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The phylumCnidaria contains a wide variety of unique organisms that possess interesting

adaptations evolved over many years to help them survive in a competitive environment.

One of these adaptations is the presence of venom, which has been of particular

interest for studies aimed at identifying novel drug leads and for understanding the

mechanisms involved in envenomation. The potency of the venom varies significantly

amongst cnidarians, and although corals are often overshadowed by the jellyfish and

sea anemone toxins, they also possess a range of interesting bioactive compounds. In

this mini-review, we provide an overview of the toxins present in corals, highlighting the

diverse structures and bioactivities.
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INTRODUCTION

The organisms in the phylum Cnidaria represent some of the oldest living venomous creatures on
the planet, including jellyfish, hydroids, sea anemones, and corals (Rachamim et al., 2015). The
phylum is primarily defined by the presence of nematocytes, or stinging cells, in the tissue of these
organisms (Ozbek, 2011). Nematocyte cells contain a tubule with a capsule of venom that, when
stimulated, is everted, striking the prey/predator, penetrating the outer membrane and delivering
the venom (Ozbek, 2011). These stinging cells have a variety of purposes but are mainly used for
prey capture and defense (Greenwood, 2009).

Venoms often contain a complex mixture of compounds, including small molecules, peptides
and proteins. These compounds can be highly potent and specific for biological targets, and the
peptides in venoms are generally stable because of the presence of disulfide bonds making them
of interest in drug design (Vetter et al., 2011; Utkin, 2015). Venomous creatures, such as spiders,
scorpions, and cone snails have been well-studied and several databases have been established to
collate the data on the toxins present (Kaas et al., 2008, 2012; Kuzmenkov et al., 2016; Pineda et al.,
2018). Although cnidarians are generally less well-studied (Macrander et al., 2018), information
about the toxins present is currently expanding.

Perhaps the most well-known of the cnidarian organisms are jellyfish. Their venom can be
extremely potent and act, not only on small marine prey organisms, but can also have severe
physiological effects on humans (Tibballs, 2006; Tibballs et al., 2011; Remigante et al., 2018).
Although not as harmful as some jellyfish, other cnidarians, such as select sea anemones can elicit a
stinging sensation in humans when the nematocytes in the tentacles are stimulated (Lubbock et al.,
1981; Garcia-Arredondo et al., 2016). Several sea anemone toxins have been well-characterized,
including an analog of a ShK toxin from Stichodactyla helianthus, which has entered Phase 2 trials
for autoimmune diseases (Pennington et al., 2009; Chi et al., 2012; Prentis et al., 2018). There
have been several recent reviews of sea anemone toxins regarding their bioactivity as well as their
potential uses in the field of pharmaceutical development (Prentis et al., 2018; Thangaraj et al.,
2018; Madio et al., 2019; Utkin et al., 2019). Corals are often overshadowed by the highly potent
and potentially life-threatening toxins from jellyfish and clinically relevant sea anemones, but they
too possess toxins of interest.
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Much of the research on corals has focused on climate change
impacts and secondary metabolites. In the past year alone there
have been more than 3,750 journal articles published on “corals
and climate change” (GoogleScholar) while there are around 388
articles published on “corals and toxins” (2 August 2019). The
majority of research on corals and their secondary metabolites is
not necessarily venom related. For example, metabolites from the
gorgonian coral Erythropodium caribaeorum have been shown
to act as a deterrent against reef fishes predating on the coral
(Fenical and Pawlik, 1991). However, more recent studies have
characterized venom derived coral toxins, with potential in
the field of drug development (Radwan et al., 2002; Frazao
et al., 2012; Rodriguez et al., 2012; Garcia-Arredondo et al.,
2016). There is significant scope for future studies aimed at
characterizing coral toxins, and in this mini review we highlight
some of the structural and functional diversity that has already
been uncovered.

CORAL TOXINS

Corals, primarily grouped into stony corals and soft corals,
are members of the Anthozoa class of the phylum Cnidaria as
shown in the phylogenetic tree in Figure 1. Toxins have been
characterized from four of the Anthozoa order and examples
of these toxins are given in Table 1 to highlight the structural
diversity, range of bioactivities and potential applications. The
majority of research into toxins from organisms in the Anthozoa
class has focused on sea anemones, because of the exciting
therapeutic potential of some of the toxins, and several recent
reviews have been published in this area (Prentis et al., 2018;
Liao et al., 2019; Madio et al., 2019). Although there are distinct
differences between sea anemones and corals, with stony corals
having calcium carbonate skeletons in contrast to sea anemones
(Shick, 1991; Stanley, 2003), the two organisms are in the same
class and might have similar compounds to each other. We are
only just beginning to appreciate the diversity of compounds
present in the nematocysts of corals and potentially toxins
present elsewhere in the tissue of these organisms. There is
evidence that toxins can be delivered from anatomical structures
other than nematocytes in sea anemones, with differences in
localization between species (Moran et al., 2012; Bastos et al.,
2016). It is possible a similar phenomenon also occurs in corals.
While sea anemone toxins, such as the ShK toxins have not
been found in corals to date, there are examples of other
toxins and toxin families as outlined below for stony corals
and soft corals and highlights the importance of characterizing
coral toxins.

Scleractinia (Stony Coral)
Stony corals (Scleractinia) are reef building corals that absorb
calcium carbonate from the water to form a hard skeleton,
and occur in colonial or solitary aggregates (Stanley, 2003).
The most well-characterized toxins from stony corals are a
family of peptides termed small cysteine-rich peptides (SCRiPs)
found in the ectoderm of a common stony coral, Acropora
millepora (Sunagawa et al., 2009). SCRiPs contain a conserved
eight cysteine framework, similar to the rattlesnake myotoxin

domain in crotamine toxins (Jouiaei et al., 2015a) but there
is limited sequence conservation beyond the cysteine residues.
SCRiPs were originally thought to be found strictly in Scleractinia
corals but recent studies have shown that homologs of SCRiPs
are found in the sea anemones Anemonia viridis and Metridium
senile (Jouiaei et al., 2015a). SCRiPS were also originally thought
to be involved with biomineralization in reef building corals by
playing a role in calcification of the skeleton of the coral but
there is now evidence that they are a family of toxins rather
than calcifying proteins (Jouiaei et al., 2015a). Two SCRiPs
originally found in the ectoderm of the coral A. millepora
were recombinantly expressed and incubated with zebrafish
larvae. The larvae became paralyzed and insensitive to touch,
consistent with neurotoxic action (Jouiaei et al., 2015a). The
presence of SCRiPS in the ectoderm of A. millepora is also
consistent with a role in prey envenomation as the ectoderm is
lined by nematocytes (Grasso et al., 2011; Jouiaei et al., 2015a).
Overall, SCRiPS remain of interest for further research because
of their interesting framework and their presence in a variety of
Anthozoa organisms.

It appears likely that SCRiPs are not the only toxins present in
stony corals. Analysis of extracts from 11 different Scleractinian
coral families collected from Heron Island on the Great Barrier
Reef showed variable levels of toxicity in several assays including
mice toxicity, haemolytic activity, and antimicrobial activity
(Gunthorpe and Cameron, 1990).While the toxicity was variable,
the majority of the species tested displayed some level of
toxicity. Although the compounds responsible for the bioactivity
were not characterized in this study, a recent study on the
analysis of extracts from the nematocysts of three stony corals
(Scleractinia corals), Pseudodiploria strigosa, Porites astreoides,
and Siderastrea sidereal indicated the presence of a range of toxins
and provided insight into the chemical composition. Extracts
from all three corals were lethal to crickets, had haemolytic
and nociceptive activity to varying extents, and exhibited PLA2

and serine protease activities (Garcia-Arredondo et al., 2016).
Interestingly, although these corals are not considered harmful
to humans, the activity of these extracts is consistent with the
physiological effects caused in humans by some hydroids, such
as Millepora alcicornis and Millepora complanate, where the
toxins work as lysins on erythrocytes (Garcia-Arredondo et al.,
2016). Analysis of the extracts with SDS-PAGE indicated the
presence of a broad range of proteins that differ under reducing
conditions, and mass spectrometry analysis of a low molecular
weight fraction indicated the presence of peptides with molecular
weights in the range 3,000–6,000 Da. These peptide fractions
were subsequently shown to be lethal to crickets and cause
vasoconstriction. Further study is required to characterize these
toxins, but it could be possible that some will have similarity to
the SCRiPs family or the proteins with protease activity might
have similarity to proteases present in other venoms, such as
snake venom.

Toxins have also been predicted from the proteomics
analysis of proteins discharged from nematocysts the
stony coral Acropora digitifera, and the genome of this
organism (Gacesa et al., 2015). A total of 55 potential
toxins were predicted based on the genome but only 12
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FIGURE 1 | Phylogenetic tree representing the phylum Cnidaria based on previous descriptions (Bridge et al., 1992, 1995; Berntson et al., 1999; Marques and

Collins, 2004; Collins et al., 2006; Daly et al., 2007; Jimenez-Guri et al., 2007; Feng et al., 2014; Zapata et al., 2015) and showing the relationship of organisms

discussed in this mini-review.

TABLE 1 | Selected toxins present in the class Anthozoa, phylum Cnidaria.

Toxin Species Target MW

(kDa)

HCRG21a Sea anemone Heteractis

crispa

TRPV1 6.1

APETxb Sea anemone Anthopleura

elegantissima

ASIC3, hERG KV,

NaV1.2, 1.6, 1.8

channels

4.5–4.6

SCRiPsc Scleractinia coral – 4.3–5.8

ShKd Sea anemone Stichodactyla

helianthus

IDR KV, KV1.4

channels

4.3–5.8

PcKuz3e Zoantharia Palythoa

caribaeorum

6-OHDA-induced

neurotoxicity

5.7

Crude

venomf
Zoantharia Palythoa

caribaeorum

Nav1.7, CaV2.2,

IA, and IDR
channels

1.8–9

aMonastyrnaya et al. (2016).
bDiochot et al. (2004), Moreels et al. (2017).
cSunagawa et al. (2009).
dCastaneda et al. (1995), Prentis et al. (2018).
eLiao et al. (2018).
fLazcano-Perez et al. (2016, 2018).

were found based on the proteomic analysis of the nematocyst
extracts (Gacesa et al., 2015). These toxins are suggested
to be phospholipases and toxic peptidases based on their
similarity to other known toxins found on Tox-Prot (Gacesa
et al., 2015). Furthermore, an haemolytic toxin from the
actinoporin family has recently been characterized in Stylophora
pistilata and was suggested to be a non-nematocyst protein
(Ben-Ari et al., 2018).

Alcyonacea (Soft Coral)
Soft corals (Alcyonacea), formerly known as gorgonian corals,
contrast stony corals in that they do no create a calcium
carbonate skeleton (Alarif et al., 2019). In a similar study to the
Scleractinia coral extract analyses, Radwan et. al demonstrated
the effects of venom from three different soft corals on mice.
The corals, Nephthea sp., Dendronephthya sp., and Heteroxenia
fuscescens, were collected from the Red Sea and are known to
cause a stinging effect in humans (Radwan et al., 2002). The
data showed that extracts from nematocysts of all three corals
resulted in fractions with bioactive effects including lethality
to mice, haemolysis, vasopermeability, or dermonecrosis, with
toxins from H. fuscescens the most lethal to mice (Radwan et al.,
2002). Similar to the studies on stony corals, SDS-PAGE analysis
of the venom extracts indicates the presence of a wide range of
proteins ranging from ∼200 kDa to <6,000 Da. The bioactivity
was not restricted to one class of protein, with two fractions
from theH. fuscescens extract showing potent haemolytic activity
with one fraction containing a protein of 116 kDa and the
other containing a peptide of <6 kDa. The addition of a
variety of lipid membrane components to the venom followed
by addition of this mixture to human red blood cells instigated
a protective response of the cells against the crude venom
toxins (Radwan et al., 2002). The inhibition of a physiological
response in the cells suggests that the binding site is occupied,
with the most effective inhibition occurring by the addition
of dihydrocholesterol (Radwan et al., 2002). Occupation of the
binding site prevents the toxin binding and therefore eliciting a
physiological response on the cells. Furthermore, this research
also tested themice for antibody production. Mice injected with a

dose of venom, and provided with boosters throughout the study,
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produced an immune response in 15 days with high levels of
antibodies present in the blood (Radwan et al., 2002). Further
studies are required to fully characterize the bioactive peptides
and proteins present in the extracts.

Non-proteinaceous toxins are also present in soft corals. For
example, the small molecule toxin sarcophine was isolated from
the soft coral Sarcophyton glaucum and is toxic to fish as well as
mice, rats and guinea pigs (Ne’eman et al., 1974). Ingestion by
the animal led to a decrease in cardiac and pulmonary function
as well as motor function and body temperature of the animals
(Ne’eman et al., 1974). Using guinea pig ileum, it was shown
that sarcophine acts as a competitive inhibitor of cholinesterase
(Ne’eman et al., 1974). This coral was originally studied for its
ecological characteristics when Ne’eman et al. observed that the
fish in the area were not predating on this specific coral (Ne’eman
et al., 1974) and subsequent studies lead to the characterization
of sarcophine.

There have also been large scale studies on toxins of soft
corals found on the Great Barrier Reef in which 136 different
specimens from 15 different genera were analyzed (Coll et al.,
1982). In this study two genera were found to be the most toxic
and lethal to the fish species tested: Lemnalia and Sarcophyton
(Coll et al., 1982). The different genera of coral tested exhibited
a large range of affects, from no noticeable effect on the fish
to causing death. This study and the studies on sarcophine
involved extraction of coral tissue rather than nematocysts
extracts, which makes it difficult to identify where the compound
comes from in the coral, but these studies demonstrate the
diversity of the compounds from corals and the potent activity
they can possess.

EVOLUTION OF CORAL TOXINS

Insight into the evolution of coral toxins is primarily based
on the SCRiP family of peptides, as these are the most well-
characterized to date. As mentioned above, in contrast to the
original suggestion, SCRiPS are not only found in corals but
have been found in the sea anemones Anemonia viridis and
Metridium senile (Jouiaei et al., 2015b). The toxin τ -AnmTx Ueq
12-1 isolated from the sea anemone Urticina eques also shows
similarity to SCRiPs, in particular one cDNA matched the SCRiP
Anthopleura elegantissima comp63456_c0_seq1 (Logashina et al.,
2017). The presence of SCRiPs in corals and sea anemones
suggests that these proteins evolved more than 500 million years
ago, the estimated time when coral diverged from sea anemones
(Shinzato et al., 2011). Furthermore, molecular evolutionary
assessments indicate that coral SCRiPs have evolved under
negative selection as no sites were found that were positively
selected based on the Bayes Empirical Bayes approach (Jouiaei
et al., 2015a). The role of negative selection in coral toxin
evolution is supported by studies on the toxins of Acropora
digitifera and Stylophora pistilata (Gacesa et al., 2015; Ben-
Ari et al., 2018). Interestingly, this appears to be a general
phenomenon for venoms of ancient lineages, whereas toxins
from lineages that have evolved more recently appear to evolve
under positive selection (Lynch, 2007; Casewell et al., 2011, 2012;

Sunagar et al., 2012, 2013, 2014; Brust et al., 2013; Dutertre et al.,
2014; Jouiaei et al., 2015a; Sunagar and Moran, 2015).

Given the large number of toxins that appear to be present
in coral venom, further molecular characterization is likely to
provide further insight into the evolution of this ancient lineage.
In particular, characterization of some of the larger toxins might
provide insight into origins of a range of toxins, as analysis of the
venom from the sea anemone Stichodactyla haddoni showed that
some venom peptides have similar sequences to housekeeping
proteins involved in regulatory biological functions (Madio
et al., 2017). This is a common trend across many venomous
taxa because it is suggested that the main ways that toxins
are recruited is via gene modification of regulatory proteins,
such as sequence duplications (Fry et al., 2009). It has been
shown that cnidarian organisms rely on similar structural
frameworks of their toxins and then modify these toxins for
activity on specific targets (Honma and Shiomi, 2006; Prentis
et al., 2018). Because of this evolution from non-toxin related
proteins, we see variability in the size of peptides found in
nematocyte venom as the evolution of each peptide differs greatly
(Table 1).

Despite the similarities between cnidarian organisms, such
as coral and sea anemones, it is also likely that significant
differences in the evolution of toxins will be found based on
analysis of proteins found in the nematocysts of organisms
from three different classes of Cnidaria, namely Anthozoa,
Scyphozoa, and Hydrozoa (Rachamim et al., 2015). The
organisms analyzed from these three classes were the sea
anemone Anemonia viridis (Anthozoa), the jellyfish Aurelia
aurita (Scyphozoa) and the hydrozoan Hydra magnipapillata
(Hydrozoa). Although this analysis led to the identification of
hundreds of proteins, only six proteins were common in all
three species (Rachamim et al., 2015). Of these, most were
structural proteins and only one of the six proteins common
to all three species, the dickkopf protein, is predicted to
function as a toxin (Rachamim et al., 2015). The A. aurita
and H. magnipapillata venom showed the most similarities,
mainly composed of cytotoxins and enzymes, while the A.
viridis venom proteome composition was predominantly related
to peptide neurotoxins (Rachamim et al., 2015). The general
lack of conservation across these cnidarians might point to
significant evolutionary differences and further cnidarian toxins
promises to provide interesting insights into toxin evolution
in general.

CHALLENGES IN CNIDARIAN TOXIN
ANALYSES

In the study of venomous creatures, such as spiders and cone
snails it can often be quite straightforward to isolate the venom
with limited contamination from the environment or other
tissues. Indeed, Australian funnel-web spiders (Atracidae) can
release microlitres of venom onto their fangs that can be
“easily” recovered (Wilson and Alewood, 2004). However, for
corals and cnidarian organisms in general this is not always
the case, and can complicate the toxin extraction process
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(Garcia-Arredondo et al., 2016). A range of extraction methods
have been used in the analysis of corals and sea anemones,
including extraction of the toxins from the nematocyte in
the tissue of the coral (Garcia-Arredondo et al., 2016) and
homogenization of the whole tentacle of the sea anemone
(Prentis et al., 2018). Homogenization of the whole tentacle will
clearly yield more than just venom toxins, but even extraction
of the toxins from the nematocyst can be complicated, given the
small size of the nematocysts. Furthermore, it can be difficult to
separate out the calcareous skeleton of the coral from the tissue
itself (Garcia-Arredondo et al., 2016). The cellular contents can
have implications for interpretation of the results because some
components, such as minicollagens share characteristics similar
to the cysteine-rich toxins of interest (Madio et al., 2017).

The difficulties in defining the origin of compounds, either
from the nematocyst or other tissue, has significant implications
for elucidating evolutionary relationships for these toxins. In
particular, it is difficult to determine a common ancestor (Kayal
et al., 2018). Genome and transcriptomic analyses are likely
to provide further insight into the evolution of cnidarian
toxins. Using an integrative approach of both genomic and
transcriptomic analyses allows for a better understanding of the
active toxins found in organisms compared to the potential toxins

seen in the genome and will also allow comparison with other
toxins from a range of venomous creatures.

CONCLUSION

Coral venoms are a source of interesting novel bioactive
molecules with significant scope for further characterization
of novel toxins. Further application of analysis technologies
(e.g., genomics, transcriptomics, and proteomics) is likely to
significantly enhance the knowledge in this field and identify
novel classes of peptides/proteins. The well-characterized coral
toxins, SCRiPs, have now been identified as likely neurotoxins,
but given the highly microbial environment in which corals exist,
further analysis of the nematocyst components of corals is likely
to provide a new and unique source of antimicrobial molecules.
Studies on coral extracts have indicated that such compounds
exist. In addition, determining the composition of peptides that
make up the venom from corals may provide insight into the
overlap and differences between cnidarian groups.
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