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Plants regularly encounter stress, and their responses to abiotic and biotic stressors

have been a focus of research for decades. Stress caused by drought is one of the most

often studied abiotic stresses owing to the increase in the incidence of drought driven

by climate change. Severe drought has been shown to elicit a whole-plant response

guided by key phytohormones, which not only respond to water stress but also play

a critical role in the response of plants to biotic stress imposed by herbivores and

pathogens. This is especially relevant for insect-transmitted pathogen systems, where

plants, herbivores, and pathogens are linked in a web of direct and indirect interactions.

Few studies have thus far explored the complex nature of drought-mediated tripartite

interactions, however, and our ability to generalize and predict how plants respond to

herbivore-transmitted pathogens while simultaneously countering the consequences of

drought remains limited. The goal of this mini-review is to assess the current state

of the field regarding the molecular mechanisms underlying plant responses to the

combined effects of drought and simultaneous herbivory and pathogen transmission

and their ecological consequences. We discuss plant responses to drought, herbivory,

and pathogens as distinct and concurrent stresses, and highlight the implications of the

tripartite interactions on insect vector and pathogen suppression in agroecosystems.

This review provides a framework for future research linking generalized molecular

responses in drought-stressed plants to tripartite species interactions and the ecology

of insect-transmitted pathogens in the context of modern agriculture and water deficit

driven by climate change.

Keywords: herbivory, pathogen transmission, plant-insect interactions, plant-pathogen interactions, water

deficiency, climate change

INTRODUCTION

Climate change is driving an increase in incidence of drought at a global scale and extreme water
deficiency is a significant impediment to plant fitness (Boyer, 1982, 2010; Bray et al., 2000). The
impact of drought stress on plants extends beyond primary plant productivity, however, and results
in profound changes in phytohormones and secondary metabolites involved in plant defenses
(Asselbergh et al., 2008), the consequences of which for plant resistance to insects and pathogens
are still poorly understood.

Plants commonly contend with multiple abiotic and biotic stresses simultaneously and must
be capable of responding in a coordinated and dynamic fashion. This is particularly true for
vector-borne plant pathogen systems where reciprocal direct and indirect feedback among plants,
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vectors, and pathogens results in changes in performance and
behavior of the vectors and pathogens (Figure 1). Yet studies
rarely measure the responses of plants to multiple stresses and
even fewer studies have quantified the molecular mechanisms
and ecological outcomes of tripartite plant-vector-pathogen
interactions in the context of drought. However, the potential
for non-additive effects of multiple stresses has contributed to
a growing consensus that simplified investigations of pairwise
interactions may not be sufficient (Mittler and Blumwald,
2010; Atkinson and Urwin, 2012; Atkinson et al., 2013; Prasch
and Sonnewald, 2013; Bergès et al., 2018). Thus, the goal of
this review is to outline the current state of the field and
synthesize research on responses of drought-stressed plants to
pathogen and herbivore attack. While reviews of the molecular
mechanisms and consequences of single and multiple stresses
have been assembled previously (e.g., Atkinson et al., 2015),
this is the first synthesis of research focused specifically on the
drought-mediated tripartite interactions among plants, insect
vectors, and vector-borne pathogens. We highlight the general
responses of plants to drought and biotic stress in order
to contextualize the concepts of multi-stress responses. We
examine the specific consequences of water deficit for plant
interactions with pathogens and herbivores individually, and
synthesize research on drought-mediated tripartite interactions.
We also highlight the consequences of these responses for species
interactions and for insect vector and pathogen suppression in
agroecosystems. This mini-review aims to create a framework for
linking key molecular mechanisms in plants under simultaneous
drought and pathogen/vector attack to specific and predictable
interactions among species.

OVERVIEW OF GENERAL MOLECULAR
RESPONSES OF PLANTS TO BIOTIC
STRESS AND DROUGHT

Plants utilize a diverse array of responses to attack by
herbivores and pathogens. Metabolic responses are regulated by
interconnected signaling pathways in which salicylic acid (SA)
and jasmonic acid (JA) play a key role (Stout et al., 2006).
The SA-mediated response pathway was originally implicated
in plant resistance to pathogens (Kunkel and Brooks, 2002;
Shah, 2003) and the JA-mediated pathway was thought to
confer resistance to insects (Howe et al., 1996). We now
know, however, that these pathways are intricate, interconnected
(Walling, 2000; Koornneef and Pieterse, 2008; Thaler et al., 2010),
and complicated by reciprocal down-regulation (i.e., “crosstalk”)
(Thaler et al., 2002) that requires plants to integrate and prioritize
their defenses (Bostock, 2005). Consequently, plant-mediated
indirect interactions between pathogens and herbivores can lead
to either induced resistance or induced susceptibility as a result
of a multiple-enemy attack (Bostock, 2005).

The JA- and SA-mediated pathways overlap with the pathways
that regulate plant responses to drought regulated by the
hormone abscisic acid (ABA) (Ramanjulu and Bartels, 2002;
Bartels and Sunkar, 2005; Urano et al., 2009; Harb et al., 2010).
ABA modulates plants responses to drought stress, and its

FIGURE 1 | Direct and indirect interactions among insect vectors, pathogens,

and drought-stressed host plants, with examples of responding traits. Solid

lines are direct effects, dashed lines are indirect effects. Arrows indicate the

effect of one factor on another. Water deficit affects plant primary

(differentiation) and secondary (defense) metabolism. These changes can alter

reciprocal direct and indirect feedback among the plants, vectors, and

pathogens and result in changes in performance and behavior of the vectors

and pathogens.

accumulation results in increases of reactive oxygen species,
changes in cell turgor, and stomatal closure (Lee and Luan, 2012).
ABA also prioritizes plant responses to biotic stress (Asselbergh
et al., 2008), and interactions among ABA, JA, and SA have
been extensively studied (Lee and Luan, 2012; Kazan, 2015;
Nguyen et al., 2016).

Abscisic acid can dramatically re-shape interactions between
JA and SA (Yasuda et al., 2008; Fan et al., 2009; Kazan, 2015;
Muñoz-Espinoza et al., 2015; Guo et al., 2016; Wei et al.,
2018), which illustrates that plant responses to biotic stress are
frequently altered under drought. In general, accumulations of
ABA are accompanied by a decrease in SA (Yasuda et al., 2008;
Fan et al., 2009; Muñoz-Espinoza et al., 2015; Guo et al., 2016;
Liu et al., 2016; Nachappa et al., 2016). However, an increase
in ABA can also result in concomitant rise in SA (Audenaert
et al., 2002; Anderson et al., 2004; Mauch-Mani and Mauch,
2005). Interactions between ABA and JA are equally variable,
and ABA can have synergistic and antagonistic interactions with
JA (Asselbergh et al., 2008). For example, changes in proteins
involved in JA synthesis and accumulation were noted in a
diversity of plants exposed to water deficit (Fan et al., 2009;
Harb et al., 2010; Bonhomme et al., 2012; Ahmad et al., 2016;
Haider et al., 2017), while other studies have indicated lack
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of JA induction in drought-stressed plants (Muñoz-Espinoza
et al., 2015; Nachappa et al., 2016). The exact nature of
interactions among the defensive responses of plants to biotic
and abiotic stresses remains understudied, however, despite their
importance to plant-pathogen, plant-insect, and plant-pathogen-
vector interactions (Asselbergh et al., 2008; Erb et al., 2011; Davis
et al., 2015b; Nachappa et al., 2016).

PATHOGEN-PLANT INTERACTIONS IN
WATER DEFICIT

In general, there is an inverse relationship between drought
and resistance to pathogens driven by the negative cross talk
between ABA and SA. For example, an ABA-mediated decrease
in SA enhanced the susceptibility of Arabidopsis and tomato to
Pseudomonas syringae (Mohr and Cahill, 2007) and tomato to
Botrytis cinereal (Audenaert et al., 2002). Further, applications of
exogenous ABA suppressed systemic acquired resistance (SAR)
to pathogens, while induction of SAR decreased expression
of ABA-biosynthesis genes, suggesting that the antagonistic
interaction between these pathways is reciprocal (Yasuda et al.,
2008). It is noteworthy that the crosstalk between ABA and SA
can be accompanied by a synergism between ABA and JA in some
(Fan et al., 2009), but not all cases (Anderson et al., 2004; Yasuda
et al., 2008), emphasizing the complex and intricate links among
these phytohormones.

There are instances, however, where ABA or drought stress
in general promote enhanced plant resistance to pathogens.
Stomatal closure induced by ABA to reduce transpiration can
prevent pathogen entry (Melotto et al., 2006), and ABA signaling
has been implicated in defense against necrotrophic pathogens,
which induce JA-mediated defenses. This outcome suggests that
instances of ABA-JA synergism can have positive outcomes for
plant resistance and can vary across and within plant species
(Asselbergh et al., 2008; Ramegowda and Senthil-Kumar, 2015).

INSECT VECTOR-PLANT INTERACTIONS
IN WATER DEFICIT

Sap-feeding herbivores including insect vectors are predicted to
respond positively to drought-stressed plants due to enhanced
nutritional quality (Joern and Mole, 2005; Yan et al., 2015;
Nachappa et al., 2016; Sconiers and Eubanks, 2017; Florencio-
Ortiz et al., 2018). Specifically, physiological changes stemming
from ABA-regulated osmotic adjustments that enable plants
to maintain cell turgor by accumulating solutes (Ingram and
Bartels, 1996; Harb et al., 2010) can benefit herbivores through
increases in nitrogen and carbohydrate availability (Huberty and
Denno, 2004). However, empirical support for this prediction
is mixed.

Drought can have particularly complex and inconsistent
effects on aphids, common vectors of phytopathogens. Aphids
can respond positively (Tariq et al., 2012), negatively (Pons
and Tatchell, 1995; Mcvean and Dixon, 2001; Hale et al.,
2003; Simpson et al., 2012; Guo et al., 2016; Nachappa et al.,
2016), or neutrally (Larsson and Björkman, 1993; Nachappa

et al., 2016; Sconiers and Eubanks, 2017) to drought-stressed
plants. The variable effects of drought on aphid fitness may be
driven by the intensity of water deficit, whereby performance
of a single aphid species increases under moderate stress but
decreases under severe drought stress (Banfield-Zanin and
Leather, 2015). Furthermore, aphids are highly susceptible
to changes in osmotic pressure, which can constrain their
ability to exploit elevated nutrients in drought-stressed plants,
as was demonstrated in the lack of concomitant increase in
performance of soybean aphids (Aphis glycines) exposed to
soybean (Glycine max) under drought stress (Nachappa et al.,
2016). Increased concentrations of JA-regulated glucosinolates
have also been implicated in the lack of an enhanced aphid
performance despite higher levels of nitrogen in stressed plants
(Tariq et al., 2012).

Thrips and whiteflies are two other major insect vectors of
phytopathogens, but few studies have explored the impact of
drought on their fitness as vectors. Whiteflies, for example, were
found to favor plants under low rates of irrigation (Paris et al.,
1993; Skinner, 1996), while their oviposition was decreased by
water deficit (Inbar et al., 2001). Similarly, thrips were more
abundant on plants under water deficit and benefited from
intermittent drought stress in cotton (Sconiers and Eubanks,
2017). Further, intense and severe drought was linked to
outbreaks of Thrips tabaci in onion, which resulted in significant
losses to crop productivity (Fournier et al., 1995).

The consequences of drought for vector fitness may also
depend on its infection status. For instance, water deficit in
tomato increased survival of Bactericera cockerelli (Hemiptera:
Triozidae) infected with a bacterium Candidatus Liberibacter
solanacearum, and resulted in a 60% increase in the number of
adults (Huot and Tamborindeguy, 2017). Further, populations
of infectious Rhopalosiphum padi aphids grew faster on wheat
infected with Barley yellow dwarf virus compared to virus-free
plants, and the effect was stronger when plants were under
drought stress compared to unstressed plants (Davis et al.,
2015a). This study did not explore how non-infected aphids
responded to drought, which may further alter the outcome
of plant-insect vector interactions (Hale et al., 2003). There is
evidence that pathogens can lower the fitness of their insect
vectors (Donaldson and Gratton, 2007; Nachappa et al., 2011;
de Oliveira et al., 2014), and pathogen-mediated vector traits
can interact with drought-mediated changes in plants. This was
illustrated in the case of infectious soybean aphids, which unlike
their virus-free counterparts, were unaffected by water status
of the plants (Castle and Berger, 1993). Overall, water deficit
exposure appears to have no effect or improve performance
of non-infectious aphids, but further research is necessary to
validate this effect.

PLANT-MEDIATED EFFECTS OF
PHYTOPATHOGENS ON THEIR VECTORS

Increasing evidence documents that phytopathogens manipulate
the performance and behavior of their insect vectors by
altering the chemical or physical properties of their shared
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host plant (Casteel and Falk, 2016; Eigenbrode et al., 2018;
Mauck et al., 2018). These phytopathogen-induced vector and
host plant phenotypes are typically thought to be conducive
to pathogen dissemination in the environment (Mauck et al.,
2018). For example, pathogen-induced injury and altered volatile
emissions can increase the attractiveness of infected plants
to vectors (Eigenbrode et al., 2002; Jiménez-Martínez et al.,
2004; Belliure et al., 2005; Bosque-Pérez and Eigenbrode, 2011;
Hodge et al., 2011; Shapiro et al., 2012; Ogada et al., 2013).
However, the exact nature of the interaction likely depends on
the mechanism of pathogen transmission (Castle and Berger,
1993; Mauck et al., 2012; Eigenbrode et al., 2018). Pathogens
that require long, uninterrupted feeding periods for efficient
transmission may benefit by improving host plant quality
and enhancing vector settling behavior (Belliure et al., 2005;
Ogada et al., 2013). Alternatively, pathogens that require only
a brief feeding probe for transmission may promote their
own proliferation by inducing deceptive visual or chemical
cues to attract vectors to unpalatable or low-quality plants
from which vectors quickly emigrate after an initial feeding
attempt (Purcell and Almeida, 2005; Mauck et al., 2010).
While it is likely that drought will alter the plant-mediated
effects of pathogens on their vectors, we currently lack the
necessary understanding of the mechanistic basis of plant virus
manipulation to predict these complicated multi-stress outcomes
(Mauck et al., 2019).

INSECT TRANSMISSION OF PATHOGENS
UNDER DROUGHT STRESS

The efficiency of pathogen transmission by insects is likely
to be influenced by drought stress. Water deficit can directly
affect plant resistance to pathogens and vectors via the
overlap and crosstalk in the pathways regulated by the
key phytohormones. However, water deficit can also affect
plant infection risk indirectly by altering vector behaviors or
preferences that are critical to transmission and are otherwise
manipulated by vector-borne pathogens to their benefit in
unstressed plants (reviewed in Mauck et al., 2016). For
example, a loss in plant cell turgor pressure may alter feeding
behaviors, such as the number of times a vector probes a
plant (Krugner and Backus, 2014; Nachappa et al., 2016).
Furthermore, low turgor pressure may enhance the plant-
to-plant movement of vectors as they search for acceptable
hosts, thereby increasing the number of plants contacted
by individual vectors. These recent studies support the idea
that drought may transiently and indirectly increase plant
susceptibility to insect-transmitted pathogens, particularly if
water deficit is severe and stimulates vector movement and
probing frequency.

In fact, there is accumulating evidence to support the indirect
effects of drought-stressed host plants on pathogen transmission.
Drought stress increased aphid transmission of Cauliflower
mosaic virus (CMV) and Turnip mosaic virus to Brassica
rapa (van Munster et al., 2017). However, water deficit had
the opposite effect on the aphid-transmitted Turnip yellow

virus (TuYV) in Arabidopsis, whereby transmission of TuYV
was significantly reduced due to lower viral accumulation
in aphids feeding on drought-stressed plants (Yvon et al.,
2017). Nachappa et al. (2016) found that incidence and
transmission of the aphid-transmitted Soybean mosaic virus
were also lower in soybean exposed to drought compared
to well-watered plants, likely owing to a decrease in time
required for the aphids to access phloem in the stressed
plants. Further, drought affected aphid transmission of
CMV across Arabidopsis accessions with varying fitness
responses to water deficit, and the authors concluded
that the consequences of drought for transmission and
virulence were driven by the growth traits of the host plants
(Bergès et al., 2018).

Thus, it appears that the effect of drought on vector
feeding behavior and other fitness traits plays a key, albeit
indirect, role in shaping the consequences of drought on
transmission of vector-borne pathogens. It is also apparent
that the interactions among the intensity and duration of
drought, plant species, and vector and pathogen natural
history traits are likely to be even more complex under
field conditions.

DROUGHT-MEDIATED TRIPARTITE
INTERACTIONS

Plants susceptible to insect-transmitted pathogens must
contend simultaneously with the consequences of drought,
herbivory, and pathogen infection and coordinate their defensive
responses accordingly. Likewise, herbivores and pathogens
employ strategies to overcome plant defenses and promote their
own proliferation. The result is a complex web of direct and
indirect effects among pathogens, vectors, and their shared host
plants (Figure 1).

Predicting the outcomes of these complex interactions is a
challenge as they are likely to be species-specific and driven
by natural history traits and genetic diversity of each of the
organisms. We speculate that changes in vector performance
and behavior mediated by drought-induced modifications in
plant primary and secondary metabolism are likely to increase
plant disease risk. The overlap and crosstalk in the molecular
responses of plants to biotic and abiotic stresses, however,
will ultimately determine the outcome of tripartite interactions.
Drought is likely to influence the overall number of vectors
present in the environment and the likelihood that these
vectors will encounter and feed upon host plants, which is
the essential first-step in vector-borne pathogen transmission.
However, the probability that an encounter between a vector
and a host plant will result in infection is likely governed by
the ability of the plant to mount a successful immune response
while simultaneously countering the effects of herbivory and
water limitation. Multiple comprehensive studies that integrate
molecular, behavioral, and ecological studies within a single plant
system are necessary in order to advance our understanding
of the mechanisms and consequences of drought-mediated
tripartite interactions.
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IMPLICATIONS OF DROUGHT STRESS
FOR SUPPRESSION OF INSECT VECTORS
AND VECTOR-BORNE PATHOGENS

The tripartite interactions among plants, insect vectors, and
pathogens take place within diverse communities, and the
complex outcomes of these interactions can have broad
implications for the management of agricultural systems. First,
the ability to predict how deficit irrigation affects plant
productivity, insect vectors, and the associated vector-borne
pathogens will allow for effective exploitation of water as a
means to suppress vectors and pathogens (Daane and Williams,
2003; Rousselin et al., 2017). Secondly, understanding the
impact of drought stress on direct and indirect plant defenses
will allow for predictions of the likelihood of pest outbreaks
and proper remediation plans that incorporate irrigation as
one of the pest management tactics. For example, drought
may impair the competitive advantage of native herbivores
during invasions by non-native herbivores, as was illustrated
in wheat, where water deficit reduced the ability of the
native aphid R. padi to inhibit the population growth of
the invasive aphid, Metopolophium festucae Theobald subsp.
cerealum (Foote et al., 2017). Incorporating irrigation to alter
these interactions could lower the incidence and severity of
outbreaks of non-native vectors and associated pathogens.
Further, recruitment of natural enemies and their meaningful
contribution to pest suppression can be affected by drought
through altered attraction of predators to injured plants.
The nearly universal drought-induced decrease in SA, which

is important in indirect plant defenses, is likely to affect

recruitment of predators through disrupted emission of volatiles
(Martini and Stelinski, 2017).

CONCLUSIONS

Given the increases in incidence of drought across the globe,
research exploring the mechanisms driving drought-mediated
tripartite interactions on multiple levels of organization and
across trophic levels is more critical than ever. Research
should employ a species-specific approach to quantifying plant
responses to multiple stresses and assessing their consequences
from gene expression to the fitness and behavior of vectors,
pathogens associated with them, and their natural enemies.
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