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Moths have evolved auditory channels under predation pressure from insectivorous

bats that emit ultrasonic pulses for capturing prey, including moths. Tympanate moths

perform evasive behavior in response to echolocation calls of bats, but they also utilize

ultrasonic signals mostly generated by males close to an intended female mate in

the context of courtship. Unlike calling songs used to advertise the presence and

sexual attractiveness of the signaler, courtship songs need not always be acoustically

conspicuous. Male courtship songs are predominantly soft but sufficient for detection

by a nearby potential mate. Quiet courtship songs are thought to effectively avoid being

eavesdropped by gleaning bats, acoustic parasitoids, and conspecific competitors, i.e.,

rival males. However, males of some moth species generate loud courtship songs. In

the present study, the duration of courtship song, in addition to the sound level of

the song was predicted to affect the likelihood of being perceived by eavesdroppers.

Loud and lengthy courtship songs, which are easily exploited by eavesdroppers, would

be expected to rarely evolve, because a female receiver close to a male emitting a

conspicuous song would also be exposed to strong predation pressure. This study

explored the relationship between the peak sound level and the duration of single song

bouts in 26 moth species from the following families: Noctuidae, Erebidae, Crambidae,

Pyralidae, and Geometridae. The softest and loudest songs with mean peak sound levels

of 64 and 129 dB peSPL hadmean durations of 1,900 and 312ms, respectively, whereas

the shortest and longest songs with mean durations of 110 and 8,839ms hadmean peak

sound levels of 102 and 74 dB peSPL, respectively. The peak sound level and duration

of courtship song exhibited a significant negative relationship across species. Although

the energetic cost of producing song and the size of the sound-producing organ might

also affect the relationship, the data support the conclusion that acoustic moths have

adaptively evolved ultrasonic courtship songs with properties between “soft-and-long”

and “loud-and-short” to avoid eavesdroppers.

Keywords: bat-predator, courtship song, eavesdropper, moth-prey, ultrasonic communication

INTRODUCTION

Animals have evolved communication signals for mating. During a mating sequence involving
emission of a signal to a focal receiver i.e., usually a female, an unintended receiver has a chance to
exploit the signal to find, locate, and hunt or parasitize a conspicuous signaler (Zuk and Kolluru,
1998). In addition, conspecific competitors may steal a mating opportunity. Loud calling songs are
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widespread in acoustic animals because of their usefulness to
advertise the presence of the caller and attract mating partners
from a long distance, but conspicuous songs simultaneously
convey information on the location of the caller to predators,
including bats, birds, and reptiles (Tuttle and Ryan, 1981; Sakaluk
and Belwood, 1984; Bell, 1985; Tuttle et al., 1985; Bailey and
Haythornthwaite, 1998; Igaune et al., 2008; Jones et al., 2011);
parasitoids and blood-sucking flies (Cade, 1975; Walker, 1993;
Bernal et al., 2006; Bernal and de Silva, 2015); and rival males of
the same species (Cade, 1980; Bailey and Field, 2000; Zuk et al.,
2006; Bailey et al., 2010).

Calling songs of moths are also prey cues used by
insectivorous bats (Alem et al., 2011). Males of the lesser wax
moth Achroia grisella (Pyralidae) generate loud ultrasonic clicks
to attract female receivers (Jang and Greenfield, 1996; Greenfield,
2014). Bat predators with gleaning strategies, such as the greater
horseshoe bat, Rhinolophus ferrumequinum, can exploit a moth’s
ultrasonic calling songs as a landmark of their prey (Alem et al.,
2011). As countertactics to avoid predation by eavesdropping
bats, singing males of Achroia grisella, like crickets and katydids
(Spangler, 1984; Nolen and Hoy, 1986; Libersat and Hoy, 1991;
Faure and Hoy, 2000; Schulze and Schul, 2001), cease emission
of their calling songs, and the females stop orientation toward
calling males, when they detect ultrasonic echolocation calls
of hunting bats (Spangler, 1984; Greenfield and Baker, 2003;
Greig and Greenfield, 2004; Rodríguez and Greenfield, 2004;
Cordes et al., 2014).

The use of calling songs by moths has been confirmed in only
a few species (Conner, 1999; Greenfield, 2014), but it has been
increasingly reported that moths communicate acoustically with
male courtship songs (Nakano et al., 2015). Male moths produce
courtship songs after they have approached close to (within a
few centimeters of) a female that has released sex pheromones
to attract males from a long distance. For the tiger moth and the
lichen moth (Erebidae), it is implied that male courtship song
serves as a signal for mate recognition (Conner, 1987; Nakano
et al., 2013). However, some noctuid and crambid moths do not
discriminate between courtship songs of conspecific male moths
and echolocation calls of bat predators (Nakano et al., 2008,
2010a, 2013). Females of these moths show a freezing response
in response to the male song as well as to bat cries, which enables
the singingmale to readily attempt copulation with the stationary
female (Nakano et al., 2008, 2010b, 2013).

Males are vulnerable to predation during courtship (Endler,
1987; Alem et al., 2011). Excessive concentration of a male’s
attention on a female (and subsequent sperm transfer) could
cause him to delay perception of the presence or approach of
eavesdroppers, including predators. To survive while performing
reproductive behavior, males and even females need to maintain
multiple multimodal sensory systems to decide between defense
and copulation. One solution for this tough choice is to mate
“privately” to avoid eavesdropping (Dabelsteen et al., 1998;
Dabelsteen, 2004). In singing animals, “soft” song with low-
amplitude sound is one of the adaptive courtship behaviors
associated with defensive responses to eavesdroppers (Nakano
et al., 2009a; Balenger, 2015; Reichard and Anderson, 2015). Low-
amplitude signals render a caller inconspicuous to eavesdropping

enemies and competitors. Soft songs have the disadvantage
of being effective only over a short distance, but the caller
can overcome this disadvantage by generating the soft song
in close proximity to the intended receiver. Soft courtship
songs are found among moths of diverse taxonomic groups,
including Noctuidae, Erebidae, Crambidae, Pyralidae, and
Geometridae (Conner, 1999; Nakano et al., 2009a,b, 2015).
However, courtship songs are not necessarily of low amplitude
(e.g., Conner, 1987; Sanderford and Conner, 1995; Nakano et al.,
2012a). In this study, we examined how the courtship songs
of moths are adaptively balanced between conspicuous and
inconspicuous characteristics to enable effective mating while
avoiding eavesdroppers.

MATERIALS AND METHODS

Study Insects
We studied 26 moth species belonging to the Noctuoidea
(five noctuid and three erebid species), Pyraloidea (14 crambid
and three pyralid species), and Geometroidea (one geometrid
species). In addition to 14 species previously reported (Nakano
et al., 2006, 2009a,b, 2012a), male courtship songs were newly
recorded for 12 species and analyzed by the procedure described
below. Moths of all growth stages were maintained under a
16 h light:8 h dark photo-regime in experimental rooms at 20
± 1◦C for three Canadian species (three crambids: Desmia
maculalis, Desmia funeralis, and Nomophila nearctica) and 24 ±
1◦C for nine Japanese species [three noctuids (Spodoptera picta,
Spodoptera exigua, and Spodoptera pecten), one erebid (Lithosia
quadra), three crambids (Ostrinia zealis, Ostrinia palustralis,
and Ostrinia latipennis), and two pyralids (Paralipsa gularis and
Endotricha icelusalis)]. Larvae were reared on their host plants or
an artificial diet (Silkmate-2M; Nosan Corp., Yokohama, Japan).
To ensure the virginity of the moths until they were used, each
newly emerged male or female adult moth, designated as 0 days
old, was separately kept in a nylon mesh cage (30 × 30 × 30 cm)
with water or 10% honey solution ad libitum. To minimize the
colony artifact associated with inbreeding, we used the generation
collected in the field and the next generation.

Sound Recording
We directly observed the mating behavior of 2–4 days old
previously unmated moths confined in the cubical mesh cages,
which were placed in a soundproof box (90 × 65 × 65 cm) with
one side opened in the scotophase (dark phase) under a dim
red light at 0.6 lux. Male courtship ultrasounds were individually
recorded with a 1/4-inch condenser microphone (type 4939;
Brüel and Kjær, Nærum, Denmark) connected to a preamplifier
(type 2670; Brüel and Kjær) and a customized conditioning
amplifier (Nexus type 2690, 0.02–140 kHz bandpass filter; Brüel
and Kjær). The acoustic signals were digitized with an analog-
to-digital converter, Wavebook 512A (12-bit; IOtech, OH, USA)
or USB-1604HS (16-bit; Measurement Computing, MA, USA)
at a sampling rate of 300 kHz. The microphone was hand-held
and approximately kept 10mm from the singing male, and the
membrane was directed to the intended individual. The recorded
courtship songs were stored as.wav format files.
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Song Characteristics
To determine the relationships among loudness, duration, and
peak frequency of male courtship ultrasounds, we extracted
peak equivalent sound pressure levels (dB peSPL; re. 20 µPa),
the longest duration of a single song bout, and dominant
frequencies from the recorded sound files using the software
BatSound 4.03 (Pettersson Elektronik, Uppsala, Sweden). The
data were individually obtained from each singing male without
replication. Sound pressure levels were calculated with reference
to the known signal voltage of the sound calibrator (type
4231, 94 dB SPL, 1 kHz; Brüel and Kjær). Song duration was
measured using both oscillogram and spectrogram. Because
each recording was performed for a maximum of 10 s, the
duration of a song that was continuously emitted over the
length of the recording was recorded as 10 s for two of 20
songs of Ostrinia furnacalis (Crambidae), four of nine songs of
Ostrinia nubilalis (Crambidae), one of seven songs of Ostrinia
scapulalis (Crambidae), and four of seven songs of Ostrinia
zealis (Crambidae). Dominant frequencies were determined by
computing power spectra on a Hanning window with a fast
Fourier transformation size of 1,024 points. These analyses were
performed after high-pass filtering at 10 kHz to eliminate low-
frequency background noise.

In statistical analyses of peak sound level, song duration and
dominant frequency among species and families, we performed
likelihood ratio (LR) test in generalized linear model (GLM)
with Gamma error distribution. Additionally, we examined if
significant relationships among the song characteristics were
found within the species. Because of limited sample sizes (n < 3)
for Palpita nigropunctalis (Crambidae) andHerminia tarsicrinalis
(Noctuidae), we used 24 species out of 26 species for the within-
species analysis. Relationships among the peak sound level, the
song duration and the dominant frequency were analyzed by
generalized additive model (GAM) (Wood, 2008). Coefficients
in the relationships obtained from each species were used for
the random effects meta-analyses using the restricted maximum
likelihood (REML) estimation (“metafor” package; Viechtbauer,
2010) which tests the significance for 24 species. These analyses
were done using R version 3.4.3 (R Core Team, 2017).

Construction of Phylogenetic Tree
For phylogenetic analysis of the 26 moth species, we used the

nucleotide sequences deposited at GenBank
R©

(http://www.
ncbi.nlm.nih.gov). We tried to incorporate all the available
nucleotide sequences of nuclear and mitochondria genes of the
26 species on the International Nucleotide Sequence Database
into the construction of a phylogenetic tree. However, because
only cytochrome oxidase subunit I (COI), cytochrome oxidase
subunit II (COII), and NADH dehydrogenase subunit 5 (ND5)
genes of mtDNA were listed for our moths, we searched the
homologs of these three genes in the Nucleotide BLAST (https://
blast.ncbi.nlm.nih.gov/Blast.cgi) with the nucleotide sequences
of COI, COII, and ND5 of Ostrinia furnacalis as the query
(Table S1). The homologous sequences of Hyphantria cunea
(Erebidae), Paraona staudingeri (Erebidae), Nomophila noctuella
(Crambidae), Palpita quadristigmalis (Crambidae), Corcyra
cephalonica (Pyralidae), Endotricha consocia (Pyralidae), and

Ectropis obliqua (Geometridae) were substituted for those of
Spilosoma punctarium (Erebidae), Eilema japonica (Erebidae),
Nomophila nearctica (Crambidae), Palpita nigropunctalis
(Crambidae), Paralipsa gularis (Pyralidae), Endotricha icelusalis
(Pyralidae), and Ascotis selenaria cretacea (Geometridae),
respectively, because these genes are not available in the
present database (Table S1). Alignments were performed with
the Clustal W program (Thompson et al., 1994) in MEGA7
(Kumar et al., 2016) with default values, and gap sequences were
manually removed.

We estimated the phylogenetic relationships among the 26
species by four steps described below. In all steps, selection
of the best-fit models of nucleotide substitutions was based
on the Bayesian information criterion in MEGA7. The focal
phylogenetic relationships, for which a geometrid moth Ascotis
selenaria cretacea was treated as a root of the tree, were
reconstructed by the maximum likelihood method. After
bootstrap tests with 1,000 resamplings, we used branches with a
bootstrap value of >60.

First, we drew an outline tree using 15 sequences of
combinations of COI genes (1,514 bp) and ND5 genes (1,632
bp) for two noctuids (Spodoptera litura and Spodoptera
exigua), two erebids [Hyphantria cunea (instead of Spilosoma
punctarium) and Paraona staudingeri (instead of Eilema
japonica)], seven crambids [Ostrinia furnacalis, Ostrinia
nubilalis, Glyphodes pyloalis, Spoladea recurvalis, Conogethes
punctiferalis, Nomophila noctuella (instead of Nomophila
nearctica), and Chilo suppressalis], three pyralids [Galleria
mellonella and Corcyra cephalonica (instead of Paralipsa gularis),
and Endotricha consocia (instead of Endotricha icelusalis)], and
a geometrid moth [Ectropis obliqua (instead of Ascotis selenaria
cretacea)] based on the GTR+G model to estimate phylogenetic
relationships at the interfamily level (Figures S1A, S2A).

Second, three intrafamily trees were constructed with six
sequences of COI genes (1,423 bp) for five noctuids (Spodoptera
litura, Spodoptera picta, Spodoptera exigua, Spodoptera pecten,
and Herminia tarsicrinalis) and a geometrid moth [Ectropis
obliqua (instead of Ascotis selenaria cretacea)] according to the
GTR+G model (Figures S1B, S2B), with four sequences of COI
genes (658 bp) for three erebids [Hyphantria cunea (instead of
Spilosoma punctarium), Paraona staudingeri (instead of Eilema
japonica), and Lithosia quadra] and a geometrid moth [Ectropis
obliqua (instead of Ascotis selenaria cretacea)] according to the
TN93+G model (Figures S1C, S2C), and with 12 sequences
of COII genes (674 bp) for 12 crambids [Ostrinia furnacalis,
Ostrinia nubilalis, Ostrinia scapulalis, Ostrinia zealis, Ostrinia
palustralis, Ostrinia latipennis, Glyphodes pyloalis, Spoladea
recurvalis, and Palpita quadristigmalis (instead of Palpita
nigropunctalis), Conogethes punctiferalis, Nomophila noctuella
(instead of Nomophila nearctica), and Chilo suppressalis]
according to the TN93+Gmodel (Figures S1D, S2D).

Third, the phylogenetic relationships among Desmia
maculalis, Desmia funeralis, another five crambids [Glyphodes
pyloalis, Spoladea recurvalis, Palpita quadristigmalis, Conogethes
punctiferalis, and Nomophila noctuella (instead of Nomophila
nearctica)] and a geometrid species [Ectropis obliqua (instead
of Ascotis selenaria cretacea)] were estimated with the eight
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sequences of COI genes (657 bp) according to the GTR+G+I
model (Figures S1E, S2E).

Fourth, the interfamily trees were combined with the
outline tree.

Phylogenetic Comparative Analysis
To take account of species’ non-independence due to
phylogenetic relatedness (Felsenstein, 1985), we first estimated
phylogenetic signals of Pagel’s λ (Pagel, 1999) and Blomberg’s
K (Blomberg et al., 2003). We then applied the phylogenetic
generalized least square (PGLS) models with the maximum
likelihood method to analysis of relationships among the song
characteristics (sound level, duration, and frequency) take
into account of the reconstructed phylogenetic tree for our
26 moth species (Pagel, 1999). The PGLS approach includes a
variance–covariance matrix with Pagel’s λ correlation structure,
which is derived from the Brownian motion model expecting
a random walk, based on the phylogenetic relationships of
species. We also fitted the Ornstein-Uhlenbeck process model
expecting a random walk around a central tendency under
stabilizing selection in PGLS (Martins and Hansen, 1997).
Our data points in some cases seemed to better fit a nonlinear
relationship. Therefore, in addition to PGLS models, we
statistically analyzed relationships among the three parameters
by generalized additive mixed models (GAMM) into which
the taxonomic family was incorporated as a random effect
(Bradshaw et al., 2008; Wood, 2008).

All analyses were done in R version 3.4.3. We calculated
the phylogenetic signals and tested the null hypothesis of no
phylogenetic signal using the “phytools” package (Revell, 2012).
PGLS models and GAMMs were built with packages “nlme”
(Pinheiro et al., 2019) and “gamm4” (Wood, 2008), respectively.
A.nexus format file for phylogeny was read through the package
“ape” (Paradis and Schliep, 2018). For GAMMs, we used
gamma error distribution with log-link function to treat positive
continuous variables showing the non-normal distribution and
examined the significance of each explanatory variable by the LR
test in the analysis of deviance.

RESULTS

The courtship songs of the male moths had highly diverse
acoustic characteristics (Figure 1). Peak sound level, song
duration, and frequency components varied among species
even within the same family, Crambidae. Male songs of
Ostrinia palustralis and Ostrinia zealis (Figures 1A,B) had lower
amplitudes, longer durations, and lower frequency ranges than
those of Desmia funeralis, Palpita nigropunctalis, and Glyphodes
pyloalis (Figures 1C–E). The minimal sound units generated
by one tentative cycle of the sound-producing movement were
also different among species; some species generated consecutive
pulses (bursts) and others generated several transient clicks.
Details are given in subsection courtship song parameters.

Phylogenetic Relatedness
As in previous sophisticated molecular studies of Lepidoptera
(Regier et al., 2013; Kawahara and Breinholt, 2014), superfamilies

FIGURE 1 | Examples of male courtship songs in crambid moths.

Representative oscillograms and spectrograms are shown. (A) Ostrinia

palustralis, (B) Ostrinia zealis, (C) Desmia funeralis, (D) Palpita nigropunctalis,

and (E) Glyphodes pyloalis.

of Noctuoidea and Pyraloidea formed independent clades
on a constructed phylogenetic tree (Figure 2A, Table S1).
Five noctuid and three erebid species and 14 crambid and
three pyralid species were classified into the monophyletic
groups Noctuoidea and Pyraloidea, respectively. Thus, the
26 species belonging to five families (Noctuidae, Erebidae,
Crambidae, Pyralidae, and Geometridae) formed five
clusters of each taxonomic family on the phylogenetic
tree. For the Noctuoidea, Spodoptera spp. (Noctuidae)
and the two Lithosiini species (Erebidae) individually
converged on single clades. For the Pyraloidea, the
seven Spilomelinae, six Pyraustinae species (Crambidae),
and two Galleriinae species (Pyralidae) each formed a
single cluster.
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FIGURE 2 | Phylogenetic relationship of the 26 moth species and acoustic characteristics of male ultrasonic courtship songs in each species. (A) The phylogenetic

tree was constructed by the maximum likelihood method. Colors indicate taxonomic families: purple, Noctuidae (Noctuoidea); orange, Erebidae (Noctuoidea); blue,

Crambidae (Pyraloidea); red, Pyralidae (Pyraloidea); green, Geometridae (Geometroidea). The sample sizes used for acoustic analysis are shown in parentheses after

the species names. Distribution of peak sound level (B), song duration (C), and dominant frequency (D) of male songs. Each circle denotes a value extracted from an

individual singing male.

Courtship Song Parameters
At the species level, the mean peak sound levels ranged
from 64 dB peSPL, emitted by Ostrinia palustralis (Crambidae;
minimum–maximum, 59–67 dB peSPL; n= 9 males; Figure 1A),
to 129 dB peSPL, emitted by Desmia funeralis (Crambidae;
115–134 dB peSPL, n = 11; Figure 1C). The sound level was
significantly different among species (LR test in GLM with
gamma error distribution; χ2 = 11.30; p < 0.0001; Figure 2B).
The mean song duration ranged from 110ms, emitted by Palpita

nigropunctalis (Crambidae; 95–124ms; n = 2; Figure 1D),
to 8,839ms, emitted by Ostrinia zealis (Crambidae; 4,430 to
>10,000ms; n = 7; Figure 1B). Song duration also significantly
differed among species (χ2 = 181.90; p < 0.0001; Figure 2C).
The mean dominant frequency ranged from 33 kHz, emitted
by Ostrinia zealis (Crambidae; 26–37 kHz; n = 7; Figure 1B),
to 115 kHz, emitted by Glyphodes pyloalis (Crambidae; 110–
122 kHz; n = 10; Figure 1E). The peak frequency differed
significantly among species (χ2 = 39.16; p < 0.0001; Figure 2D).
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At the family level, the mean peak sound levels were 107 dB
peSPL (Noctuidae, n = 5 species), 104 dB peSPL (Erebidae, n =

3), 112 dB peSPL (Crambidae, n = 14), 98 dB peSPL (Pyralidae,
n = 3), and 110 dB peSPL (Geometridae, n = 1) (Figure 3A).
The sound level did not significantly differ among families (LR
test in GLM with gamma error distribution, χ2 = 0.11, p =

0.75). The mean song duration was 2,174ms (Noctuidae, n =

5), 1,609ms (Erebidae, n = 3), 3,736ms (Crambidae, n = 14),
1,538ms (Pyralidae, n = 3), and 2,484ms (Geometridae, n =

1) (Figure 3B). Song duration did not significantly differ among
families (χ2 = 3.23, p = 0.24). The mean dominant frequency
was 57 kHz (Noctuidae, n = 5), 36 kHz (Erebidae, n = 3),
68 kHz (Crambidae, n = 14), 84 kHz (Pyralidae, n = 3), and
40 kHz (Geometridae, n= 1) (Figure 3C). The frequency did not
significantly differ among families (χ2 = 1.32, p= 0.079).

Relationship Among Song Parameters
In the within-species analyses (Table S2), estimated mean of the
coefficient in the relationship between the song duration and
the peak sound level was −0.086 (95% CI: −0.20–0.027) with
no significant difference from 0 (z = −1.49, p = 0.14). For the
relationship between the duration and the dominant frequency,
estimated mean was −0.0053 (95% CI: −0.094–0.083) and was
not significantly different from 0 (z=−0.12, p= 0.91). Estimated
mean of the coefficient between the frequency and the sound level
was −0.0021 (95% CI: −0.013–0.0086) and was not significantly
different from 0 (z =−0.38, p= 0.70).

For the peak sound level, phylogenetic signals of Pagel’s λ

and Blomberg’s K were 0.76 (p = 0.0038) and 0.92 (p = 0.0020),
respectively. For the dominant frequency, λ and K were 0.52 (p=
0.15) and 0.66 (p = 0.062), and those for the song duration were
0.76 (p= 0.0047) and 0.90 (p= 0.0050), respectively.

Considering phylogenetic relatedness (see Construction of
phylogenetic tree and Phylogenetic comparative analysis), we
found a significant negative linear relationship between song
duration and peak sound level (Brownianmotionmodel in PGLS,
t =−2.23, p= 0.035, AIC= 474.49; Ornstein-Uhlenbeck model
in PGLS, t = −2.11, p = 0.045, AIC = 474.92). The results of
statistical analyses with GAMM also indicated that song duration
was significantly associated with peak sound level (LR test in
GAMM, χ2 = 8.83, p= 0.012; Figure 4A).

There was no significant relationship between song duration
and dominant frequency (Brownian motion model in PGLS, t
= 1.04, p = 0.31, AIC = 476.34; Ornstein-Uhlenbeck model in
PGLS, t = −0.21, p = 0.84, AIC = 478.61). GAMM supported
the results shown above. There was no significant relationship
between song duration and dominant frequency (χ2 = 1.49, p
= 0.47; Figure 4B).

No significant relationship was detected between peak sound
level and dominant frequency (Brownian motion model in
PGLS, t = −1.29, p = 0.21, AIC = 234.35; Ornstein-Uhlenbeck
model in PGLS, t = −0.80, p = 0.43, AIC = 233.80).
In contrast, GAMM indicated that peak sound level was
significantly associated with dominant frequency (χ2 = 14.77,
p= 0.00062; Figure 4C).

In the present study, we analyzed the greatest number of
species of crambid moths among the five families. Male courtship

FIGURE 3 | Acoustic characteristics of male ultrasonic courtship songs in

each moth family. Peak sound level (A) and song duration (B) do not differ

among the five moth families but dominant frequency (C) differs among them.

In these violin plots, the upper and lower limits indicate the

minimum-to-maximum range, and the width indicates the relative frequencies

of the data points.

song in crambids showed a high diversity (Figure 1), ranging
from soft to loud songs (60–130 dB peSPL at 10mm) and
from short to long songs (20 to >10,000ms) (Figures 2B–D).
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FIGURE 4 | Relationships among song duration, peak sound level, and dominant frequency in male ultrasonic courtship songs of moths. For the 26 moth species,

there is a negative relationship between song duration and peak sound level (A), whereas no relation is found between song duration and dominant frequency (B). A

significant nonlinear relationship is found between peak sound level and dominant frequency (C). When considering only the 14 crambid moths, a negative relationship

between song duration and peak sound level is prominent (D), there is no relation between song duration and dominant frequency (E), and a nonlinear relationship is

significant between peak sound level and dominant frequency (F). Black lines and gray bands are means and 95% confidence intervals estimated by GAMM. Colored

circles are means for each species; purple, Noctuidae (Noctuoidea); orange, Erebidae (Noctuoidea); blue, Crambidae (Pyraloidea); red, Pyralidae (Pyraloidea); green,

Geometridae (Geometroidea).

Even when focusing on the single taxonomic family Crambidae,
we again corroborated the negative relationship between
song duration and peak sound level (LR test in GAMM,
χ2 = 5.32, p = 0.0025; Figure 4D), the absence of a
significant relationship between song duration and dominant
frequency (χ2 = 3.06, p = 0.058; Figure 4E), and the negative
relationship between peak sound level and dominant frequency
(χ2 = 0.73, p < 0.0001; Figure 4F).

DISCUSSION

We have shown that a negative relationship between loudness
and duration exists in the ultrasonic courtship songs of

male moths. Because loud-and-long songs are conspicuous to

unintended receivers as well as to potential mating partners,

we propose that the acoustical tradeoff in moth song is a

consequence of evolutionary adaptation relevant to avoidance
of location by eavesdroppers. Males of some field crickets are
known to generate “soft” courtship songs after attracting a
female by calling songs (Alexander, 1961; Balenger, 2015). The
courtship songs of the field crickets last only a few seconds,
suggesting that the softness and the shortness of the songs
evolved for the avoidance of eavesdropping by predators and
parasites. Successful copulation (genital coupling) in insects
generally requires the absence of interference from other males.
Courtship songs are likely to evolve to be soft and short to
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reduce the opportunity for a rival male to interrupt the courtship
behavior of a singingmale and, in some cases, to steal an intended
mate (Balsby and Dabelsteen, 2005; Balenger, 2015; Reichard and
Anderson, 2015).

In moths, multiple males may gather around a single female
that is releasing a sex pheromone in advance of a mating
bout (Baker, 1983; Schlaepfer and McNeil, 2000; Nakano et al.,
2014). Hence, singing males would gain the benefit of avoidance
of eavesdropping by emitting low-amplitude courtship songs
that can be detected only by a female in close proximity to
the singer. Lengthy courtship songs, such as those of Ostrinia
lasting for >10 s, might be perceived by predacious gleaning
bats, which can even perceive the rustling sounds of small
moving insects (Fuzessery et al., 1993; Goerlitz et al., 2008;
Jones et al., 2011; Siemers et al., 2012). However, the longer
the duration of a moth song, the lower is the peak sound level.
Taking account of atmospheric attenuation of high-frequency
ultrasonic courtship songs, the opportunity for eavesdropping
long-and-soft songs of moths would be limited for bats as
well as for male moth competitors. In this study, we focused
on comparison of peak sound level and duration of courtship
song among various species that emit ultrasounds ranging from
transient clicks to consecutive bursts (Figure 1). It is hard to
perform a direct comparison of total acoustic power, consisting
of sound amplitude and song duration, among the 26 species
we studied, but the energetic cost of production of courtship
song also could contribute to the negative relationship between
peak sound level and song duration (Figures 4A,D) (Hoback
and Wagner, 1997; Reinhold et al., 1998; Oberweger and Goller,
2001; Clark, 2012). In terms of explaining the obtained results
of the acoustical tradeoff, hypotheses of physical constraints on
the energetic cost and the sound-producing mechanism are not
mutually exclusive to our hypothesis that moths evolved hidden
courtship songs for avoiding eavesdroppers. The within-species
analyses, however, supported no significant relationships among
the song characteristics, implying that the energetic constraint
may not affect the acoustical tradeoff in the courtship songs
of each moth species. To corroborate the adaptive function
of the countertactic courtship song, we need to confirm that
insectivorous bats more often (1) approach louder-and-longer
courtship songs and (2) attack male moths singing louder-and-
longer songs in a future study. For the significant nonlinear
relationship between peak sound level and dominant frequency
(Figures 4C,F), we speculate that the mechanical constraint in
the ultrasound production influences this relationship. It is
generally because the stridulation and percussion organs do
not generate extremely high-frequency ultrasounds, whereas
ultrasonic songs produced by the tymbal organs include high-
frequency components of >50 kHz (Nakano et al., 2015). Taking
the damping of high-frequency ultrasounds in the air into
consideration, the dominant frequency of courtship songs might
be related to the eavesdropping; however, the hypothesis that
courtship songs with higher frequency have higher sound levels
is not supported by our data.

For the peak sound level and the song duration, phylogenetic
signals (Pagel’s λ and Blomberg’s K) which significantly differed
from no signal indicated that the two traits were not independent

of the species relatedness, but more divergent than expected
under the Brownian motion models of evolution (random drift).
By contrast, the phylogenetic signals of the dominant frequency
of song supported the independence of the phylogeny, and less
similar than expected under random drift. PGLS and GAMM
approaches suggest that the correlation between sound level
and duration evolved under a random walk and the negative
relationship was affected by directional selection (Figure 4).
Moderately strong phylogenetic relatedness in the peak sound
level and song duration supports the conserved ultrasound-
producing mechanisms in erebid and pyralid moths and the
recent independent evolution of diverse ultrasound-producing
mechanisms in noctuid and crambid moths (Conner, 1999;
Nakano et al., 2015). In the family Erebidae, tiger and lichen
moths have similar organs on the lateral side of the metathorax
(Conner, 1987, 1999; Nakano et al., 2013), and in the family
Pyralidae, Galleriinae moths have corrugated tymbals on the
tegulae covering the base of the forewings (Spangler, 1986;
Conner, 1999; Kindl et al., 2011). In the family Noctuidae,
Spodoptera moths have tymbal membranes on the ventral side
of the metathorax (Nakano et al., 2009b, 2010a), Hecatesia
moths have alar castanets on the forewings (Bailey, 1978), and
Rileyana fovea has stridulation organs on the hindwings and
hind legs (Surlykke and Gogala, 1986). In the family Crambidae,
Conogethes punctiferalis has smooth tymbal organs on the lateral
side of the mesothorax (Nakano et al., 2012b), and Ostrinia
moths have specific stridulation scales on the mesothorax and
forewings (Nakano et al., 2008). While the ultrasound-producing
mechanisms for courtship songs vary among genera (or families
for Erebidae and Pyralidae), the peak sound level and duration of
moth courtship songs showed a significant negative relationship
among the 26 species for five moth families that we used. The
negative relationship, therefore, has possibly originated from
selective forces from eavesdroppers and female receivers.

Females may evolve a preference for acoustically conspicuous
courtship songs, similar to the calling songs generated by high-
quality or good-condition males (Jang and Greenfield, 1996;
Simmons et al., 2013; Cordes et al., 2014; Balenger et al., 2016).
Among acoustic moths in which the function and detailed
acoustic characteristics of the songs have been analyzed to date,
courtship songs relevant to mate recognition or mate preference
are found only in the erebid Eilema japonica (Nakano et al.,
2013), the crambidConogethes punctiferalis (Nakano et al., 2012a,
2014), and the pyralid Galleria mellonella (Spangler, 1985, 1986).
Males of these species emit courtship songs at average peak
sound levels of 87, 112, and 100 dB peSPL and average durations
of 2,872, 3,880, and 249ms, respectively, indicating that they
do not produce loud-and-long courtship songs. This finding
suggests that the preference of female receivers formale courtship
song is also affected by negative selection pressures. A female
close to a male that is emitting exaggerated loud-and-long songs
would be exposed to predation from eavesdropping bats that are
hunting singing males (Pocklington and Dill, 1995; Candolin,
1997; Alem et al., 2011). In moth species, in which the males
use “deceptive” courtship songs toward females, i.e., Spodoptera
litura and Ostrinia spp. (Nakano et al., 2008, 2010a,b), such a
risk of predation on silent females by eavesdropping bats would
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increase if these males generated conspicuous lengthy songs in
close proximity to focal females. We suggest that both avoiding
eavesdroppers and being detected by intended receivers drive the
current tradeoff between loudness and duration ofmale courtship
song. A similar relationship in song characteristics may be found
in other singing animals as well.
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