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Landscapes and the ecological processes they support are inherently complex systems,

in that they have large numbers of heterogeneous components that interact in multiple

ways, and exhibit scale dependence, non-linear dynamics, and emergent properties.

The emergent properties of landscapes encompass a broad range of processes that

influence biodiversity and human environments. These properties, such as hydrologic

and biogeochemical cycling, dispersal, evolutionary adaptation of organisms to their

environments, and the focus of this article, ecological disturbance regimes (including

wildfire), operate at scales that are relevant to human societies. These scales often

tend to be the ones at which ecosystem dynamics are most difficult to understand

and predict. We identify three intrinsic limitations to progress in landscape ecology, and

ecology in general: (1) the problem of coarse-graining, or how to aggregate fine-scale

information to larger scales in a statistically unbiased manner; (2) the middle-number

problem, which describes systems with elements that are too few and too varied to

be amenable to global averaging, but too numerous and varied to be computationally

tractable; and (3) non-stationarity, in which modeled relationships or parameter choices

are valid in one environment but may not hold when projected onto future environments,

such as a warming climate. Modeling processes and interactions at the landscape

scale, including future states of biological communities and their interactions with each

other and with processes such as landscape fire, requires quantitative metrics and

algorithms that minimize error propagation across scales. We illustrate these challenges

with examples drawn from the context of landscape ecology and wildfire, and review

recent progress and paths to developing scaling laws in landscape ecology, and relatedly,

macroecology.We incorporate concepts of compression of state spaces from complexity

theory to suggest ways to overcome the problems presented by coarse-graining,

the middle-number domain, and non-stationarity.

Keywords: coarse-graining, complex systems, complexity, hierarchical organization, macroecology, middle-

number problem, non-stationarity, scaling relationships

INTRODUCTION

Landscapes and their associated ecosystems are often treated as “complex systems” (Allen and
Starr, 1982; Odum, 1983; Schreiber, 1990; Brown et al., 2002; Maurer, 2005; Moritz et al., 2005;
Falk et al., 2007; McKenzie and Kennedy, 2011; McKenzie and Perera, 2015; Littell et al., 2018).
Landscapes—and the ecological processes they support—share properties with other complex
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systems in that they contain large numbers of heterogeneous
components that interact in multiple ways, exhibit non-
linear dynamics, and have emergent properties (hereafter,
“emergence”). Ecological landscapes have feedbacks and
interactions across scales, and show scale dependence, whether
they appear to be simple or complex (Wu and David, 2002;
Figure 1). Indeed, properties such as scale dependence and
emergence are not simply features that complex systems share;
they are diagnostic attributes of them.

Although “complex” and “complicated” are often used
interchangeably in the vernacular, complex systems have
a number of important properties that go beyond mere
complication. Various definitions for complexity have been
proposed in different contexts (Kolmogorov, 1963; Gell-Mann
and Lloyd, 1996; Bialek et al., 2001; Ladyman et al., 2013), but
in general, more complex systems require more information to
describe any given state of that system (Table 1 defines and
explains bolded terms). Models of a complex system may also
be complex (Kolmogorov, 1963; Edmonds, 2000), or have simple
rules generating complexity, as in the case of fractals; and
model complexity is sometimes used as an overall measure of
relative complexity. In these ways, complexity and information
theory (Shannon, 1948) are fundamentally linked. Complexity
is sometimes associated with the physical entropy, rather than
information entropy of a system (Figure 2), and quantitative
relationships between complexity and both types of entropy have
been proposed (Wolpert, 2013).

As landscape ecology continues to develop as a field, it will
be productive to engage the knowledge and terminology that
have been developed in complexity science to define avenues
of progress. In this paper, we approach landscapes as complex
systems, and give examples of phenomena associated with
landscape-level complexity that are challenges to defining models
that cross scales of patterns and processes. We do not address
complexity per se, which is itself a subject of much theoretical
work (see Gell-Mann and Lloyd, 1996). Instead, we focus on
three features of complexity that are intrinsic limitations, or
challenges, to progress in landscape ecology. These features are:
(1) coarse-graining, or how to optimally aggregate fine-scale
processes to larger scales in a robust manner that minimizes
error (Levitt and Warshel, 1975; Turner et al., 1989; Gorban,
2006); (2) the middle-number problem, which affects systems
with enough elements to be computationally intractable, but
with elements that are too few or too varied to be amenable
to global averaging (Weinberg, 1975; O’Neill et al., 1986; Kay
and Schneider, 1995; McKenzie et al., 2011a); and (3) non-

stationarity, which refers to relationships or parameter choices
that are valid in one environment in one domain (such as species
distribution models), that no longer hold when projected onto
other environments (Cooper et al., 2014), such as future scenarios
of altered climate (Turco et al., 2018; Yates et al., 2018). Even with
expected ongoing improvements in modeling, data collection,
and data processing, these limitations are less tractable than
other types of ecological modeling problems, such asmissing data
or variables. These limitations therefore represent underlying
conceptual challenges in the field of landscape ecology. We
describe different conceptual approaches that have been applied
to modeling of scaling and complexity for landscapes, review

their limitations and potential, and suggest potentially fruitful
directions for future research in landscape ecology.

PHENOMENA ASSOCIATED WITH
COMPLEX LANDSCAPES

The study of landscapes, disturbance processes and disturbance
regimes, and anthropogenic forcing of climate change occupies
a domain in parameter space in which phenomena and the
models that describe them become “complex” (Kolmogorov,
1963; Edmonds, 2000). When a system is described as “complex,”
it means that observed phenomena are intrinsically difficult to
model due to the dependencies or interactions between their
parts (which has been referred to as “bottom-up” control on
outcomes and system variables) or between a given system
and its environment (also known as “top-down” controls on
relationships among outcomes and system variables) (Reuter
et al., 2010). Complex systems such as landscapes or general
ecological systems have characteristics such as non-linearity,
scale dependence, and emergence that make physical and
ecological phenomena difficult to parse into independent
variables, and prevent easy transference across space or time,
or to different physical scales (Wiens, 1989; Yates et al., 2018).
Simplifying assumptions about complex systems, such as not
accounting for basic physical constraints (e.g., mass balance) in
food web models, or modeling ecosystems as closed systems will
lead to unrealistic results (Loreau and Holt, 2004).

In a complex system, emergent dynamics are not explained
completely by simple reducible components, future states of
the system may be deterministic and chaotic, or may contain
stochastic components, and causal mechanisms are challenging
to identify because any given component can act as both a driver
and a response due to feedback mechanisms. Furthermore, the
issue of prediction in complex systems poses a major challenge,
because many future outcomes are possible, and these systems
have high sensitivity to initial states of the system. The global
climate system is a well-known example of a complex system
with these properties. Because outcomes will be sensitive to initial
conditions and may not be entirely deterministic, predictions
about emergent behavior will never be perfectly accurate, even
with increasing amounts of data and better computational
resources (e.g., Lorenz, 1963; Figure 2). However, despite these
limitations, reliable predictions are possible over short time
horizons and for well-delimited questions where appropriate
empirical data are available.

Landscape ecology, and particularly issues related to wildfire
(a major focus of this manuscript), exemplifies many of these
properties of complex systems. For example, in landscape fire,
we often study the interplay and feedbacks between large-
scale, top-down drivers of wildfire, such as climate and human
land-use (Gill and Taylor, 2009), and more mechanistic and
smaller-scale bottom-up drivers, such as ignitions, fuel patterns,
and local topography (Falk et al., 2011; McKenzie et al.,
2011b; Parks et al., 2012). Landscape ecology seeks to describe
the dynamic relationships between ecological patterns and
processes across spatial scales, from plot or forest-stand level
to watersheds, from local regions to ecosections, or globally.
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FIGURE 1 | Landscapes vary in complexity. Panel (A) shows a southern Arizona grassland at Las Cienegas National Conservation Area, illustrating a landscape with

low taxonomic diversity, plant functional trait diversity, and topographic complexity. Panel (B) by comparison, has higher complexity, with a clear legacy of disturbance

by wildfire, high plant functional diversity and topographic complexity, and more interactions among a higher number of species. Photo from Mount Graham, in the

Pinaleño Mountains of Arizona. Ecosystems and ecology are shaped dynamically by bottom-up factors such as local topography, spatial clustering of resources, and

stochastic events such as ignitions, as well as top-down processes and controls such as temperature, precipitation, and other climatic factors. Disturbances such as

wildfire and insect outbreaks are influenced by these factors and others, including phylogenetic history of organisms and their disturbance adaptations, physical

structure and demography of organisms, and landscape history. However, knowing all of this information perfectly is not sufficient to predict fire behavior, initial ignition

points, or extent of insect-caused mortality, because the features of emergent phenomena (such as disturbance regimes) are highly sensitive to initial conditions and

may not be deterministic. Photo credits: E.A. Newman.

Properties common to all complex systems, including self-
organization, non-linearity, feedbacks, and robustness (including
lack of central control) are reviewed in Ladyman et al. (2013) and
elsewhere (Reuter et al., 2010). In studying the landscape ecology
of wildfire, complexity is particularly expressed as emergence
(section Emergence), landscape memory (section Landscape
Memory), landscape resistance (section Landscape Resistance),
and contagion (section Contagion). As a consequence, landscape
fire ecologists inevitably confront modeling complexity, and
must grapple with these problems through choice of variables,
scale, and delimitation of a system that lacks closed boundaries.

Emergence
Emergence refers to new patterns, processes, or structures that
appear at higher levels of organization in the observation of
phenomena that are not present at lower levels of organization.
Emergent phenomena are the products of causal mechanisms
at lower levels of organization, but they are expressed primarily
in behavior of high-order components. For example, many
individual mechanical parts of a watch, when organized correctly,
can track time together, but the individual parts cannot do
this by themselves. Similarly, the functioning of social insect
colonies results from the actions of individual worker insects with
different tasks, and vehicle traffic patterns are the emergent result
of individual drivers’ choices about travel. The property of life in
organisms is itself an emergent property of the organization of
molecules and biochemical pathways. Emergent processes must
be consistent with finer-scale laws and cannot violate them; for
example, biological processes have independent dynamics not
fully explained by the laws of physics, but they are nonetheless
subject to them.

Many phenomena of landscapes result from emergence,
including community-level structure and function, disturbance

regimes, physiognomy of vegetation (forested landscapes vs.
savannas, for example) and patch formation and dynamics
(White and Pickett, 1985; Wu and Loucks, 1995; Bormann
and Likens, 2012). Landscape patch patterns are often a legacy
of many disturbance events (Cuddington, 2011; Figure 3).
Landscape patches are identifiably distinct areas of any size in
the spatial pattern of a landscape, such as the mosaic of burned
and unburned areas in a large landscape wildfire. Burn-severity
patches are the emergent result of the landscape distribution
of fuels and fuel conditions, individual plant susceptibility to
heat damage to living tissues, topographic influences on fire
spread, fine-scale patterns of wind, and combustion physics at
the submeter scale. The size distribution and spatial structure
of the post-fire patches are primary drivers of finer-scale
landscape-ecological processes such as tree regeneration, which
is constrained by seed availability and suitable recruitment
environment, and future fire spread, which can either be
constrained or accelerated by fuel availability (Collins et al.,
2017; Davis et al., 2019). Such outcomes have led to the ideas
of downward causation (Campbell, 1974), in which processes
at lower levels (here regeneration and fire spread) appear to
be responding to emergent forcings, and contextual emergence
(Atmanspacher and beim Graben, 2009), or how contingencies at
more complex, higher levels of description provide the “context”
for outcomes at lower levels (Flack, 2017).

Landscape Memory
Landscape memory or ecological memory, is a generic term for
the legacies of landscape process and pattern, including their
longevity and the strength of their influence on current landscape
dynamics (Peterson, 2002; Turner, 2005; Johnstone et al., 2016).
It also includes concepts of legacy effects of prior disturbances
and use of the landscape (Cuddington, 2011). Johnstone et al.
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TABLE 1 | Common terms in complexity science, as related to landscape complexity.

Term Explanation

Coarse-graining Any method for aggregating finer-scale processes or patterns to larger-scale summaries.

Emergence New patterns, processes, or structures that appear at higher levels of organization in the observation of phenomena

that are not present at lower levels of organization. Emergence of patterns in data is produced by coarse-graining.

Fractal A geometric relationship or mathematical curve that can be characterized by a fractional dimension. Fractals may or

may not be strictly self-similar, in which key elements will appear exactly the same when viewed at multiple scales.

Hierarchical organization A multi-level structure of entities (e.g., ecosystems or landscapes) in which higher-level structures act as constraints on

those below them, and lower-level structures act as forcings on those above them.

Information entropy Information entropy is a way of quantifying how much uncertainty there is in associating with a particular outcome with

an underlying probability distribution (Shannon, 1948).

Lacunarity An algorithmic way of characterizing the spatial configuration of gaps in the dominant components of a spatial pattern

(such as asymmetry or size variation of gaps). Lacunarity relies on a box-counting procedure and the results of the

analysis are therefore dependent on the scale chosen. Lacunarity analyses that produce power-law type relationships

are indicative of power-law (fractal) properties.

Middle-number problem Any analysis or computation for which the individual elements are too numerous to be treated singly, but too varied to

be characterized sufficiently by statistical summaries such as averages.

Non-stationarity Formally, this is a property of any stochastic process whose moments are different if sampled at different points in the

process. More broadly, and as we use it here, it refers to the defining parameters of a process or a quantitative

relationship being non-constant over space or time. An example is the coefficients of a regression fit, which may vary

with new predictor and response variables.

NP-hard problems Non-deterministic polynomial time, or NP, problems are those for which the time taken to solve them increases

exponentially (i.e., not in polynomial time) with the number of instances. NP problems belong to a complexity class of

their own. NP hard problems contain all the computational problems whose difficulty has the lower bound of at least as

hard as the hardest problems that are “in NP.” An example is the famous “Traveling Salesman” problem, whose

computational time increases exponentially with the number of cities visited. NP problems are peculiar, however, in that

if a specific solution is proposed, it can be checked for accuracy in polynomial time.

Parameter space The domain of values in which includes all possible combinations of all variables or parameters in any given

mathematical model. This domain can be represented as a multi-dimensional space. Realized values of the parameter

space will often be only a subset of the possible combinations available. This concept is distinct from phase space,

which describes only the possible initial conditions of the system.

Physical entropy A statistical measure of the disorder in a physical system. The more likely a physical state is for a given system, the

higher the physical entropy associated with that state is. This concept is distinct from information entropy, but shares

mathematical similarities.

Self-organization A process in which spontaneous order arises from a heterogeneous system, in which elements of a system interact in

a way that increases their structure or complexity. Self-organization refers to more than just the formation of patterns

(and the term may be overused in the ecological literature to characterize patterns). True self-organization requires a

repeatable cumulative process; for example, an “auto-catalytic set” of molecules whose repeated interactions build

more complex structures (Kauffman, 1986). There are few true cases of self-organization in landscape ecology

(McKenzie and Kennedy, 2012), with the possible exception of the formation of termite mounds, fairy circles, and mima

mounds (e.g., Griffon et al., 2015).

State The condition of a system at a particular moment or time, as described by all of the parameters that contain

information about that system. The state of a system does not contain information about rates, or about previous

states of that system. A snapshot will produce an estimate of a state, whereas at least two measurements are needed

for a rate. States of a system can be very difficult to estimate.

Tractable (i.e., computationally tractable) Informally, tractable problems are those which can be solved. More technically, “computationally tractable” problems

are solvable in exponential time, rather that polynomial time. That is, tractable problems are not NP-hard problems.

When fine-scale calculations are intractable, coarse-graining may sometimes be used to lower the complexity of the

problem from NP to not NP.

These terms are used throughout this paper (appearing in bold) and are discussed in more detail here.

(2016) decompose ecological memory into two forms of legacies:
informational, which derives from species life-history traits and
adaptive potential; and material, which encompasses physical
legacies such as soil and seed banks. In the context of fire regimes,
landscape memory can be short-lived and “ephemeral”; or long-
lived and “persistent,” depending on the frequency and severity
of disturbances (van Mantgem et al., 2018). A grassland with
frequent fire and rapid regrowth may have a relatively short-
term landscape memory for any particular fire event, whereas
the legacy of wildfire in a forest with long-lived tree species may

persist for multiple centuries (Figure 3). McKenzie et al. (2011b)
propose a spatio-temporal domain of landscape memory as a
function of scalable elements of fire regimes (section Energy and
Regulation Across Scales).

In wildland fire, the legacy of individual fire events and
the properties of the dominant plant community form a
dynamic system in space and time. For example, the behavior
of a wildfire (rate of spread, flame length, heat output
per unit area and time) is conditioned at each moment
of combustion by multiple properties of topography (slope,
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FIGURE 2 | Schematic relationship between entropy and complexity. Entropy

increases monotonically with increasing scales of physical systems, whereas

complexity increases from (1) the region of fundamental physical models, (2) to

the “middle-number domain,” but then decreases (3) as large systems are

described adequately by aggregate properties. In region (1), models are

deterministic and exactly solvable. In region (2), complex behavior of the

system is controlled by interacting top-down and bottom-up processes, and

models therefore will not provide perfect predictions of data. In region (3),

statistics are highly aggregated for large numbers of interacting elements, and

general laws emerge (for example, the Ideal Gas Law, the species area

relationship in macroecology, or annual wildfire burned area at subcontinental

scales).

FIGURE 3 | Relationships between landscape memory and scales of time (T)

and space (S) of landscape disturbances. The “landscape memory” of a

disturbance decreases as the ratio of disturbance interval to recovery interval

increases, and the ratio of disturbance size to patch size of the affected

landscape increases. Revised, with permission, from McKenzie et al. (2011b).

aspect, topographic position), weather (wind direction, air
temperature and humidity, precipitation, ignition sources such
as lightning), and vegetation (woody and herbaceous biomass,

three-dimensional spatial distribution, water content of live and
dead fuels). Fire behavior interacts with species’ life-history traits
and effects on soils to constrain individual survivorship and
mortality, the primary metrics of fire severity (Keeley, 2009).
Plant condition and prior fire exposure also influences post-fire
mortality (van Mantgem et al., 2013, 2018).

The behavior and effects of wildfire then set the stage for
post-fire ecological and hydrologic processes. Soil stability and
permeability strongly regulate the speed with which vegetation
can become re-established; severely burned hydrophobic soils
take longer to become plant-suitable, and some plant guilds
may be excluded initially by soil properties alone. The landscape
mosaic of burn-severity patches and residual vegetation governs
the post-fire trajectory, especially in large (>103 ha) patches with
few or no surviving trees. These areas must be recolonized by
dispersing seeds from relict tree islands or adjacent surviving
trees, which is a strongly scale-regulated process because the
effective seed dispersal radius of many species is 250m or
less, and successful seedling establishment can be limited by
the availability of safe sites and suitable climate (Stevens-
Rumann and Morgan, 2016; Davis et al., 2019; Law et al., 2019).
Recolonization of large high-severity patches can take decades or
even centuries, leaving a persistent legacy of plant age classes,
forest physiognomy, and species distributions that create the
conditions that will regulate the next fire event (Collins et al.,
2009, 2017).

Landscape Resistance
Landscape resistance is a spatially structured characteristic of
landscapes, quantifying resistance to movement with respect to
a particular agent or process. Typically, this concept is applied
to animal movement (Keeley et al., 2016), but it can also be
applied to disturbances. In the former, it is often a function
of variation in habitat suitability or topography; with fire, it
is a function of barriers or pathways to fire spread, such as
steep topography or rivers and other non-flammable elements.
Landscape resistance controls the optimal paths of fire spread
and the minimum travel time of a disturbance between locations,
primarily through the influence of topography and fuels over
landscape space (Finney, 2002). For example, Conver et al. (2018)
mapped the most parsimonious fire spread pathways in a forest-
grassland ecotone in northern New Mexico, and showed that fire
followed pathways of optimal fuel mass, moisture, and tree cover,
reflecting the physics of a spreading fire. The inverse of resistance
is connectivity, which is a combined effect of various landscape
properties that facilitates the flow ofmass or energy, and is related
to contagion. Resistance (connectivity) is an emergent landscape
property resulting from the condition and spatial distribution of
large number of individual plants, as well as their associated soils
and topographic position.

Contagion
Contagion is a property of disturbances that propagate within
a conducive medium. Contagion requires two elements:
connectivity and inertia (or “momentum”). Connectivity allows
the spread of a disturbance from one part of the medium to
another, whereas inertia represents the ability of the disturbance
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to overcome some threshold and be passed from one unit to
another. Without enough inertia or momentum, the contagion
will eventually end; but with enough momentum, a contagious
disturbance will “percolate” and affect the majority of the
elements of the community (Balcan and Vespignani, 2011).
Contagion is sometimes modeled as connectivity of networks,
with the nodes in a network representing actors in the network,
and edges representing the connections between them as the
specific interaction being modeled. Nodes may be species,
individuals, or locations; edges may represent disease or bark
beetle outbreaks. For example, infectious disease, such as root
rot in trees, is a contagious disturbance that be modeled as
an interaction network (Delmas et al., 2019). The two nodes
representing hosts or potential hosts of the disease would have
one edge between them, representing an interaction of passing
an infectious agent, if one party has infected another. Inertia
in this case may represent the disease having to overcome a
host’s immune response. Networks may also be modeled with
latency, to mimic dynamics and time-dependence of infection
and spread.

Contagion can alternately be modeled without the network
paradigm (Peterson, 2002). For example, wildfire spreads
through the medium of flammable vegetation and must cross
the threshold of ignition temperatures to initiate fuel pre-heating
and pyrolysis, which ultimately set up the chain reaction that
allows fire to spread from one flammable element to another in
space and time. Similarly, insect outbreaks propagate through
vulnerable host species of the correct age or size, overcoming
the defensive mechanisms of trees to make use of the individual
tree. In these cases, contagion is often modeled as a function
of proximity of one grid cell, representing either an area
or an agent, to another. Such disturbances are “contagious”
disturbances, whereas hurricanes, tornadoes, and other storms
are not.

With wildfire, both contagion and landscape resistance are
relevant primarily within at medium spatial and temporal scales
that have high complexity (region 2 in Figure 2), ranging from
submeter scales to tens of kilometers. For example, models of fire
spread at the degree or half-degree grid spacing of global climate
models are extrapolated outside the domain of contagion, as the
spatial variation that controls fire spread is much more finely
scaled (McKenzie et al., 2014) and the physical process of spread,
coarse-grained to that level, is unrealistic compared to fine-scale
physical models of combustion (Parsons et al., 2017). This middle
domain of spatial scales has the greatest complexity (section The
Middle-Number Problem).

CHALLENGES TO PROGRESS IN
MODELING COMPLEX LANDSCAPES

Coarse-Graining
Coarse-graining refers to processes in both the real world and
in scientific methodology, that is, both physical and statistical
processes. In both cases, coarse-graining is defined as the
way in which processes, structures, and states aggregate and
are combined into fewer larger entities to reduce modeling

FIGURE 4 | Coarse-graining leads to useful metrics at the largest scales, but

reduces the amount of event-specific information retained in each step of

statistical aggregation. In this schematic example, coarse-graining applies to

individual fires, where information such as location, perimeter, point of ignition,

severity, topography, local temperatures, and other information are known.

One first step of coarse-graining produces a fire-size distribution, where

information on number of fires and area burned are known for some time

period. At this level of coarse-graining, trends in aggregate properties of

multiple fires are detectable, but still scale-dependent. A fire-size distribution

emerges from a second step in coarse-graining, which maintains information

about area burned for comparison over large time scales or large regions, but

loses information about number of fires. The observed pattern in this second

step will also depend on the spatial extent of the data. Other forms of

coarse-graining, such as those employed in macroecology, will result in other

emergent properties, some of which may be independent of scale.

complexity (Levitt and Warshel, 1975; Gorban, 2006). In
the physical world, coarse-graining produces emergence
(section Landscape Resistance), as physical systems combine
progressively, for example, from atoms, into molecular, chemical,
biological, and then ecological systems. At each level, processes
and patterns are observable that cannot necessarily be inferred
from those below or above. Classic examples in the physical
world includes the coarse-graining of statistical mechanics to
classical thermodynamics (Jaynes, 1957), and the development of
global-scale climate dynamic general circulation models (Meehl,
1990). In ecology, classic examples are the coarse-graining of
individuals to populations, species to communities, and the
combination of biological organisms interacting with abiotic
conditions to well-defined ecosystems. In ecological modeling
specifically, we aggregate discrete processes like predation to
population cycles, sub-daily processes like photosynthesis to
annual productivity, and fine-scale processes such as fire and
bark-beetle behavior to landscape modeling of disturbance. This
results in the emergence of aggregate patterns (of patch sizes, for
example; Povak et al., 2018), that are scale specific (Figure 4).

Many coarse-graining methods in the physical sciences draw
on the availability of state variables at fine and coarse scales, i.e.,
microstates and macrostates. For these cases, coarse-graining has
been termed “state-space compression” (Wolpert et al., 2017)
and produces canonical algorithms to optimize its accuracy and
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FIGURE 5 | A roadmap for a rigorous approach to coarse-graining in complex systems, from Wolpert et al. (2017). The key to optimized coarse-graining is a

“compression function,” here designated as π(Y|X), which translates microstates (fine-scale information X) into macrostates (broad-scale or “landscape scale”

information Y). To ensure that the choice of compression function is optimal, we model the time evolution of the macrostates identified by π(Y|X) in parallel with

evolution of the original microstates. Some combination of π(Y|X), the computed macrostates of the system “Y,” the time evolution of macrostates by a stochastic

process ϕ, and the mapping of macrostates onto observables by some empirical relationship ρ will be optimized by a multivariate objective function. Our focus here is

on π(Y|X), to address the coarse-graining challenge, for which some choices include simple adding up, regression, simulation, and maximization of information entropy.

minimize computational costs. Wolpert et al. (2017) provide a
roadmap for this (Figure 5), which we draw on below.

Building models to analyze data requires two forms of scaling:
choosing the grain size of the data, which is the coarse-graining
procedure, and then choosing an extent that the data represent.
Grain and extent are two primary properties of scale (Turner
et al., 1989; Palmer and White, 1994; Wu, 2004). Models of
a process or structure are usually specified at a scale that is
optimal, or at least convenient, for analysis that is informative
and tractable to solve a particular problem (Levin, 1992). For
example, in GIS work, units of data may be observations and
climatic variables may be aggregated to a grain size of 1 km2, and
analyzed across an extent of a watershed, or some other landscape
unit where the extent is much larger than the grain size. As noted
by Turner et al. (1989), tracking the loss of information with
changes in grain size and extent of data explicitly may be key to
predicting and correcting for that lost information. Investigating
scaling relationships in this manner may make it possible to
correct for statistical biases introduced by coarse-graining.

We can aggregate measurements of finer-scale processes
and models to summarize measures of central tendency and
higher moments (such as variance) of their distribution. We
may also need to transform variables qualitatively while trying
to minimize error propagation across scales. With fire, for
example, heat transfer in physics-based models at sub-meter
scale (Mell et al., 2007) becomes fireline intensity at the fire
front at the meter scale, producing fire spread that depends
on external kinetic energy, such as from wind and solar
heating, and landscape connectivity at the scale of tens to
hundreds of meters. At even coarser scales in space and time,

we reach annual area burned, fire size distributions, and fire
regimes, whose nature and complexity are the domain of
landscape ecology.

In this sense, coarse-graining is a method that is used
to reduce modeling complexity by side-stepping the middle-
number problem, but the use of coarse-graining poses its
own challenges. In complex systems, coarse-graining is never
a perfect solution to the middle-number problem, because, as
demonstrated by Essex et al. (2007), “systematic modeling errors
might survive averaging over an ensemble of initial conditions,”
which can lead to the introduction of an unknown amount of
bias into any prediction, and to unpredictable “surprises.” These
surprises might consist of sudden state shifts (in the climate
system, for example) due to undetected internal dynamics.
However, in the case of mechanistic models using coarse-grained
variables, predictions that can be validated over short time
horizons or when models using these variables are transferred to
similar environments can also be used to judge the validity of that
model (Houlahan et al., 2017) (though the same may not be true
of entropy-based models; see Dewar, 2009).

With particular relevance to landscape ecology, challenges
imposed by coarse-graining include:

• Loss of important information. Physics is realized at sub-
millimeter to meter scales, and the processes of interest are
often non-linear rather than additive. In fire behavior, this is
a large source of uncertainty (Mell et al., 2007).

• Regression to the mean removes information about
heterogeneity, and may introduce statistical bias (Essex
et al., 2007). We lose measures of variability, and estimates of
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the mean, variance, and higher moments of the distributions
of random variables being measured. This is a particularly
difficult source of error when there is spatial or temporal
autocovariance (Kennedy and Prichard, 2017).

• Underrepresenting the influence of extreme events, because
aggregating controls variability (see Levin, 1992 on the
relationship between variance and window size). More
technically, because we are often forced to implement coarse-
grained processes stochastically, we can arrive at arbitrary
realizations that are difficult to validate against observations
(Lertzman and Fall, 1998; Deser et al., 2012).

The Middle-Number Problem
The middle-number problem refers to the domain of data
complexity in which neither local mechanistic models nor
generalized global relationships holds exactly, although both
local and global processes exert influence on observed patterns.
As we move from small numbers of objects or events (e.g.,
local datasets) to larger numbers (e.g., regional or global
datasets), we cross a zone of complexity known as the “middle-
number domain” (Figure 2). In this domain, systems contain
enough elements to be computationally intractable, but too
few elements, or elements that are too heterogeneous, to be
amenable to global averaging (Weaver, 1948; O’Neill et al.,
1986). The basic problem of predicting species richness in a
local region from larger averages falls into this category, as
richness may be known at the ecosystem scale, but controlled
by a huge variety of factors at smaller scales, ranging from
moisture availability and soil type, to the presence of predators
or pollution. Similarly, weather is famously hard to predict in
the long term, because of the small-scale factors that influence
it (Lorenz, 1963).

In the middle-number domain, fundamental physical models
that apply at fine scales are no longer adequate because the
systems are driven by both “lower-order” (mechanistic and
physical) and “higher-order” (context) processes. Thesemedium-
scale processes and heterogeneity prevent global models from
making completely accurate predictions over subsets of their
domains. This region is one in which self-organization occurs,
in which elements of a system interact in a way that increases
their structure or complexity, sometimes resulting in pattern
formation. Predictions about future states of a system, or
relationships between elements, are computationally intractable
in this region, in the sense that they may correspond to what are
known in computational complexity theory as NP-hard (Non-
deterministic Polynomial-time) problems (Papadimitriou, 2003).

A classic example of the middle number domain in
physics is “in between” statistical mechanics descriptions of
individual molecular motion, and classical thermodynamics,
which characterizes systems by their pressure, volume, and
temperature, which are averages of the properties of large
numbers of particles in motion. In ecological systems, individual
organisms are the analog of molecules and are described
by individual interactions and physiology models, whereas
regions or continents of ecosystems are the analog of aggregate
thermodynamics, and are well-described, for example, by

macroecology (section Macroecology). In between, on the
landscape, or watershed, there are too many elements to
constrain individually, but not enough (with manageable
heterogeneity and variance) to model with high precision in
the aggregate.

Simplifying assumptions may reduce computational
complexity, but these assumptions can backfire. Even with
the best possible information, uncertainty and bias can survive
averaging and aggregation through long-term forecasting (a
modeling error that it may or may not be possible to detect),
leading to unpredictable state changes (Essex et al., 2007). In a
fascinating report that takes on complexity issues in ecological
prediction without a specific system, Cooper et al. (2014) show
that excluded variables and interactions (or small perturbations
within the training region) can lead to arbitrarily large forecasting
errors in complex systems outside the training domain. This
reinforces how important the selection of appropriate models
is, and in the case of mechanistic models, correct predictions
provide a necessary form of validation (Houlahan et al.,
2017). This logic can be extended to better understand which
environments are suitable for model transfer, rather than
approaching the question from the side of which model may best
be used for all environments and time periods.

In landscape fire, we extend the ideas of McKenzie et al.
(2011a), from the scale at which the middle-number domain
begins (i.e., smallest spatial scale or smallest number of
interacting elements), to scales at which explicitly spatial
interactions become both numerous and relevant. For example,
post-fire recovery is dependent on the interactions among
the individual-level processes of survivorship, reproduction,
and growth, and the equivalent interactions of competition,
mutualism, and dispersal. These individual-level processes
aggregate to produce the legacy of past fires, watershed-scale
topography, and the weather associated with the subject fire.
Analogously, the middle-number domain ends (largest spatial
scale) where connectivity, or contagion, and landscape resistance
cease to be important proximate controls on fire-scale processes.
For instance, our understanding of fire regimes at the scale of
ecosections (variable in size but at least 100s of square kilometers)
comes in terms of area burned and top-down climatic regulation
(e.g., Parisien and Moritz, 2009; Moritz et al., 2011; Littell et al.,
2018), which unlike fuel models, is no longer dependent on
the characteristics of individual organisms. We can predict fire
regimes (emergent properties of multiple events in space and
time) at the scale of ecosections, and fire behavior at scales of
centimeters to tens of meters, but when we try to follow how fires
initiate and spreads contagiously over large landscapes, we have
a coarse-graining problem, and a middle-number problem, up to
the limit of the extents of the largest fires. In theory, an error-free
coarse-graining would resolve the middle-number problem for
its specific case, but error propagation with increasing scale and
level of organization is an inherent challenge.

In summary, with reference to landscape ecology, the middle-
number problem can be characterized as the following:

• Outcomes are sensitive to many variables, each of which is
distributed non-uniformly in both time and space.
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• The relative importance of variables (drivers) changes
with scale. Lower- and higher-level processes change
in both strength and heterogeneity with the scale
being examined.

• We observe and measure what is emergent (observations
are the results of these interactions), but we may not
witness the process of the interactions themselves. More
specifically, we cannot compute the outcomes of fine-scale
mechanisms at large scales and temporal extents without
simplifying assumptions.

• Important outcomes, including those most relevant for
management and policy, are often desired within the
parameter space in which complexity is greatest, and where
variation occurs at multiple scales.

• Projections of models from one region of training (one
part of the middle-number domain) to another can lead to
unbounded, or arbitrarily large errors (Cooper et al., 2014).

Non-stationarity
Non-stationarity refers to the limitations of using models with
adjustable parameters to predict future states (Wolkovich et al.,
2014; McKenzie and Littell, 2017; Turco et al., 2018). These
include most empirical statistical models and many “process-
based” models: those that use mathematical relationships
involving parameters that have been estimated from data, even
when the model is said to represent a physical or biological
mechanism. In time series and spatial statistics, stationarity
is the property that the generating function for a stochastic
process is constant. This means that the underlying probability
distribution of an observable (a physical quantity that can be
measured), typically its mean or variance but also including
its autocorrelation function, is not spatially or temporally
dependent. When we model relationships using empirical data
from current and past observations, we estimate a particular
distribution (mean model and variance/covariance matrix) from
a discrete environmental domain, such as the relationship of tree
growth to soil moisture or the relationship of soil respiration
rates to temperature. When these empirical models are used
to project into the future, it is implicitly assumed that the
distributions are stationary. That is, the mean value (or model,
and associated variance/covariance matrix) we estimate currently
for the relationship among variables, e.g., a regression coefficient,
will be the same mean value (or model) in the future, or in a
different place.

In the context of landscape fire, stationarity is often implied
with use of the historical range of variation (HRV) in fire
regimes (Morgan et al., 1994; Keane et al., 2009). Stationarity
in the HRV sense implies stability over space and time in
the statistical distribution of a variable (such as fire frequency
or fire-size distribution), including central tendency, but each
of these variables may exceed its historical distribution when
the underlying drivers go outside their historical range (Elith
and Leathwick, 2009). A more robust definition of stationarity
is stability in relationships among variables, even when a
driving variable exceeds its historical range; for example, the
relationship between maximum annual temperature and annual
area burned at large scales. In the context of current and projected

environmental change, the best practice in statistical models is
to make predictions only within the domain of the data used to
estimate the model; where the driver is projected to fall outside
the historical envelope, statistical models may be unreliable
(McKenzie and Littell, 2017; Turco et al., 2018). In that case, other
types of models, such as purely mechanistic models, or models
that rely on the functional traits of organisms (Dobrowski et al.,
2011; McDowell and Allen, 2015) must be employed.

By definition, we cannot expect stationarity to hold uniformly
in the context of current and near-future climate change, where
the distributions of climatic drivers of ecological dynamics are
and will be departing from their historical means and ranges. For
example, the strength and direction of the correlation between
annual area burned and water-balance deficit varies across the
western USA, depending on the distribution of the water deficit
(McKenzie and Littell, 2017; Littell et al., 2018). In ecophysiology,
the strength of climate-growth relationships of trees (e.g., the
correlation between annual increment and precipitation) varies
over time and broader climatic cycles, also depending on the
distribution of the climatic driver (Marcinkowski et al., 2015).
In both these cases, the adjustable parameters, or specifically the
regression coefficients in a statistical model, vary over the spatial
domain of the data, and will certainly also vary over time in a
non-constant climate.

In summary, with reference to landscape ecology, the non-
stationarity problem is that:

• Most mathematical relationships used in models include
adjustable parameters.

• In empirical studies, these parameters, and the relationships
between the parameters, change across both space and time
(Dobrowski et al., 2011).

• Projections for the future that rely on models fit from
observations therefore are fragile to expected changes in these
parameters (Yates et al., 2018).

• Important examples for fire, relevant to management and
policy, are statistical relationships between climatic drivers
and fire effects at the level of individual organisms and
associated soils, with implications for aggregate properties
such as annual area burned (Littell et al., 2018), fire-size
distributions (Reed and McKelvey, 2002), occurrence of
extreme events (Stavros et al., 2014), and spatial patterns of
fire severity (Cansler and McKenzie, 2014).

Interactions Among These Challenges
These challenges do not arise in isolation; interactions among
them will confound proposed solutions to one or more of
the challenges. For example, it has been argued that fully
mechanistic models should be a goal in landscape simulations
because they optimize adjustable parameters to be most able
to be projected into new environments (Keane et al., 2015).
In theory, fully mechanistic models avoid the non-stationarity
problem because the model will be perfectly transferable as long
as it includes all the mechanisms that affect the observables (see
Gustafson, 2013 for a landscape modeling example). There are
two problems with this claim: first, many so-called “mechanistic”
mathematical models include parameters that are fitted from
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data that do not sample the full range of conditions and
therefore cannot determine exact mechanisms. Second and
perhapsmore importantly, extrapolating fine-scale computations
(which mechanistic models invariably are, e.g., physics-based
fire models) to larger scales of interest runs into the middle-
number problem. Computations become intractable (because
they are NP-hard; for a useful discussion of this topic relevant
to biology; see Felsenstein, 2004), and the demands of data
and associated data input uncertainty increase (Kennedy and
McKenzie, 2017). A solution to this middle-number problem
therefore may lie in coarse-graining both model processes and
associated input data in a way that minimizes error, but this
encounters problems imposed by non-stationarity. In this sense,
solving the middle number problem may be possible only in
stationary systems; solving problems in non-stationary systems
will require inventive applications of coarse-graining to avoid the
middle-number problem. In landscape ecology, joint solutions
to these challenges are uncharted territory. Below, we describe
some potential paths to solutions that have particular relevance
to cross-scale analysis of landscapes as complex systems.

APPROACHES TO UNDERSTANDING
COMPLEX LANDSCAPE PHENOMENA
ACROSS SCALES

Models in landscape ecology that work well across scales,
solving the above challenges, will involve quantitative scaling
laws that combine top-down and bottom-up perspectives.
Multiple disciplines, such as physics, biology, and ecology, have
incorporated quantitative scaling relationships in an attempt
to model phenomena that cross physical scales. In landscape
ecology, the following concepts and paradigms show promise
for solving the coarse-graining, middle-number, and non-
stationarity problems. The first, Hierarchical Patch Dynamics,
involves hierarchical organization applied to discrete spatial
scales thought to be most important, whereas the next
three (lacunarity, Energy and Regulation across Scales, and
Macroecology) invoke quantitative scaling laws that are or are
nearly continuous in large systems.

Hierarchical Patch Dynamics
Hierarchical Patch Dynamics (HPD) is a proposed paradigm
shift, or new framework, for ecology, espoused by Wu and
Loucks (1995). Its goal is to resolve problems of scale and
non-equilibrium in ecological systems. This idea is similar to
contextual emergence, in the sense that the framework contains
levels of complexity, in which larger scales are more complex
than the smaller scale items that they contain. In HPD, patches
of ecosystems interact at multiple scales, and hierarchy theory
provides a means for quantifying and ordering phenomena at
multiple scales.

The major elements of HPD (Wu and Loucks, 1995) are that
(1) Ecological systems can be modeled as nested discontinuous
hierarchies of patch mosaics (see also Holling, 1992). Patches are
structural and functional units, and they are nested, meaning
larger patches contain smaller ones. A defining assumption is

that patches can be nested perfectly, and that the highest level
of organization is not contained by any of the smaller ones.
(2) System dynamics are a composite of patch dynamics. This
simplifying assumption states that individual patch changes can
be aggregated meaningfully such that overall system dynamics
are recoverable from their composite. (3) The pattern-process
scale perspective. This restates the landscape ecology paradigm
that pattern and process interact mutually and recursively at
multiple scales. (4) Non-equilibrium. Transient dynamics can
dominate at small scales, but this leads to: (5) Incorporation and
metastability. With the etymological meaning of “incorporate,”
fine-scale transient dynamics are literally swallowed up by
stabilizing forces at “meta” scales (implying the middle-number
domain), whereas at very broad scales stochastic processes
dominate again. Note that this is opposite to our view of the
middle-number problem and its domain as being the least stable,
at least in the sense of predictability.

A limitation of this paradigm is that it assumes that
coarse-graining is a straightforward outcome of aggregating the
dynamics of nested patches. We have seen (section Landscape
Resistance) that emergent properties at coarser scales are
not necessarily direct outcomes of fine-scale dynamics, and
that additive processes are only a subset of coarse-graining,
whether observed or modeled (Wolpert et al., 2017). This
conceptual framing does not directly map onto a unique way to
aggregate, or coarse-grain the middle number domain. Although
some problems of the middle number domain may be solved
through this aggregation of patches (Wu and Loucks, 1995), the
framework of HPD may simply not be mathematically rigorous
enough to solve all problems associated with the middle number
domain; indeed, not all such problems may be solvable. It is
now known that uncertainty and bias can survive averaging and
aggregation through long-term forecasting (amodeling error that
it may or may not be possible to detect) (Essex et al., 2007), and
that small perturbations or “unimportant” missing variables in a
training region of a model can lead to predictions where there
is no meaningful bound that can be placed on the error of the
model outside of its original training data (Cooper et al., 2014).
That said, HPD does offer an important framework for modeling
discrete scales in landscape dynamics, especially in the context of
non-equilibrium states.

To address our three challenges, HPD would, in theory,
assume that discrete scales in space are metastable, extending
upward through the middle-number domain. These scales are
the domain of ecosystem dynamics, sensu Holling (1992). There
is an implicit link to hierarchy theory (O’Neill et al., 1986), in
which cross-scale dynamics are clearly defined and directional.
This means that processes increasing in scale are driving, whereas
processes decreasing in scale are constraining. In theory, this
hierarchical structure entails the optimal degree of coarse-
graining. Analogously, non-stationary dynamics are subsumed
into the hierarchical patch structure.

Lacunarity
Lacunarity is way of characterizing the spatial configuration
of points or other components of a spatial pattern, such as
patches or pixels. The lacunarity algorithm is a “box counting”
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procedure that specifies a grain size over a region of interest,
and quantifies the presence or absence of a phenomenon in
each “box” (Allain and Cloitre, 1991). Specifically, lacunarity
is a dimensionless metric that estimates the roughness of a
pattern as a fractal dimension, and identifies gaps in the overall
patterns (Plotnick et al., 1996). Highly heterogeneous patterns
with low rotational and translational symmetry have high
lacunarity (and high complexity), whereas mostly homogeneous
patterns that have high rotational and translational similarity
are considered to have low lacunarity (and low complexity;
Karperien, 2013). With this metric, we can obtain a form of the
variance-to-mean ratio that is calculable and directly comparable
across scales. Lacunarity estimates may complement estimates of
fractal dimension, but provide further information in that the
shape of lacunarity curves (with increasing window size) can
illustrate departures from a self-similar or isometric character at
identifiable scales (Dale, 2000).

Lacunarity is a static property of patterns, and is generally
used to quantify properties of self-similar fractal-like patterns
to determine the fractal power that describes them. Lacunarity
has been adopted in landscape ecology for data sets that
are not necessarily self-similar, such as seedling counts along
transects and other two-dimensional patterns, like landscape
patches (Plotnick et al., 1993, 1996; Swetnam et al., 2015).
In landscape ecology, lacunarity can be seen as an aggregate
expression of processes, such as disturbance and competition,
that create landscape memory. With respect to landscape fire,
the lacunarity index at a broad scale is computed directly,
and consistently, from spatial patterns of fuels and topography.
This is demonstrated in Kennedy and McKenzie (2017), where
lacunarity is used to compare simulated and observed patterns
of fire spread in a forested landscape to evaluate a stochastic
fire model whose objective is to replicate fire-regime properties,
rather than individual fire perimeters. Lacunarity also captures
scale automatically through the specification of a grain size
and extent, which leads the way into investigations of spatial
heterogeneity and spatial statistics in landscapes (Wagner and
Fortin, 2005).

With reference to the three challenges we have posed,
lacunarity collapses scale-specific metrics into one that is
especially robust across scales, thereby using a form of coarse-
graining with minimal error. In theory, this avoids the
numerosity associated with the middle-number problem and
the need for adjustable parameters. An obvious limitation of
lacunarity is the reliance on one metric to capture what are often
noncommensurate aspects of complexity, which are measured
in different units (for example, landscape complexity associated
with succession and demography is measured in different
units than phylogenetic information). Whereas lacunarity can
adequately represent an aggregate of processes, it is not possible
to recover the ecological information lost in the aggregation
process, and it would be difficult to track error propagation
associated with this extreme level of coarse-graining.

Energy and Regulation Across Scales
Energy and Regulation across Scales (ERS) is a conceptual
framework for understanding contagious disturbance on

landscapes (McKenzie et al., 2011a), developed specifically
for modeling landscape fire. ERS aims to identify scaling
relationships that accomplish coarse-graining without some
of its most error-prone components: (1) aggregating elements
that have substantial uncertainty associated with them, and
(2) changing variables across scales with ad hoc methods. ERS
separates the important drivers of contagious disturbances
on landscapes into their fundamental elements, Energy, and
Regulation. With suitable metrics for each, they can be applied
across both spatial and temporal Scales in a way that minimizes
the coarse-graining errors associated with changes of variables.

Energy is the fundamental “currency” of wildland fire, in that
it can be measured and tracked across scales with no change of
variables. Although vegetation on a landscape is often described
in terms of stored mass or carbon, the fundamental nature of
wildfire reminds us that vegetation can also be described in terms
of its embodied energy. All biomass consists of both atomic
mass and molecular bond energy. The atomic constituents of
photosynthesis and carbon fixation (C, H, O) are organized
into more complex molecules with higher energy content. The
bond energy in these more complex molecules thus reflects
the net energy captured during photosynthesis and subsequent
carbohydrate synthesis. Energy storage on the landscape scale
is regulated by factors that govern net primary productivity
(Rasmussen et al., 2011; O’Connor et al., 2017).

Energy can be measured and calculated in the same units
(joules) at any scale. The cycling of kinetic and potential energy
(sensu Figure 1.4, McKenzie et al., 2011a) subsumes the variety
of ecological dynamics imputed to the “fire landscape,” including
fire behavior, fire effects, and vegetation succession. These latter
are fragile to changes in scales of measurement and modeling,
and have different units. Energy can be represented by a scalar
quantity, but in the landscape context it can be vectorized, for
example, as a vector field of wind containing a certain amount of
energy, that drives fire behavior.

Regulation is an umbrella concept representing constraints on
kinetic energy, and may be represented as a scalar, vector, or
even a tensor quantity. For example, humidity can be represented
as a scalar quantity, and will regulate combustion and fire
spread. Humidity could therefore be expressed theoretically in
units of reduced kinetic energy of the system. Another type
of regulation is anisotropic topographic complexity, made up
of a scalar element, representing a magnitude, and a tensor
element, incorporating direction and directional response to
interactions. If regulation can be represented as a dimensionless
and normalized scalar quantity, it could be robust to spatial
scaling. As a vector or tensor, the directional component may
be an additive quantity, scaling linearly with area. A scalable
representation of regulation in ERS will produce landscape
resistance, or reduce contagion. Its spatial variation will produce
lacunarity. Ideally, these complex attributes of the middle-
number domain can be realized with minimal error propagation
across scales.

As proposed, two problems need to be solved in order to
implement an ERS framework. First, Energy and Regulation need
to be reconciled in a way that is computationally tractable by
appropriate choices of the scales at which their interactions are
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calculated. The scaling laws that we seek will be “grounded”
at regions in scale space at which there is the most “action”
(sensu Holling, 1992). For example, in complex topography, the
obvious scales of variation of kinetic energy (e.g., wind), potential
energy (e.g., fuels for fire or hosts for insects), and the two
types of regulation will all be different. Second, the mathematical
representation of coarse-graining of some aspects of regulation
(e.g., topographic complexity) remains to be articulated so as
to avoid a middle-number problem (e.g., being overwhelmed
by numerosity).

ERS would, in theory, address all three of the fundamental
scaling challenges by (1) adoption of the two canonical
variables, Energy and Regulation, and (2) estimating the shape
of universal scaling laws, as in macroecology (Wilber et al.,
2015) by explicitly taking into account the scale of the processes
under consideration. Whether these scaling laws would be
“stationary” has not yet been addressed. It is likely that ERS
would need a “meta-stationary” framework to approximate
complex landscapes, where in the aggregate, landscapes would
have approximately stationary, non-ergodic realms that produce
aggregate patterns.

Macroecology
Macroecology is a subdiscipline of ecology that seeks to find and
be able to predict universal patterns and explicit scaling laws in
systems that are organized across multiple orders of magnitude
of space and time. Brown (1999) characterized macroecology as
“an approach to studying a certain class of complex ecological
systems” and “as a way of investigating the empirical patterns
and mechanistic processes by which the particulate components
of complex ecological systems generate emergent structures and
dynamics.” Macroecologists have long sought to explain and
predict patterns of biodiversity, including species richness over
area, abundances of species, and allometric scaling relationships
(West et al., 1997; Enquist et al., 1998; Niklas and Enquist, 2001).
By investigating patterns explicitly while controlling for the effect
of scale, macroecology becomes a form of statistical aggregation
that is a method of coarse-graining (Maurer, 2005; Storch et al.,
2008; Bertram et al., 2019). For patterns in ecosystems that
consider organisms and their physical characteristics, diversity,
and spatial distribution,macroecologymay offer themost reliable
coarse-graining approach, in that it side-steps themiddle number
problem (Figure 2) by not trying to model mechanisms that lead
to pattern formation at all scales; focusing instead on aggregate
properties of large numbers of elements. Often in ecology, these
elements are individuals, populations, or species. This idea of
macroecology as a meaningful form of statistical aggregation is
consistent with McGill’s proposed definition for macroecology
(McGill, 2019): “the study at the aggregate level of aggregate
ecological entities made up of large numbers of particles for the
purposes of pursuing generality.”

In attempting to characterize universal ecological patterns,
such as the species area relationship, the species abundance
distribution, and various metabolic relationships, some modern
forms of macroecology embrace the complex nature of
information underlying these patterns, and their predictions
are based on maximizing the information entropy of the

system. Information entropy is a way of quantifying the
uncertainty associated with a particular outcome drawn
from an underlying probability distribution (Shannon, 1948).
Maximizing information entropy (the maxent approach) is
the least biased way of determining an underlying probability
distribution, given known outcomes (Jaynes, 1957). This
approach has been applied to macroecological questions,
beginning with Shipley’s maxent (Shipley et al., 2006; Shipley,
2010). More recently, the Maximum Entropy Theory of Ecology
(METE) has used maxent in a constraint-based approach
to predicting interrelated macroecological metrics, which
requires information from the ecosystem in the form of state
variables (Harte, 2011; Harte and Newman, 2014; Brummer
and Newman, 2019). These state variables include energy
embodied in the organisms in communities being modeled
(Niklas and Enquist, 2001; Newman et al., 2014; Harte et al.,
2017; Bertram et al., 2019). Energy is therefore a uniting factor
among models, because it is irreducible and fundamental
to ecosystems. Macroecological models sometimes include
area (a 2-dimensional measure of the space being modeled),
which is also fundamental to landscape ecology models. The
potential to use macroecology in concert with other types of
landscape ecology models is obvious but not well-developed
(Newman et al., 2018).

Although various forms of macroecology are successful in
describing and predicting metrics at highest level of statistical
aggregation, not all ecological questions can be addressed
through this framework, including questions of fine-scale
processes and unusual dynamics. However, “failures” of general
macroecological patterns to describe particular data sets are
actually useful for identifying the scales at which mechanism
influences observed patterns (Wilber et al., 2017; Newman
et al., 2018). Constraint-based approaches, such as METE,
have the potential to reveal the scale at which mechanism
becomes important, and also which mechanisms matter at the
highest level of statistical aggregation. These approaches have
been applied successfully in testing mechanisms in disease
ecology (Wilber et al., 2017), and could be extended to
other systems.

Macroecological theory currently deals with all of the three
challenges posed above:

• Macroecological metrics can provide solutions to coarse-
graining and middle-number issues, because they can
contain explicit scaling laws (in the case of maxent-based
macroecology, these solutions are least-biased estimators of
the distributions in question).

• Macroecology relies on variables like area and
energy, that are fundamental to ecosystems, and
landscape models.

• Non-stationarity is not a problem in predictions of a single
state of the plot or ecosystem, because scaling parameters
and state variables are non-adjustable, but macroecology is
not yet a dynamic theory (i.e., it does not model changes
in ecological systems over time), and there have been
limited attempts to incorporate predictions of disturbed and
successional systems into the theory (Supp and Ernest, 2014;
Newman et al., 2018).
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CONCLUDING REMARKS

In this paper, we discuss key properties of landscape complexity.
We identify four phenomena of complex systems that
are common to ecological landscapes: emergence (section
Emergence), landscape memory (section Landscape Memory),
landscape resistance (section Landscape Resistance), and
contagion (section Contagion). We also review three intrinsic
problems associated with modeling complex systems, including
coarse-graining (section Coarse-graining), the middle number
problem (section The Middle-Number Problem), non-
stationarity (section Non-stationarity) and interactions
among these challenges (section Interactions Among these
Challenges). We discuss why these particular challenges and
their interactions need to be addressed in designing general
models of landscapes (Yates et al., 2018). We codify these
specific challenges as outstanding hard problems for scaling in
landscape ecology.

Complex biophysical systems present fundamental challenges
to ecological modeling and analysis. In order to make
reliable predictions with credible uncertainty bounds and
acceptable levels of precision for the complex problems of
environmental management and planning, we require methods
that simultaneously do two things. These are (1) coarse-graining
across scales without introduction of statistical bias and without
loss of relevant information, while also (2) contending with the
problems of non-stationarity and lack of transferability.

To avoid the middle-number problem we require a method
of coarse-graining that retains key information across scales, but
that adds as little additional information as possible (Jaynes,
1957). This also necessitates the identification of important
system metrics (e.g., Energy in the ERS system) for which scaling
laws are informative to those underlying dynamics (Gorban,
2006). When considering a coarse-graining method, summary
statistics applied to any quantity in a complex system should be
by default expected to be scale-dependent. Choosing a variable
that itself does not need to change over scales, such as energy
or information, may be a first step to simplifying the overall
complexity of a model, and being able to compare direction and
magnitude of statistical biases between models.

In general, a model that incorporates mechanisms (i.e., is
process-based) would be expected to be robust to problems of
non-stationarity, but a fully mechanistic cross-scale model is
not feasible for complex systems due to the middle-number
problem and associated coarse-graining challenges. Models used
to simulate complex systems should incorporate uncertainty
and variation, and avoid false precision in model prediction.
Models of ecological processes should by default have the null
expectation of non-stationarity, and scale dependence both
in the grain size and the extent of prediction (Levin, 1992).
Although perfectly accurate forecasts of ecosystem dynamics and
emergent behavior are not possible in complex systems, better
models may lead to a better understanding of thresholds and
interactions (Turner, 2005).

Given these challenges, we identify four potential approaches
at various stages of development that may improve our ability
to model complex landscapes: Hierarchical Patch Dynamics
(section Hierarchical Patch Dynamics), lacunarity (section

Lacunarity), Energy and Regulation across Scales (section
Energy and Regulation across Scales), and macroecology
(section Macroecology), where lacunarity is a metric, and the
remaining three approaches are theoretical frameworks. Each
of these approaches either identifies metrics that are potentially
scalable, or quantifies structure and relationships across scales.
Although all of these strategies have started from different
conceptualizations of the landscape in ecology, each has engaged
the problems of complexity, specifically scale dependence and
the middle-number problem, in their own ways. Some insight
can be derived from what each lacks; more mechanistic forms
of macroecology may be able to overcome some part of the
non-stationarity problem, for example, and lacunarity might
be effectively incorporated to Hierarchical Patch Dynamics
or Energy and Regulation across Scales as an effective form
of coarse-graining.

These approaches are not the only ones available to scientists
working in complex systems. A number of recent advances from
different fields may offer ways forward for similar problems in
landscape ecology. For example, problems in protein folding have
been solved via the use of coarse-graining applied to atomic to
molecular interactions (Levitt and Warshel, 1975). Evolutionary
biologists have been able to use what is termed “branch and
bound” methods to reduce the amount of probability space that
must be searched in order to infer phylogenetic trees, some
of which constitute NP-hard problems (Felsenstein, 2004). This
successful technique is a way of reducing the computational
complexity of problem solving in the middle-number domain.
Some solutions for long-term forecasting and non-stationarity
may come from recognizing the mathematical symmetries of
proposed models (Essex et al., 2007) in dealing with undetected
biases in ensemble averages. Large scale predictions with
biodiversity and disturbance models might see advances from
the field of information entropy-based macroecology, which
employs constraint-based methods and ecological state variables
(Shipley et al., 2006; Harte, 2011) to make predictions about
community structure in equilibrium conditions. As Wolpert
et al. (2017) suggest, new approaches to state-space compression,
which optimize the efficiency of a coarse-graining procedure
from microstates to macrostates, but allow for time evolution,
may be a way forward for all complex models.

The challenges imposed by coarse-graining, the middle
number problem, and non-stationarity in landscape ecology
are also handles on the overall problem of complex systems.
They may similarly be solved with innovative computational
techniques, or at least see progress on those fronts in the coming
years. However, a cross-disciplinary approach may be required,
in that many of the successes of modeling complex systems have
been developed independently in different fields, but the fastest
progress in classifying the complexity classes and computational
tractability of complex problems has been made in physics and
computational science (Arora and Barak, 2009).

We present these concepts of complex systems and their
intrinsic challenges as they apply to ecological disturbance
dynamics to highlight their important attributes, while
illustrating the limitations of our common methods of
analysis. With this review, we hope to inspire progress in
the development of quantitative methods that meet these
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challenges. Improvements to our understanding and prediction
of complex ecological systems may enable better theory
development, and in turn, better decisions in land management
that meet the needs of conservation, biodiversity, and
resource management.
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