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Long distance migration can increase lifetime fitness, but can be costly, incurring

increased energetic expenses and higher mortality risks. Stopover and other en route

behaviors allow animals to rest and replenish energy stores and avoid or mitigate

other hazards during migration. Some animals, such as soaring birds, can subsidize

the energetic costs of migration by extracting energy from flowing air. However, it

is unclear how these energy sources affect or interact with behavioral processes

and stopover in long-distance soaring migrants. To understand these behaviors and

the effects of processes that might enhance use of flight subsidies, we developed

a flexible mechanistic model to predict how flight subsidies drive migrant behavior

and movement processes. The novel modeling framework incorporated time-varying

parameters informed by environmental covariates to characterize a continuous range

of behaviors during migration. This model framework was fit to GPS satellite telemetry

data collected from a large soaring and opportunist foraging bird, the golden eagle

(Aquila chrysaetos), during migration in western North America. Fitted dynamic model

parameters revealed a clear circadian rhythm in eagle movement and behavior, which

was directly related to thermal uplift. Behavioral budgets were complex, however, with

evidence for a joint migrating/foraging behavior, resembling a slower paced fly-and-

forage migration, which could facilitate efficient refueling while still ensuring migration

progress. In previous work, ecological and foraging conditions are usually considered

to be the key aspects of stopover location quality, but taxa, such as the golden eagle,

that can tap energy sources from moving fluids to drive migratory locomotion may pace

migration based on both foraging opportunities and available flight subsidies.
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INTRODUCTION

Long-distance migration can relax competition and permit use of
seasonally available resources, helping many animals maximize
lifetime fitness (Newton, 2008; Avgar et al., 2014). Those
benefits, however, come at substantial costs, including greater
vulnerability to predators, uncertain conditions, mechanical
wear, elevated energy expenditure, and time (Alerstam and
Hedenström, 1998; Clark and Butler, 1999; Hedenström,
2008; Newton, 2008; Avgar et al., 2014). As many migrant
species cannot store sufficient energy for nonstop, long-distance
migration, stopover evolved as a behavior for strategically resting
and refueling en route (Gill, 2007).

Migrant species are adapted for utilizing either soaring or
flapping flight, and the different flight modes translate into
stopover strategy (Hedenström, 1993; Gill, 2007). Generally,
soaring flight is favorable for larger birds and flapping flight
for smaller birds, though the partitioning of time for each
flight mode during migration is dependent on the tradeoff
between time and energy (Hedenström, 1993; Duerr et al., 2015;
Katzner et al., 2015; Miller et al., 2016). In theory, a time-
minimizing migrator would be expected to fly with greater
directional persistence and stronger directional bias than would
an energy-expenditure minimizer. Such net energy maximizers
would be expected to take advantage of en route foraging
opportunities and may divert or delay to replenish energy
reserves. (Note that “energy minimization” has been used to
describe this strategy e.g., Alerstam, 2011; Miller et al., 2016,
but we use “net energy maximization” for clarity.) If time is
less important, a net energy maximizer is less restricted and
can spend additional time seeking an energetically superior
path; the emergent path would then be more tortuous with less
directional bias toward the final destination at any given point
along the route. Timeminimization and net energymaximization
strategies are not mutually exclusive, however, and the emergent
strategy and behaviors in any given migrating individual lies
along a continuum (Alerstam, 2011; Miller et al., 2016).

Obligate soaring migrants must also consider routes based
on their energy landscape (Shamoun-Baranes et al., 2010),
the energetic constraints of movement over space (Shepard
et al., 2013), which also contributes to a migrant’s location
along the behavioral continuum. While soaring migrants can
stopover, their energy landscape is more complex.Meteorological
conditions are at least as important as foraging resources for
soaring migrants, which can be extremely dynamic and subsidize
the energetic cost of flight directly via uplift (Pennycuick, 1971;
Alerstam, 1979; Spaar and Bruderer, 1997; Gill, 2007; Duerr et al.,
2012; Murgatroyd et al., 2018).

The flight performance of soaring migrants relative to
subsidies provided by meteorological conditions has been well
documented (Pennycuick, 1971; Alerstam, 1979; Spaar and
Bruderer, 1997), establishing a clear link between diurnal migrant
behavior and development of the atmospheric boundary layer.
Two primary forms of uplift arise by (1) wind interacting
with topography to form upslope wind or mountain waves (air
currents forming standing waves established on the lee side of
mountains; hereafter orographic uplift) and (2) solar heating of

the earth’s surface to generate thermal uplift. Other forms arise
from turbulent eddies over small landscape features and ocean
waves modifying the air. The dynamic nature of atmospherically-
driven flight subsidies requires detailed movement data as well
as carefully designed analytical techniques to investigate certain
mechanisms hidden in those data.

Our understanding of migratory processes has advanced
enormously in the past 30 years, as animal tracking technology
developed from a novelty of coarse observation to a core method
for observing animal behavior and movement in incredible detail
(Luschi et al., 1998; Sawyer et al., 2005; Bridge et al., 2011;
Katzner et al., 2015; Hooten et al., 2017). Global Positioning
System (GPS) telemetry, in particular, allows remote observation
of animal relocations across a broad spatiotemporal scale. GPS
transmitters are now light and reliable enough to study the
complete migrations of many large soaring migrants, including
golden eagles Aquila chrysaetos, which often rely on flight
subsidies during migration (Katzner et al., 2015). Golden eagles
and other large soaring birds have been used as model systems
for phenomenologically evaluating questions about migratory
flight performance and migration strategies (sensu Duerr et al.,
2012; Lanzone et al., 2012; Katzner et al., 2015; Vansteelant
et al., 2015; Miller et al., 2016; Shamoun-Baranes et al., 2016;
Rus et al., 2017). For example, Lanzone et al. (2012) and
Katzner et al. (2015) found that golden eagles use both thermal
and orographic uplift to subsidize migratory flight, although
thermal soaring was often more efficient in long distance,
directed flight (Duerr et al., 2012). While these studies have
contributed to our understanding of soaring migration and
have laid a foundation for more detailed approaches, they
relate meteorology to derived movement metrics, rather than
incorporate them into process-based models that mechanistically
predict movement, and ignore the temporal dependence between
serially observed locations (i.e., autocorrelation). Not accounting
for such autocorrelation imparts bias on certain estimated
parameters (e.g., variances) thereby affecting inference through,
for example, underestimating uncertainty. Consequently, the
links between resources distributed over the landscape, such
as flight subsidies, and behavioral budgets, including stopover
behavior, during migrations of soaring birds remain unclear.

Unlike previous approaches, process-based, mechanistic
movement models allow explicit inference of the underlying
mechanisms driving movement (e.g., changes in behavior) that
may not be available from conventional phenomenological
analytical approaches (Turchin, 1998; Nathan et al., 2008; Hooten
et al., 2017). While it is impossible to understand fully the
intricacies in animal movement, we can pose mathematical
models (e.g., correlated random walks) to approximate the
movement process (Kareiva and Shigesada, 1983; Turchin, 1998).
We can then fit these models statistically to observed data to
estimate parameters describing behavior and its relationship
with dynamic environmental features that moving animals
experience (Blackwell, 1997, 2003; Morales et al., 2004; Breed
et al., 2017; Hooten et al., 2017). Many of the recently developed
mechanistic movement models are built in a discrete state-
switching framework, where animals switch between discrete
behavioral states (see Hooten et al., 2017, and references
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cited therein). Choosing both the biologically relevant and
quantitatively supported number of states, as well as interpreting
the identified states in a biological context, remains challenging
(Patterson et al., 2017; Pohle et al., 2017). Often, this challenge
leads researchers to artificially limit the number of states and/or
collapse two or more states into one biologically interpretable
state. For example Pirotta et al. (2018), presented a model with
five discrete kinds of avian flight, but the complexity of the model
made interpreting those states difficult and poorly matched
classifications manually identified by an expert.

In many cases, a more natural approach to modeling an
animal’s movement process is along a dynamic continuum,
rather than as switching between discrete behavioral states
(Breed et al., 2012; Auger-Méthé et al., 2017; Jonsen et al.,
2019). Modeling along a continuum may be an especially useful
approach for understandingmovement behavior in soaring birds,
considering the dynamic nature of atmospheric processes that
influence movements. Here, we developed and applied a flexible
mechanistic movement model based on a correlated random
walk with time-varying parameters. This novel model was fit to
movement data collected via GPS telemetry to understand how
individuals in a population of long-distance soaring migrants
use flight subsidies and budget stopover and migration behavior.
Specifically, we were interested in identifying which flight
subsidies influence stopover andmigratory behavior and how the
effect of key subsides and behaviors varied between spring and fall
migrations. Our approach resembled continuous-time correlated
random walks (Johnson et al., 2008; Blackwell et al., 2015;
Gurarie et al., 2017; Michelot and Blackwell, 2019), but was easily
implemented and yielded a relatively small number of dynamic
parameters that could be directly interpreted biologically. A
set of candidate models could be ranked, with model selection
approaches, providing inference on how behavioral budgets and
meteorological variables interacted to give rise to the observed
migration paths. Modeling the effects of dynamic wind and
uplift variables as time-varyingmovement behaviors of migratory
golden eagles further allowed new details to emerge without
imposing artificially discrete states.

METHODS

Model System
The golden eagle is a large, soaring raptor, distributed across
the Holarctic (Watson, 2010). Golden eagles are predatory and
opportunistic, utilizing many taxa for food resources, ranging
from small mammals and birds to ungulates, often scavenging
carrion (Kochert et al., 2002; Watson, 2010). While many
populations are classified as partial migrants, most individuals
that summer and breed above approximately 55◦N in North
America are considered true long-distance migrants (Kochert
et al., 2002; Watson, 2010). The population we observed in this
study migrates over the mountainous regions of western North
America between a breeding range primarily in southcentral
Alaska, USA and a broad overwintering range in western North
America that ranges from the southwestern US to central British
Columbia and Alberta, Canada (Bedrosian et al., 2018).

Data Collection
We captured golden eagles with a remote-fired net launcher,
placed over carrion bait near Gunsight Mountain, Alaska
(61.67◦N 147.35◦W). Captures occurred between mid-March
and mid-April 2014-2016. Fifty-three adult and sub-adult eagles
were equipped with 45-g back pack solar-powered Argos/GPS
platform transmitter terminals (PTTs; Microwave Telemetry,
Inc., Columbia, MD, USA). Eagles were sexed molecularly and
aged by plumage.

PTTs were programmed to record GPS locations on duty
cycles, ranging from 8 to 14 fixes per day during migration,
depending on year of deployment. PTTs deployed in 2014 were
set to record 13 locations at 1-h intervals centered around solar
noon plus a location at midnight local time. PTTs deployed in
2015 were programmed to record 8 locations with 1-h intervals
centered around solar noon, and PTTs deployed in 2016 took
eight fixes daily at regular 3-h time intervals. Note that the PTTs
deployed in 2015 did not record locations overnight. Poor battery
voltage from September to March often resulted in PTTs failing
to take all programmed fixes, so the resulting GPS tracks had
missing observations during these periods. Tags lasted multiple
seasons, and in fact many are still deployed and transmitting at
this writing. We chose to limit this analysis to the migrations
that occurred in 2016. The spring and fall migratory pathways
of the 2016 migration from 26 tags were available and suitable for
analysis in that year: 11 deployed in 2014, 7 deployed 2015, and 8
deployed 2016. Tracks were suitable for analysis based on having
few missing data, with no more than a few days of consecutive
missing locations.

Movement data were managed in the online repository
Movebank (https://www.movebank.org/), and we used the Track
Annotation Service (Dodge et al., 2013) to extract flight subsidy
(wind and uplift) data, specific to each PTT location and
time of recording that location, along eagle tracks. The Track
Annotation Service derives uplift variables from elevationmodels
and weather and atmospheric reanalyses (Bohrer et al., 2012).
We followed the Movebank recommendations for interpolation
methods; details are below.

Movement Model
We developed a correlated random walk (CRW) movement
model to reveal how changes in behavior give rise to the
movement paths of migrating eagles. We chose to use a dynamic,
time-varying correlation parameter, which represents behavior as
a continuum rather than discrete categories, to capture complex
behavioral patterns that could occur on multiple temporal and
spatial scales (Breed et al., 2012; Auger-Méthé et al., 2017; Jonsen
et al., 2019). We believe this approach can offer substantial
flexibility, as a continuous range of behaviors is more realistic
and, as we show, more naturally allows modeling behavior as a
function of covariates.

The basic form of the model was a first-difference CRW
presented by Auger-Méthé et al. (2017), which can take the form:

xi|xi−1, xi−2 ∼ N2

(

xi−1 + γi
1ti

1ti−1
(xi−1 − xi−2), 6i

)

, (1)
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where

6i =

[

1t2i σ
2
x 0

0 1t2i σ
2
y

]

, σx, σy > 0. (2)

Here, 1ti = ti − ti−1 represents the time interval between
Cartesian coordinate vectors xi and xi−1 for the observed
locations of the animal at times ti and ti−1. Incorporating
autocorrelation in behavior, γi constitutes a random walk,
such that

γi|γi−1 ∼ N
(

γi−1, 1t2i σ
2
ν

)

, σν > 0. (3)

γi correlates displacements (or “steps”) and can be interpreted
to understand the type of movement, and thus behavior, of
migrating individuals: estimates of γi closer to one indicate
directionally-persistent, larger-scale migratory movement, while
estimates of γi closer to zero indicate more-tortuous, smaller-
scale stopover movement (Breed et al., 2012; Auger-Méthé et al.,
2017). Scaling γi by

1ti
1ti−1

and the variance components by 1t2i
allows us to accommodate unequal time intervals (Auger-Méthé
et al., 2017), which can arise from a PTT’s pre-programmed
duty cycles and/or missed location attempts. This assumes that
over longer time intervals an animal is likely to move greater
distances and that the previous step will have less influence on the
current step. Notably, in introducing 1ti, this CRW essentially
becomes a correlated velocity model presented in terms of
displacement vectors (xi−1−xi−2) (Johnson et al., 2008; Blackwell
et al., 2015; Gurarie et al., 2017), most closely resembling the
autocorrelated velocity model presented by Gurarie et al. (2017).
Because location error of GPS data is negligible compared to the
movement of most large vertebrates (Hooten et al., 2017), we
did not incorporate an observation equation to handle location
error.While a covariance parameter could be added to themodel,
we chose to fix covariance to zero (equation 2), which assumes
that movement in the x and y dimensions are independent. This
assumption has been suggested to be potentially problematic
(Dunn and Gipson, 1977; Blackwell, 1997); however, it is
common and has been shown to draw reasonable inference from
real data, as well as recover known parameters from simulated
data (Breed et al., 2012, 2017; Auger-Méthé et al., 2017; Jonsen
et al., 2019). To support this, we compared results from themodel
assuming zero covariance to one fit assuming equal variance in x
and y—like estimating covariance, this ensures invariance under
linear transformation of the coordinate system—to illustrate that
inference remains unaffected by this assumption (Appendix 1).

Extending this CRW to introduce environmental covariates,
we first made the assumption that an individual’s behavior can
be adequately explained by the previous behavior plus some
effects of environmental conditions and random noise. This
modeling approach and philosophy aligns with the movement
ecology paradigm presented by Nathan et al. (2008): An
animal’s movement path is influenced by its internal state
and the environmental conditions it experiences. We modified
the behavioral (or internal state) process—previously described
above as a pure random walk in one dimension (Equation
3)—similar to a linear model with a logit link function. The
logit link constrains γi ∈ [0, 1] and allowed us to model it

as a linear combination of continuously-distributed random
variables (Jonsen et al., 2019). These variables were different
meteorological conditions affecting flight subsidies. Now,

γ ′
i = log

(

γi

1− γi

)

, (4)

where

γ ′
i = γ ′

i−1 + ZT
i β + ǫi, (5)

ǫi ∼ N
(

0, 1t2i σ
2
ν

)

, (6)

and ZT
i is the row vector of environmental covariates associated

with xi. Each element of the vector β is an estimated parameter
representing the magnitude and direction of the effect of its
respective covariate on the correlation parameter γi in addition
to the effect of γi−1. Note that including γi−1 here preserves
explicit serial correlation in the behavioral process so that any
additional environmental effect is not overestimated. γ ′

i is only
used to estimate γi; any behavioral interpretations are made in
terms of γi.

Model Fitting
Subsetting Tracks
Of the 26 eagles producing suitable data in 2016, we fit the
model to 15 spring and 16 fall adult golden eagle migration
tracks recorded by 18 adult males and 8 adult females in 2016.
This included both spring and fall migrations for five individuals.
In reporting the results, we assumed any individual random
effects of including both migrations for these few individuals to
be negligible, which seems reasonable given fitted parameters
presented in Table S1 in Appendix. The model was fit only to
the migratory periods, plus two fixes prior to departure to ensure
valid parameter estimates at the onset of migration. Data were
constrained to migratory periods under the following rules: The
first migration step was identified as the first directed movement
away from what was judged to be an individual’s summer (or
winter) range with no subsequent return to that range, and the
final migration step was defined as the step terminating in the
apparent winter (or summer) range. This assignment was usually
straightforward; however, in some cases there were apparent
pre-migration staging areas. These were not considered part
of migration and excluded from the analysis here; movement
data from these individuals collected during the breeding and
overwintering periods are neither presented nor analyzed here.

Environmental Covariates
Golden eagles can switch between using thermal and orographic
uplift as flight subsidies (Lanzone et al., 2012; Katzner et al.,
2015), so we included both variables as covariates affecting
the correlation parameter in the behavioral process of the
CRW (equation 5). Thermal uplift ztu and orographic uplift
zou are measured in m/s with ztu, zou ∈ [0,∞). Thermal
uplift was bilinearly interpolated from European Center for
Medium-Range Weather Forecasts (ECMWF) reanalyses, and
orographic uplift from the nearest neighbor (grid cell) by pairing
National Center for Environmental Predictions (NCEP) North
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American Regional Reanalysis (NARR) data with the Advanced
Spaceborne Thermal Emission Reflection Radiometer (ASTER)
Global Digital Elevation Model (GDEM; Brandes and Ombalski,
2004; Bohrer et al., 2012). We also introduced wind as a covariate
in the behavioral process, as it can influence eagle flight as
well as the flight and energy landscape of many birds during
migration (Shamoun-Baranes et al., 2017). Wind data were
bilinearly interpolated from the NCEP NARR u (easterly/zonal)
and v (northerly/meridional) components of wind predicted 30
m above ground in m/s, from which we calculated the wind
support ztw, such that ztw ∈ (−∞,∞) (Safi et al., 2013),
where positive values correspond to tailwind and negative values
headwind. The bearings used to calculate each ztw,i were the
compass bearings required to arrive at xi+1 from xi.

We included a time of day interaction in the model because
of clear diurnal effects. This also helped reduce zero inflation,
particularly for thermal uplift, which often decays to zero
after sunset due to heat flux and atmospheric boundary layer
dynamics. To introduce the interaction, we used a dummy
variable z0, such that z0,i = 0 when ti fell after sunset but before
sunrise and z0,i = 1 when ti fell after sunrise but before sunset.
This assumed behavior was not dependent on the covariates at
night—the combination of covariates becomes zero when z0,i =
0—which is sensible given observed diurnal behavioral cycles.
Sunrise and sunset times local to each GPS point were calculated
in R with the “sunriset” function in the package “maptools”
(Bivand and Lewin-Koh, 2016; R Core Team, 2016). Writing out
thematrix operation in Equation (5), the final overall formulation
of the behavioral process for the full model was:

γ ′
i = γ ′

i−1 +
[

β0 + βou(zou,i × z0,i)+ βtu(ztu,i × z0,i)

+ βtw(ztw,i × z0,i)
]

+ ǫi, (7)

Prior to fitting the model, we followed Gelman et al. (2008)
and log-transformed the uplift covariates and standardized
variance to 0.25. We used a shifted log-transformation (Fox and
Weisberg, 2019); adding one to the covariates prior to the log-
transformation preserved zeros (i.e., zeros mapped to zero under
the transformation). The distribution of raw wind support data
appeared Gaussian, so it was only centered and standardized.

Parameter Estimation and Model Selection
We fit our correlated random walk (CRW) in a Bayesian
framework. Because the model has explicit serially correlated
parameters, we used Hamiltonian Monte Carlo (HMC) over
more conventional Markov-chain Monte Carlo (MCMC; e.g.,
Metropolis steps) to sample efficiently from a posterior with such
correlation.

Gelman et al. (2008) suggested Cauchy priors for logistic
regression parameters; however, Ghosh et al. (2015) found
that sampling from the posterior can be inefficient due to the
fat tails of the Cauchy distribution. We thus chose Student-
t priors centered on zero (µ = 0 and σ = 2.5) with five
degrees of freedom as weakly informative priors for the covariate
parameters. Weakly informative normal priors were placed on
the variance parameters of the model.

We implemented HMC with R and Stan through the package
“rstan” (R Core Team, 2016; Stan Development Team, 2016).
Working R and Stan code, including details on prior choice, and
example data are provided as Supplementary Material, as well as
supplementary tables and figures (Appendices 1–3). The model
was fit to each track independently with five chains of 300,000
HMC iterations, including a 200,000 iteration warm-up phase,
and retaining every tenth sample. Convergence to the posterior
distribution was checked with trace plots, effective sample sizes,
posterior plots of parameters, and Gelman diagnostics (R̂) for
each model fit.

We compared candidate models with leave-one-out cross-
validation approximated by Pareto-smoothed importance
sampling (PSIS-LOO) in R with the package “loo” (Vehtari
et al., 2016, 2017). The candidate models included possible
combinations of environmental covariates plus a null CRW
model without covariates. To limit model complexity and
because we were interested in competing hypotheses about key
predictors of behavior, we chose not to include interactions
beyond time-of-day. We ranked the models by the expected log
pointwise predictive density (elpd; i.e., out-of-sample predictive
accuracy) transformed onto the deviance scale (looic; Vehtari
et al., 2017), which created a measure on the same scale as
common information criterion (e.g., AIC) and allowed applying
the rules of more traditional information-theoretic model
selection (e.g., Burnham and Anderson, 2004). The model with
the lowest looic was considered the best fit to the data, but if
other models were within two looic of the top model, each,
including the top model, were considered equally supported by
the data.

To understand how the predictive ability of the full model
varied among tracks, we also computed a pointwise average of
the elpd for each track (Vehtari et al., 2017). Normalizing by
the sample size allowed comparing the out of sample predictive
ability of the full model across individual migration tracks
(Table S1 in Appendix). The elpd (and looic), being sums, are
otherwise dependent on the sample size for each model fit.

RESULTS

Model Performance and Diagnostics
We fit eight candidate formulations of our CRW model to 31
migration tracks, equating to 248 total model fits. Chain mixing,
Gelman diagnostics (R̂) close to one, and large effective sample
sizes for all parameters indicated convergence to the posterior for
most model fits. Posteriors of parameters appeared symmetric,
also indicating the model was well behaved (Figure S1 in
Appendix). Across all migration tracks, the full model showed
strong evidence of convergence, but for five tracks, we did not
consider the null model converged to the posterior (e.g., R̂ >

1.01). The five migrations for which the null model did not
converge were not included from formal model selection.

Behavior During Migration
Median (interquartile range) departure and arrival dates were
5 March (4.5 d) and 27 March (6.4 d) in the spring and 29
September (11.7 d) and 16 November (15.5 d) in the fall. On
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TABLE 1 | Summary statistics of flight subsidies encountered by migrating golden

eagles that summer in Alaska.

Season Orographic uplift Thermal uplift Wind support

meana (s.d.) mean (s.d.) mean (s.d.)

Spring 0.41 (0.71) 0.61 (0.48) 2.09 (3.06)

Fall 0.43 (0.71) 0.39 (0.34) 1.37 (3.45)

Variables were interpolated in space and time from weather reanalyses to eagle locations

recorded by GPS telemetry. Units for all variables are m/s.
agrand mean across discrete GPS locations with individual migration tracks pooled.

average, eagles encountered similar orographic uplift in spring
and fall but more intense thermal uplift and tailwind in the spring
(Table 1).

The model revealed that eagles changed their behavior on
multiple scales. First, there were very strong daily rhythms in
behavior during migration, with birds migrating or moving more
slowly and tortuously during the day and stopping at night
(Figures 1, 2). Explicitly including a time-of-day interaction
could cause a daily rhythm to emerge as an artifact of model
specification. However, accounting for serial correlation in
behavior (Equation 5) limited that possibility. Additionally,
prolonged periods of movement without an apparent daily
rhythm suggest that, where daily rhythms are observed they
are not a product of model specification (Figure 2). Second,
there was some evidence of stopover-like behavior, but with
individuals continually moving along the migration route while
exhibiting less directional persistence in movement (Figure 3).
The continuation along the migration route while in a stopover-
like state is highlighted by track segments extended over space
associated with low and intermediate estimates of γi (blue/purple
in Figure 3).

There was also a clear effect of season on movement patterns
and behavior. Spring was characterized by straighter, more direct
trajectories and punctuated by slower, more tortuous, stopover-
like movement; whereas, fall movements were much more
tortuous overall and regular patterns in changes in movement
rate and/or tortuosity less clear (Figures 1–3). The distributions
of estimated γ values also clearly indicate that daytime
movements were most frequently directed migratory moves in
the spring; whereas, in the fall, the bimodal distribution indicates
more equivalent partitioning between directed migratory moves
and slower stopover type movement, with significant time spent
exhibiting behaviors associated with intermediate tortuosity and
movement rate (Figure 3).

Environmental Covariates
While there were differences in some environmental covariates
between spring and fall (Table 1), parameter estimates from
the full model (all covariates) indicate that there was little to
no difference in effect of flight subsidies (i.e., wind and uplift)
on behavior between spring and fall (Figure 4, Table S1 in
Appendix). Including environmental covariates in the behavioral
process, though, improved model fit for almost all fitted
migrations (Table 2). Positive coefficients on the thermal uplift
covariate indicate that increasing thermal uplift resulted in

more highly-correlated displacements, or migratory movements.
Despite that, there were some migration bouts not associated
with great thermal uplift (Figures 1, 2). Coefficients close to
zero for orographic uplift and wind support indicate that,
in general, they were not strong drivers of directionally-
persistent movements.

Based on the model selection, the best-fitting formulation of
the environmental drivers of the behavioral process was variable
across individuals. However, in almost all cases, some form of
flight subsidy was used and there was little difference between the
spring and fall seasons in the pattern of subsidy use (Table 2). The
high variability across individuals (Table S1 in Appendix) was
likely due to differing weather patterns and thus subsidy sources
encountered and/or used by each eagle as migrations were not
synchronous (in time or space) across individuals. In addition,
inter-individual variation was much larger than any difference
attributable to demographic variables; we found no evidence that
difference in sex or age explained patterns of flight subsidy use
during migration. Note, though, that all eagles included in this
analysis were in adult plumage, so strong age effects would not
necessarily be expected.

Comparing the pointwise elpd across tracks revealed that the
out of sample predictive ability of the full model varied among
individuals (Table S1 in Appendix). It also showed that predictive
ability was greater for fall migrations than spring.

DISCUSSION

Here, we develop and demonstrate how dynamic parameter
CRW models fit to GPS data reveal the effects of variable
flight subsides available along migration routes. Use of these
subsidies gives rise to diverse patterns in the movement of a long-
distance soaring migrant. Behavioral changes occur continuously
as available subsidies shift over time and space. These key driving
mechanisms underlie emergent movement paths, yet such
processes are often hidden in the discrete satellite observations
available. Our mechanistic modeling approach allowed linking
of dynamic meteorology to changes in behavior, and those
changes in behavior to the observed movement paths, revealing
time series of behaviors more complex than individuals simply
apportioning time between migration and stopover.

Model Performance
Incorporating time-varying parameters into movement models
has been a relatively infrequently utilized approach (Breed
et al., 2012; Auger-Méthé et al., 2017; Jonsen et al., 2019).
Here we provide a case study for its utility and developed
the approach for achieving practical biological inference
about movement processes. Modeling the serial correlation in
movement as a function of environmental covariates (equation
4), allowed simultaneous inference of behavior and the effect of
environmental covariates on behavior from animal trajectories
with regular and irregular duty cycles and containing missing
observations. While other methods exist to handle missing data,
the behavioral patterns we found would be more difficult to
reveal with a state-switching movement model (e.g., hidden
Markov models (HMMs); Michelot et al., 2016) because each
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FIGURE 1 | Time series of behavior parameter γ from correlated random walk model with full behavioral process (orographic uplift, thermal uplift, and wind support as

predictors) for two golden eagles during spring migration with PTTs reporting on different duty cycles. Upper panel is 13 hourly centered on solar noon plus one at

midnight, and the lower panel is 8 hourly centered on solar noon. γ close to one reflect movements associated with migratory behavior, and γ close to zero stopover

behavior. Points are times of observations, and lines are linear interpolations between points. Hue indicates intensity of thermal uplift, with yellow indicating greater and

blue lower. Note the daily rhythm in behavior associated with intense thermal uplift, stopover periods of one or more days, and the intermediate periods suggesting

fly-and-forage.

FIGURE 2 | Time series of behavior parameter γ from correlated random walk model with full behavioral process (orographic uplift, thermal uplift, and wind support as

predictors) for three golden eagles during fall migration with PTTs reporting on different duty cycles. Upper panel is 13 hourly centered on solar noon plus one at

midnight, middle panel is 8 hourly centered on solar noon, and lower panel is fixed 3-h interval. γ close to one reflect movements associated with migratory behavior,

and γ close to zero stopover behavior. Points are times of observations, and lines are linear interpolations between points. Hue indicates intensity of thermal uplift,

with yellow indicating greater thermal uplift and blue lower. Note the daily rhythm in behavior and extended stopovers as well as periods intermediate values

suggesting fly-and-forage.

step would be forced into a discrete behavioral state from a set
of usually 2–3 discrete states. Moreover, although hidden-state
models have been introduced that have more than five discrete

states (e.g., McClintock et al., 2012), these states can require
ancillary data streams (e.g., accelerometry) to discriminate and
remain extremely difficult to employ and interpret in practice
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FIGURE 3 | Golden eagle migration trajectories (N = 15 spring and N = 16 fall). Hue indicates value of behavioral parameter γ estimated with the correlated random

walk model with full behavioral process, including orographic uplift, thermal uplift, and wind support as predictors. Insets show the relative frequencies of estimates of

γ assigned to the displacements between observed daytime GPS locations. γ close to one reflect movements associated with migratory behavior, and γ close to

zero stopover behavior. Daily rhythms, revealed in Figures 1, 2, are not apparent here because the birds moved so little at night.

FIGURE 4 | Point estimates of environmental covariate effect parameters (βou,

βtu, βtw ) on golden eagle behavior and movements during migration (N = 15

spring and N = 16 fall). Estimates are from the correlated random walk model

with full behavioral process, including orographic uplift, thermal uplift, and wind

support as predictors.

(Patterson et al., 2017; Pohle et al., 2017). Finally, as HMMs
include greater numbers of potential states, they tend to fit
better than models with fewer states as judged by classical model
selection approaches, such as AIC, even when additional states

TABLE 2 | Number of golden eagle migration tracks recorded by GPS

transmitters that each candidate formulation of the behavioral process in the

correlated random walk model fit the best, according to approximate

leave-one-out cross-validation (Table S1).

Model
looic tallya

Spring Fall Total

Fullb 4 3 7

Therm + twind 2 4 6

Oro + therm 3 3 6

Oro 3 3 6

Therm 2 3 5

Oro + twind 2 2 4

Twind 0 3 3

Null 1 1 2

“therm” corresponds to thermal uplift, “oro” to orographic uplift, and “twind” to wind

support.
atally given to model with lowest information criterion (looic; Vehtari et al., 2016); if one or

more models were within two looic of the top model, each was given a tally.
boro + therm + twind.

are neither biologically meaningful nor sensible (Pohle et al.,
2017). Implementing models with dynamic parameters that can
be interpreted along a behavioral continuum seems a more
natural approach for many animal movement questions.

Effects of Tag Programming
While our CRW model revealed the same trends across duty
cycles and was generally robust to the different duty cycles
(Figures 1, 2), the most detail in daily behavioral rhythms was
revealed in tracks with a fixed 3-hr time interval (lower panel in
Figure 2), as it provided data throughout the 24-h day at regular
intervals. The other duty cycles were initially chosen to minimize
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the risk of battery depletion overnight. Although generally
robust, duty cycles did affect model fitting. HMC permitted
Bayesian inference rather efficiently for our model, considering
elevated correlation in the posterior of parameters due to the
model formulation. Model fits typically took no more than a
few hours, though tracks with much more than several hundred
locations sometimes took longer. Preliminary fitting of our
model with Stan and Template Model Builder (TMB; following
Auger-Méthé et al., 2017) suggested that Maximum Likelihood
estimation (when fit with TMB) tends to fail frequently when
tag programming results in uneven temporal coverage of each
day (e.g., our 2015 duty cycle), while Bayesian inference still
provided sensible parameter estimates in most cases. Although
the model presented herein and the model presented by Auger-
Méthé et al. (2017) can make up for irregular time intervals
between observations, they do have limitations. Breed et al.
(2011) offer an in-depth discussion of tag programming and its
effects on model fitting and inference.

Flight Subsidies as Drivers Migration of
Behavior
Thermal uplift is a flight subsidy dependent on daily atmospheric
boundary layer dynamics, and it was clearly an important driver
of the daily rhythm in eagle movement (Figure 4, Table S1 in
Appendix). Intense thermal uplift was often associated with
the peaks in daily migration bouts (Figure 1). The larger
magnitude of the thermal uplift effect, relative to orographic
uplift, was somewhat surprising, as many individuals in our
sample followed the Rocky Mountains, a large potential source
of orographic uplift. Golden eagles are known to use orographic
uplift as a flight subsidy while migrating through the Appalachian
Mountains in eastern North America (Katzner et al., 2015).
Much of the Appalachians, however, is characterized by long,
unbroken, linearly-oriented ridges. Wind blowing over these
ridges produces long stretches of predictable orographic uplift
(Rus et al., 2017). The Rocky Mountains, by contrast, are
far more rugged and nonuniform, and conditions that might
produce suitable upslope winds and mountain waves, as well
as strong tailwinds, likely also generate violent turbulence and
could impede efficientmigratory flight. Soaring raptors have been
shown to use small-scale turbulence to achieve subsidized flight
(Allen et al., 1996; Mallon et al., 2016); however, unpredictable,
nonstationary violent turbulence, which can occur in large, high-
elevation mountain ranges (Ralph et al., 1997), could produce
unfavorable migratory conditions. The large effect of thermal
uplift, thus, could indicate that the RockyMountains, a spine that
spans almost the entire migration corridor for this population, as
well as some areas further west (Bedrosian et al., 2018), serves
as a network of thermal streets for migrating eagles (Pennycuick,
1998). More explicitly, intense sun on south facing slopes would
be expected to generate linear series of thermals that birds
could glide between during both spring and fall migration. It
is important to keep in mind that the migrants could capitalize
on fine-scale, localized features of certain flight subsidies, like
orographic uplift and tailwind, that may not have been captured
by the interpolated meteorological data used in our analyses.

However, model selection for models including those variables
did indicate they explained some variance in eagle movement,
which we discuss further below.

Despite meteorological conditions along migration paths that
differed between spring and fall and a stark difference between
behavioral budgets, our results showed no clear difference
in the use of flight subsidies between the spring and fall
seasons (Figure 4). This finding contrasts with season-specific
effects of flight subsidies on golden eagle migration shown
phenomenologically in eastern North America, where thermal
uplift was shown to be the key subsidy in migratory performance
during spring, while wind with some additional support from
thermal uplift is most important in the fall (Duerr et al., 2015;
Rus et al., 2017). Although our results indicate that eagles use
similar flight subsidizing strategies in both seasons, consistent
with the differences from the eastern population, the actual
behaviors performed during spring and fall migrations differed
considerably. In spring, eagles used subsidies to drive a migration
that allows timely arrival on the breeding grounds, consistent
with a time minimization strategy. In the fall, flight was
subsidized to minimize net energy use, which emerged as a much
more diverse behavioral repertoire during a slower fall migration
(Figure 3; Miller et al., 2016). The more rapid and direct flight
punctuated by bouts of tortuous, stopover-like movement in the
spring (Figure 3), suggest eagles pause, refuel, and/or perhaps
wait for better migration conditions. This suggests eagles may
employ, at least in part, a net energy maximization strategy
(Hedenström, 1993; Miller et al., 2016), despite the need for
timely arrival on the breeding grounds to avoid fitness costs (Both
and Visser, 2001).

The behavioral time series of spring migrations showed some
evidence of individuals responding less to thermal uplift as
latitude increased (Figure 1). This likely corresponded to a
general decay in thermal uplift as individualsmigrated northward
(Supplementary Material, Figure S2 in Appendix). Reduced
thermal uplift availability would be expected at higher latitudes
due to the larger amounts of remaining spring snowpack
and lower solar angles. Thus, golden eagles, and likely other
soaring birds, migrating to high latitudes may need to budget
behaviors carefully between time minimization and net energy
maximization during spring migration to best take advantage of
the reduced flight subsidy from thermal uplift and mitigate the
greater energy demands of flight at higher latitudes.

While our results show that thermal uplift is the most
important flight subsidy for the majority of migrating eagles
sampled, the model selection indicated orographic uplift and
wind support improved out of sample predictive accuracy
and explained some variance in eagle movement. Additionally,
variability in top models across individuals (Table 2, Table S1
in Appendix) suggests among-individual variance in flight-
subsidizing strategy. Although some of this variability can be
attributed to real individual differences in behavioral strategy,
it is at least as likely that individuals encountered different
subsidies en route and used the subsidies they had available, as
migrations across our sample were not synchronous. Given that
orographic uplift and wind support parameter estimates were
negative or close to zero for many individuals (Figure 4, Table S1
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in Appendix), those covariates likely predicted the periods of
slower, more tortuous movements (i.e., γi closer to zero). Wind
support occurred in top models for more individuals in the
fall (Table 2, Table S1 in Appendix), which is consistent with
findings from others (McIntyre et al., 2008; Rus et al., 2017)
and suggests it may be important during southbound migrations.
Additionally, although there was variance among the types and
combinations of subsidies used, the null model (without flight
subsidies) was the best fitting model for very few tracks (Table 2,
Table S1 in Appendix), evidence that weather and flight subsidies
are of importance to migrating golden eagles, and likely also to
the migrations of similar soaring species. Lastly, we found that
the full model had, on average, better predictive ability in fall
than spring (Table S1 in Appendix), suggesting that the weather
variables explained more of the variance within movement
paths in fall compared to spring; during spring migration, other
internal state variables associated with greater time limitation
that were not explicitly accounted for in the models were likely
responsible for this seasonal difference.

Daily Rhythm and Migratory Pace
The full movement model revealed two clear, nested behavioral
patterns in the long-distance migrations of golden eagles. First,
there was a daily rhythm where inferred directed migratory
movements (i.e., γi close to one) occurred most frequently
around midday or early afternoon (Figures 1, 2). Mechanistic
models of animal movement have revealed diel behavioral
rhythms in other taxa (Jonsen et al., 2006). The basic aspects
of daily rhythms in vertebrate behavior have hormone controls
(Cassone, 1990), but the benefits can include balancingmigration
progress and foraging bouts (Newton, 2008). Soaring migrants
also benefit by synchronizing diel movement patterns with
diel atmospheric cycles. That is, consistent with our results,
diurnal soaring migrants express a general circadian behavioral
rhythm, where flight performance and behavior is strongly tied to
thermal development of the planetary boundary layer to take best
advantage of atmospherically generated flight subsides (Kerlinger
et al., 1985; Leshem and Yom-Tov, 1989; Spaar and Bruderer,
1996, 1997; Mateos-Rodríguez and Liechti, 2012).

The second behavioral pattern revealed was a general stopover
pattern, whereby eagles changed behavior for one to several days
while en route (Figures 1–3). These changes were consistent
with searching movements (i.e., γ intermediate or close to
zero), possibly representing foraging behavior. In terms of
soaring raptors, however, very few reports of movement patterns
and behavior during stopovers have been published. Stopover
segments have been previously identified by speed or some other
metric calculated from tracks, then excluded from subsequent
analyses (e.g., Katzner et al., 2015; Vansteelant et al., 2015);
occasionally, authors noted apparent enhanced tortuosity but
explored it no further (e.g., Vansteelant et al., 2017). On
occasions where stopover behavior was considered, classifications
based on stay duration and travel distance or speed with
hard, often arbitrarily chosen cutoffs between migrating and
stopover segments were used (Chevallier et al., 2011; Katzner
et al., 2012; Duerr et al., 2015; Miller et al., 2016). In contrast,
our modeling framework aligned with the movement ecology

paradigm (Nathan et al., 2008); it used the observed data—
GPS locations, rather than a derived metric—and a theoretical
movement process to infer behavior from movement patterns
along tracks on a spectrum ranging from stopped to rapid,
directionally-persistent movement.

Our analyses, however, showed that eagles still tended
to continue along their migration route during periods
of movement most resembling stopover, but with reduced
movement rate and directional persistence (Figures 1–3).
This pattern suggests a joint migration/opportunistic foraging
behavior that resembles fly-and-forage migration (Strandberg
and Alerstam, 2007; Åkesson et al., 2012; Klaassen et al., 2017),
which is consistent with observations of en route hunting
behavior of golden eagles by Dekker (1985). Such behavior could
be used to maintain balance between time expenses and energy
intake, as it allows simultaneousmigration progress and foraging.

This pattern does not fall very well within the “stopover”
paradigm (Gill, 2007; Newton, 2008), however, as true stops
during the migrations we observed were rare, except for
expected nightly stops. Rather, migrants seemed to change
their pace—either by slowing down, moving more tortuously,
or both—but still generally moved toward their migratory
destination (Figures 1–3). Thus, instead of a discrete behavioral
framework, whereby migrants switch between two migratory
phases (migration and stopover) with very different movement
and behavioral properties, we propose that, for certain taxa,
a continuous alternative framework “migratory pacing” may
be more appropriate and a natural way to interpret en route
migratory behavior and movement dynamics. Such taxa would
include some and perhaps many soaring migrants, as well some
migrating species in other fluid environments such as fishes and
marine mammals. Soaring birds, even when energy reserves are
relatively depleted, likely can still make steady progress toward
a migratory goal when flight subsidies are available. Flapping
migrants, on the other hand, would not be able to achieve
this as readily, due in part to the greater energy demands
for sustained flight, and would require more regular refueling
stopovers where migration progress is temporarily completely
arrested. Both opportunism in foraging and use of energetic
subsidies are likely key characters of fly-and-forage behavior and
the ability to change pace of migration without actually stopping,
as they relax the need for individuals to stopover in specific,
food-rich habitats, which are required by most migrants with less
flexibility in food and that lack the morphological specialization
to maximally exploit the energetic subsidies available in moving
fluids (Gill, 2007; Piersma, 2007).

Our model results revealed seasonal variability in migratory
pacing by golden eagles. The tendency for eagles to exhibit
movements matching fly-and-forage behavior, and pace their
migrations more slowly was most apparent during fall migration.
In contrast, spring migration was usually composed of much
more punctuated events of slower-paced movements but these
were still extended over space (Figure 3), indicating the eagles
pace their migration and employ a mixed behavioral strategy
to some extent in spring as well. During spring, hibernating
mammalian prey would be minimally available, leaving carrion,
along with a few non-migratory and -hibernating species (e.g.,
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ptarmigan Lagopus spp. and hare Lepus spp.), as major food
sources, which could help explain the more punctuated bouts
of slower-pacing. Alternatively, individuals could have been
slowed by poor weather conditions (Rus et al., 2017). Scavenging
large ungulate carcasses would be extremely rewarding in
terms of energy accumulation. Much of the carrion we used
successfully to capture eagles was large ungulate (e.g., moose
Alces alces), strongly suggesting that the population we sampled
uses carcasses during migration. The bimodal distribution for
the behavioral parameter γ in fall shows that eagles tended
to budget daytime behaviors approximately equally between
rapid, directed and slower-paced movements (Figure 3); the
high frequency and range of intermediate values are, again,
evidence for the more complex fly-and-forage and pacing
dynamic, rather than eagles simply switching between stopover
and migration. This behavioral complexity might be biologically
important, allowing eagles to arrive on winter home ranges in
better condition compared to migration strategies that do not
incorporate en route foraging opportunity. In contrast to fall,
daytimemovements in the spring were typically faster-paced (i.e.,
larger-scale and directionally-persistent; Figure 3), consistent
with a time minimization strategy, where eagles need to partition
time more in favor of migration progress to ensure timely
arrival on breeding grounds (Hedenström, 1993; Alerstam, 2011;
Miller et al., 2016). We thus see in eagles, and propose more
generally, that such pacing varies between and within seasons
along the continuum between time minimization and net energy
maximization strategies (Alerstam, 2011; Miller et al., 2016). A
migrant’s pace would be expected to depend upon their energetic
demands, energetic subsidies available from the environment,
and the importance of arriving at the migration terminus in a
timely fashion (Nathan et al., 2008).

Implications and Conclusions
We developed and applied a movement model with time-
varying parameters to help reveal the mechanisms underlying
the migration of a long-distance soaring migrant that relies on
incredibly dynamic flight subsidies. We found that variation in
flight subsidies gives rise to changes in migrant behavior with
thermal uplift seemingly most important. While these findings
might be expected given previous phenomenological analyses
(e.g., Duerr et al., 2012; Lanzone et al., 2012; Katzner et al.,
2015; Vansteelant et al., 2015; Miller et al., 2016; Shamoun-
Baranes et al., 2016; Rus et al., 2017), we were able to show how
meteorology is a mechanism influencing changes in movement
patterns and thus behavior.

In the behavioral budgets of migrating golden eagles, we
identified an expected daily rhythm, as well as evidence for
behavioral dynamics that would allow nearly simultaneous
foraging and migration, which is greater complexity than
the traditional stopover paradigm allows. Migratory pacing,
facilitated by fly-and-forage behavior, expands the traditional
notion of stopover, whereby a bird migrates until resting and
refueling is required, at which point it stops for a brief period in
specific habitat suitable for efficient foraging (Gill, 2007; Newton,
2008). This advance was enabled by incorporating time-varying
parameters into the movement model, which revealed new

behavioral patterns during migration of long-distance soaring
migrants. While time-varying, dynamic parameters have been
infrequently employed inmovementmodeling (Breed et al., 2012;
Jonsen et al., 2013; Auger-Méthé et al., 2017), we have shown it
is a promising approach that can overcome certain limitations
in discrete state-switching models and help provide novel insight
into animal behavior.

This approach also has potential for further development and
for revealing additional new patterns in soaring bird movement;
it has already been shown to help provide new insight for other
taxa as well (Jonsen et al., 2019). Although we demonstrated
the approach for several individual eagles, applying our methods
across a larger sample and across more years will increase the
inferential strength of our results. For example, previous work
found effects of wind support and orographic uplift (e.g., Katzner
et al., 2015; Vansteelant et al., 2015), where we, in accounting
for an eagles’ underlying movement process and the inherent
autocorrelation in that process, found that those meteorological
variables may be of less importance, at least compared to thermal
uplift. It remains unclear though, whether these are system-
specific findings or a more general result. Additionally, the model
we present has potential to help assess effects of habitat on the
movement decisions of soaring birds and other species. One
potential avenue for such would be incorporating the model into
a resource selection framework (e.g., step selection function).
Furthermore, given the movement process is parameterized in
terms of coordinate vectors, the position likelihood could be
straightforwardly extended to include the z axis to investigate
questions regarding flight height of soaring birds or dive depth of
marine species, assuming data of acceptable temporal resolution
and location error are, or become, available.
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