMMUNICATION NETWORKS

Eavesdropping in animal communication is defined as “the
use of information in signals by individuals other than the
primary target” (Peake, 2005) and eavesdropping network
applies to situations where, the receiver eavesdrops on the
signaling interaction in which it is not directly involved to
obtain information (Burt and Vehrencamp, 2005). Due to
their reliance on vibrational signals in many intraspecific and
interspecific interactions and their highly sensitive vibration
receptors, arthropods are the best group to study eavesdropping
vibrational communication networks. Besides exploitation of
vibrational signaling in the context of sexual communication by
enemies (predators, parasitoids), eavesdropping applies also to
other interactions like intraspecific competition (Virant-Doberlet
et al., 2014).

Intraspecific Eavesdropping
In many species relying on vibrational communication, a
coordinated reciprocal exchange of male and female vibrational
signals is essential for recognition and successful location of the
female (e.g., Derlink et al., 2014; Polajnar et al., 2014; Kuhelj
et al., 2015a; Lujo et al., 2016). In leafhoppers (Hemiptera,
Cicadellidae), communication is mediated exclusively via
substrate vibrations and the male-female vibrational duet
appears to be easily exploited by intruding males that silently
approach a female duetting with the calling male (Mazzoni et al.,
2009a,b; Kuhelj and Virant-Doberlet, 2017). The most important
factor in obtaining the female in such a competitive setting
appears to be the ability to locate the female before the rival.
Evidence shows that intruding eavesdropping exploiters are at
a competitive advantage. In the leafhopper Aphrodes makarovi,
each exchange of male and female vibrational signals is initiated
by the male and his walking, associated with the search for the
replying stationary female, is limited to the duration of her reply
(Kuhelj et al., 2016). In a competitive setting, that included two
males and a female, the winners (i.e., males that mated with
the female) were males that were better at exploiting female
replies emitted in response to the rival’s triggering call (i.e., in
comparison with their competitors, they more often searched
for the female during her reply to the rival’s call) (Kuhelj and
Virant-Doberlet, 2017). In this species, male signaling effort is
negatively correlated with longevity (Kuhelj et al., 2015b) and
eavesdropping on a male-female duet maintained by another
male allows exploiters to invest less in energetically demanding
signaling and to survive longer. In this context, it should be
noted, that in the threehopper Enchenopa binotata, which also
relies on vibrational communication, longevity was the strongest
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predictor of male lifetime mating success (Sullivan-Beckers and
Cocroft, 2010).

Although the role of intraspecific eavesdropping and
exploitation of vibrational signaling in the context of sexual
communication has only rarely been systematically studied,
current evidence suggests that, at least in mating systems based
on stereotyped vibrational duets, this may be a widespread
strategy to increase male mating success. It may also have
important implications for sexual selection and evolution of
vibrational communication. In general, in communication
systems in which eavesdroppers exploit female replies to signals
emitted by another male, males maintaining a duet have no
advantage over males exploiting it, since information about the
identity and location contained in the female reply is available
to all males present in the active space of female signals. So far,
in systems based on substrate-borne vibrations, in the perceived
presence of an eavesdropping intruding male, the only observed
defensive tactic displayed by the calling male was to emit distinct
masking signals overlapping the last part of the female reply
emitted in response to their own triggering call (Kuhelj et al.,
2016; Kuhelj and Virant-Doberlet, 2017). Although the adaptive
significance of these masking vibrational signals is not clear, the
most likely benefit results from preventing the eavesdropper
from locating the female by confounding him with the second
vibrational source.

Eavesdropping by Enemies
The fact that we cannot observe by chance predators
and parasitoids eavesdropping and exploiting vibrational
communication in the field probably underlies our long
persisting belief that enemies ignore vibrational signals used
by their prey or host in intraspecific communication (Cocroft
and Rodríguez, 2005; Cocroft, 2011; Virant-Doberlet et al.,
2011, 2014). Arthropod predator-prey interactions usually
involve small animals and take place in thick vegetation.
Moreover, even when we notice predation, we are not aware
that the predator may be exploiting prey intraspecific vibrational
communication due to our inadequate perception of substrate
vibrations. In previous sections, we reviewed the evidence that
in the vibrational channel there are ample opportunities for
eavesdropping and that many animals rely on information
provided by incidental vibrations to guide their predator-prey
interactions. Here below, we focus on the evidence that enemies
also exploit prey or host vibrational signaling.

Laboratory studies showed that in the absence of other cues
the egg parasitoidTelenomous podisi (Hymenoptera: Scelionidae)
is selectively attracted to species- and sex-specific female
vibrational song of its preferred host, the stink bug Euschistus
heros (Laumann et al., 2007, 2011). This continuously emitted
song composed of repetitive low-frequency pulses provides a
reliable directional cue to locate a stationary female. While
searching behavior mediated by female vibrational signals may
increase the probability of finding egg masses on the same plant,
it seems likely that host location is guided by multimodal cues
that also include vision and volatile chemical compounds (e.g.,
Michereff et al., 2016).

Spiders have highly sensitive vibroreceptors and prey
detection is commonly mediated by substrate vibrations (Uetz,
1992; Barth, 1998; Roberts et al., 2007). While Morris et al.
(1994) suggested that in the Ecuadorean rainforest katydids
use low frequency vibrational signaling instead of ultrasonic
air-borne sounds in order to avoid eavesdropping by bats,
they also observed that many spiders were catching them.
Anecdotal evidence from the field and unpublished laboratory
results also indicated that jumping spiders may use leafhopper
vibrational signals to locate their prey (Narhardiyati and Bailey,
2005). A laboratory study also showed that vibrational signals
incorporated into the multimodal courtship display of the wolf
spider Schizocosa ocreata increased detectability to its predator
jumping spider Phidippus clarus (Roberts et al., 2007).

Direct evidence that spider foraging behavior is influenced
by prey vibrational signals used in sexual communication was
obtained in the study of predator-prey interactions between
the spider Enoplognatha ovata (Theridiidae) and the leafhopper
A. makarovi (Virant-Doberlet et al., 2011). Using molecular
diagnostics to identify A. makarovi DNA in the E. ovata gut,
authors were able to show that in the field predation rate
on leafhoppers was significantly higher when signaling adults
were present. At that time 25% of spiders were feeding on
them. Microcosm and playback experiments showed that spiders
caught significantly more males than females and that spider
residence time was significantly longer only when a plant was
vibrated with the male call. Although taken together results
suggest that E. ovata spiders exploit prey vibrational signaling
primarily to obtain information about prey availability, in
response to playback of A. makarovi male calls some spiders
located the source of vibrations and authors suggested that
differences observed in behavior of individual spiders may be
attributed to learning and previous experience of A. makarovi
signals in the field. Importantly, molecular diagnostics also
showed that only a few spider species found at the study site
were feeding onA.makarovi and that Pardosawolf spiders, which
were not consuming them in the field, were also ignoring live
leafhoppers in microcosms, as well as their vibrational signals in
playback experiments.

Avoiding Eavesdropping Enemies

So far, various interactions within vibrational communication
network have been studied in more detail only in the
leafhopper A. makarovi. With our current knowledge we cannot
distinguish trade-offs and adaptive behavioral strategies that arise
from selection pressure imposed by eavesdropping predators
(Virant-Doberlet et al., 2011) from selection resulting from
eavesdropping intraspecific competitors (Kuhelj and Virant-
Doberlet, 2017), biotic noise and competition for signaling space
in the vibrational channel (Šturm et al., 2019), as well as sexual
selection and indirect costs due to energetically demanding
signaling (Kuhelj et al., 2015b, 2016). This is particularly so,
since selection pressures from different sources can reinforce
or oppose each other. However, here below, we discuss some
potential behavioral strategies in leafhoppers that may also serve
as a defense against eavesdropping predators.
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FIGURE 3 | Vibrational signals recorded from spider web. Vibrations were recorded on July 27, 2017 with a laser vibrometer from the web of Argiope bruennichi built
between several grass stems. (A,B) Vibrational signals of two unknown species, (C) male advertisement call of the leafhopper Aphrodes makarovi.

Taking into account the diversity and density of potential
predators in the habitat that exploit leafhopper vibrational
signaling, as well as unpredictability in the structure of the
predator community at each individual location, it is likely
that leafhoppers’ behavioral anti-predator strategies would not
be adapted to specific predator species and their foraging
strategies. The rich and complex vibroscape perceived by
predators may provide general information about the food
availability important for choosing a good foraging site, as well
as directional cues to locate the signallers, depending on the
foraging strategy (e.g., Uetz, 1992; Persons and Uetz, 1996). As
our own observations in the field show, spider webs attached
to several plants also enable the resident spider to eavesdrop on
vibrational signals emitted by their potential prey signaling on
these plants (Figure 3).

The most obvious strategy to avoid enemies eavesdropping
on sexual communication would be to emit as few and as quiet
vibrational signals as possible without compromising the goal
of reliably and quickly finding a suitable partner. In contrast
to the majority of mating systems based on air-borne sound
communication, where males produce continuous songs and
silent females approach them, in mating systems based on
substrate-borne vibrations partners exchange signals and males
approach stationary females (e.g., Bailey, 2003; Derlink et al.,
2014; Polajnar et al., 2014; Gibson and Cocroft, 2018). Duetting,
in which both partners coordinate and modify their vibrational
signals and behavior according to the partner’s reply, is also a
communication strategy that enables high signaling activity only
at times when a partner is actually present. In the leafhopper
Scaphoideus titanus the male vibrational repertoire aimed at
a female includes several signals. The male emits short and

structurally simple calls during the call-fly stage and during the
searching phase and starts emitting longer and more complex
courtship phrase only after he arrives on the leaf where the
female is located (Polajnar et al., 2014). In A. makarovi, the
long and structurally complex male call is the only vibrational
signal directed to the female; however, male calling rate is
low during the call-fly stage and increases only after a male
receives the female reply (Kuhelj et al., 2015b). After vibrational
contact is established, higher calling rate is advantageous and
has significant positive effects on the probability to locate a
female quickly.

In leafhoppers, pair formation includes male call-fly behavior,
as well as a more localized search for the replying female.
Hence high predation risk may also result from increased
probability of encounters with predators while moving through
the habitat. Males can also reduce predation risk by modifying
their movements in the perceived presence of the predators.
In the treehopper E. binotata, male behavioral response to the
presence of spider silk was to reduce call-fly behavior but not their
calling rate (Fowler-Finn et al., 2014).

In general, males are easier to detect than females, because
they advertise themselves over a longer period of time, with
more conspicuous signals of high amplitude (Zuk and Kolluru,
1998; Haynes and Yeargan, 1999). However, in duetting
systems females are potentially equally exposed to eavesdropping
predators as males, not only by proximity to the signaling
male, but also because they remain stationary during vibrational
exchange and therefore might be easier to locate. Virant-Doberlet
et al. (2011) showed that in microcosms predation rate on A.
makarovi females was also significant. In this study, the natural
amplitude ratio between the male call and the female reply
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remained unchanged. Therefore, the male call which was more
effective in increasing residence time of E. ovata predators in
playback experiments, had higher amplitude. In this species,
female vibrational replies can be even longer than male calls;
however, their amplitude is always lower (Kuhelj et al., 2016). In
this context, the observation that a female mates the first male
that locates her may also be a strategy to reduce the duration of
exposure to predators.

So far, confounding the conspecific competitors exploiting
male-female duets appears to be the only observed defense
against eavesdropping (Kuhelj et al., 2016; Kuhelj and Virant-
Doberlet, 2017). Duet structures described in some leafhoppers,
in which male and female signals share temporal and spectral
characteristics and are partly overlapping, or female replies
appear randomly among similar elements in male vibrational
signals (Mazzoni et al., 2009a; Kuhelj et al., 2016), probably
result in difficulties in locating the signallers. In a basically one-
dimensional vibrational environment on the plant (de Groot
et al., 2011), an eavesdropping exploiter may perceive such duets
as one compound vibrational signal arriving from two spatially
separated sources and from different directions.

CONCLUSIONS AND SUGGESTIONS FOR
FURTHER STUDIES

Despite increased interest in vibrational communication in
the last decade and the progress we made in our perception
and understanding of this communication modality, vibrational
signaling still remains a poorly known and understood mode
of communication (Cocroft et al., 2014; Endler, 2019). As
it is obvious from this review, vibrational signaling is far
from being a safe communication channel, inaccessible to
enemies. It is evolutionarily older and more widespread than
air-borne sound communication and highly sensitive receptors
detecting substrate vibrations are common. Although active
space of vibrational signals is undoubtedly more complex and
unpredictable than in air-borne sounds, animal vibrational
signals are, in general, well adapted to their natural environment
and frequency sensitivity of their receptors. As the first
studies of the vibroscape show, substrate vibrations are a
readily available and reliable source of information, both in
intraspecific communication and in predator-prey interactions.
Long evolutionary history of this communication channel is
also reflected in the breadth of varied predator-prey interactions
guided by substrate-borne vibrations. However, our own
perceptional bias in favor of air-borne sound communication
still hampers our understanding of challenges that animals
relying on vibrational signals are facing in their environment.
Eavesdropping and exploitation of vibrational signals used
in sexual communication have been so far largely neglected;
although, it is likely they are major drivers in the evolution taking
place in the vibratory world.

What is urgently needed, are more studies on different
model species in different environments, since the only existing
study providing more comprehensive insight into exploitation of
vibrational signaling included one prey species at a single field

location (Virant-Doberlet et al., 2011).While leafhoppers provide
an excellent model for studying predator-prey interactions
within the vibratory world, since their communication is based
exclusively on vibrational signals, we should also bear in
mind that production of air-borne insect songs also creates a
vibrational component of these signals (Caldwell, 2014). In order
to establish that exploitation by eavesdropping predators can
influence the evolution of vibrational signals, as well as signaling
and searching behavior, it is not enough to observe that predation
occurs. We must also determine that predation during the
mating period occurs frequently enough to be a significant source
of mortality and that there is a positive relationship between
signaling and risk of predation (Kotiaho et al., 1998; Virant-
Doberlet et al., 2011). Moreover, such studies should also be
carried out under relevant ecological conditions. As existing data
show, when focusing on arthropod predator-prey interactions, it
should be also taken into account that only a subset of suitable
predators may prey on a particular species (Virant-Doberlet
et al., 2011) and that predation behavior can show geographic
variation (Jackson and Carter, 2001). Furthermore, experience
and learning are also likely to influence prey preference and
such selective attention can be formed after a single encounter
(Jackson and Li, 2004). We also need to ask whether spiders
learn vibrational signals of locally abundant prey species or
respond to signal characteristics that are common across many
prey species (Cocroft, 2011; Virant-Doberlet et al., 2011). To
bridge some gaps in our understanding of vibrational modality,
we should also focus on how predators and prey perceive the
vibratory world they share. Recent studies showing that plants
can also respond to substrate vibrations induced by insects,
provide additional evidence about the interconnected complexity
of vibrational interactions in nature (Appel and Cocroft, 2014;
Veits et al., 2019). Taking into account the long evolutionary
history of vibrational communication, we have no doubt
that studies of interspecific interactions guided by substrate
vibrations will in the future offer numerous opportunities to
unravel mechanisms that are central to our understanding
behavior in general.
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