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Biological soil crusts (BSCs) consist of a diverse and highly integrated community

of organisms that effectively colonize and collectively stabilize soil surfaces. BSCs

vary in terms of soil chemistry and texture as well as the environmental parameters

that combine to support unique combinations of organisms—including cyanobacteria

dominated, lichen-dominated, and bryophyte-dominated crusts. The list of organismal

groups that make up BSC communities in various and unique combinations include—free

living, lichenized, and mycorrhizal fungi, chemoheterotrophic bacteria, cyanobacteria,

diazotrophic bacteria and archaea, eukaryotic algae, and bryophytes. The various BSC

organismal groups demonstrate several common characteristics including—desiccation

and extreme temperature tolerance, production of various soil binding chemistries, a

near exclusive dependency on asexual reproduction, a pattern of aerial dispersal over

impressive distances, and a universal vulnerability to a wide range of human-related

perturbations. With this publication, we provide literature-based insights as to how each

organismal group contributes to the formation and maintenance of the structural and

functional attributes of BSCs, how they reproduce, and how they are dispersed. We also

emphasize the importance of effective application of molecular and microenvironment

sampling and assessment tools in order to provide cogent and essential answers that

will allow scientists and land managers to better understand and manage the biodiversity

and functional relationships of soil crust communities.

Keywords: biological soil crusts (BSCs), bacteria, fungi, terrestrial algae, bryophytes, reproduction, aerial dispersal

Biological soil crusts (BSCs) consist of various combinations of living organisms that colonize,
organize, and stabilize soil surfaces against the erosive forces of wind and water. Many BSC
organisms are photoautotrophic, fixing, and accumulating organic carbon (Green and Proctor,
2016) while other organismal groups fix and distribute organic nitrogen. Groups of organisms
known to contribute to the formation BSC communities include cyano-, chemoheterotrophic, and
diazotrophic bacteria, free-living, lichenized, and mycorrhizal fungi, terrestrial algae (including
diatoms), and bryophytes (Belnap et al., 2001;Weber et al., 2016). To be recognized as a contributor
to the formation and maintenance of BSC communities, an organism must be involved in
the consolidation and stabilization of soil particles and aggregates, resulting in the formation
of an intact BSC community. In this review of BSC organisms, we evaluate each organismal
group independently, documenting how they contribute to the formation of BSCs, and how they
reproduce and disperse.
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BACTERIA

Prokaryotic bacteria commonly found in BSC communities
include cyanobacteria, chemoheterotrophic bacteria, and free-
living diazotrophic (nitrogen fixing) bacteria.

Cyanobacteria
Cyanobacteria are photoautotrophic prokaryotes (Whitton and
Potts, 2000). Traditionally, cyanobacteria were classified with
the eukaryotic “algae” based on the presence of chlorophyll
a and the production of molecular oxygen. However, given
the absence of membrane bound subcellular structures (e.g.,
nuclei, mitochondria, etc.) and the occurrence of prokaryotic
type ribosomes, the cyanobacteria are now classified as bacteria.
Cyanobacteria also produce a unique cell wall chemistry
containing peptidoglycans rather than cellulose. Thallus-types
range from unicellular to multicellular filaments, sheets, or
globular thalli (Schirrmeister et al., 2011; Herrero et al., 2016).
Numerous genera of BSC cyanobacteria have been reported—
spanning five orders, Chroococcales, Nostocales, Oscillatoriales,
Pleurocapsales, and Synechococcales. Cyanobacteria are
recognized as one of the most important and abundant
photoautotrophs in many arid land BSC communities (Colesie
et al., 2016)—occurring at or just below the soil surface (Hu
et al., 2003). Through photosynthesis, cyanobacteria contribute
significant fixed carbon to the BSC community. Many species,
including many of the filamentous and globular forms, also
produce heterocysts, specialized nitrogen fixing structures
(Fay, 1992; Bergman et al., 1997; Kumar et al., 2010). Nitrogen
fixing cyanobacteria, both as free living and symbiotic forms,
also contribute organic nitrogen to the general soil crust
community (Bergman et al., 1997). Filamentous species such
as Microcoleus are capable of binding together into rope-like
structures that allows them to colonize physically unstable
sedimentary environments (Garcia-Pichel and Wojciechowski,
2009). Some filamentous species also secrete exopolysaccharides
that effectively aggregate soil particles and thus contribute to BSC
structure and stability (Rossi and De Philippis, 2015). Terrestrial
cyanobacteria are poikilohydric—tolerating severe desiccation
as well as high levels of UV light (Karsten and Holzinger, 2014).
The UV filtering capacity of terrestrial cyanobacteria is related
to the presence of light screening compounds found in their
cells and sheath material, often resulting in the characteristic
dark color typical of many cyanobacteria-dominated BSC
communities (Scherer et al., 1988; Rosentreter et al., 2007;
Rastogi and Incharoensakdi, 2014). During winter months, the
authors have anecdotally observed that the dark surface of BSC
communities in the Great Basin tends to absorb winter sunlight,
causing snow and ice to melt providing the BSC community with
liquid water that in turn potentially supports brief but important
periods of metabolic activity.

Reproduction in the cyanobacteria is strictly asexual (Mur
et al., 1999) and may be accomplished by budding (Waterbury
and Stanier, 1977), non-specialized thallus fragments (Meeks
and Elhai, 2002), binary fission (Kunkel, 1984), or the
formation of specialized asexual structures (Somon, 1977)

including akinetes (Kaplan-Levy et al., 2010). Hormogonia—
specialized thallus fragments commonly produced by some
filamentous cyanobacteria (Campbell and Meeks, 1989; Meeks
and Elhai, 2002) also function as effective asexual propagules.
Cyanobacteria act as pioneer species while also commonly
occurring in more mature BSC communities as both free living
and symbiotic taxa.

Cyanobacteria have been found in BSC communities on
all continents, and upwards of 50 taxa have been identified
from regional samples of BSC communities (Rippin et al.,
2018). Many terrestrial cyanobacteria have also been collected
from the atmosphere (Sharma and Singh, 2010; Genitsaris
et al., 2011) and are among the most numerous airborne
microorganisms reported from aerial samples (Sharma and
Singh, 2010; Després et al., 2012). In terrestrial environments,
filamentous cyanobacteria are able to glide along thin layers of
water coating soil particles when the soil is moist (Castenholz,
1982; Hoiczyk, 2000). However, in terrestrial environments, local
dispersal distances are extremely limited (cm scale) compared
to dispersal through the air (km or intercontinental scale). In
Antarctica, cyanobacterial communities in close proximity to
each other had a low degree of similarity with each other,
indicating the probability of longer-distance aerial transport
(Namsaraev et al., 2010).

Chemoheterotrophic Bacteria and
Free-Living Diazotrophic Bacteria
Chemoheterotrophic bacteria and free-living diazotrophic
bacteria commonly integrate and closely interact with other
BSC organismal groups. They are, however, one of the least
studied and understood constituents of BSCs. These bacteria
reside in a nutrient-rich zone where cyanobacteria and other
biocrust constituents create a “cyanosphere” (Couradeau et al.,
2019) with relatively enhanced organic carbon, nitrogen, and
water availability. Large numbers of soil heterotrophic bacteria
are positively correlated with BSC stability (Andrade et al.,
1998; Makhalanyane et al., 2015; Nunes da Rocha et al., 2015).
Many heterotrophic bacteria are filamentous and/or produce
exopolysaccharides (Crania et al., 2019), characteristics that
contribute to the formation and stabilization of BSCs. The
occurrence of these BSC bacteria are ultimately a product of
multiple environmental filters (e.g., climate, soil type, and
disturbance regimes Eldridge and Delgado-Baquerizo, 2019.
Each crust type (cyanobacteria dominated, lichen-dominated,
and bryophyte-dominated) exerts control over the bacterial
phyla and families present (Maier et al., 2018). To begin to
identify the higher-taxonomical convergence among BSC
bacteria, other than cyanobacteria, we examined the patterns of
abundant bacterial families in the three crust types (Table 1).
Of the 24 dominant heterotrophic bacterial orders/families
found to occur in BSC communities over eleven studies, nine
were cosmopolitan taxa [i.e., present in all three biocrust
types, Acidobacteriaceae (Acidobacteria), Rubrobacteraceae
(Actinobacteria), Shingomonadaceae (Alphaproteobacteria),
Bradyrhizobiaceae (Alphaproteobacteria), Rhodobacterales
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(Alphaproteobacteria) Chitinophagaceae (Bacteroidetes),
Cytophagaceae (Bacteroidetes), Oxalobacteraceae
(Betaproteobacteria), Chthoniobacteraceae (Verrucomicrobia)],
while five were unique to either cyanobacteria-dominated
[i.e., Solirubrobacterales (Actinobacteria), Burkholderiales
(Betaproteobacteria), Trueperaceae (Deinicoccus-Thermus)
or lichen-dominated crusts [i.e., Armatiomonadaceae
(Armatimonadetes), Cystobacteraceae (Deltaproteobacteria)].
The Alphaproteobacteria contained the greatest number of
families at five, followed by the Actinobacteria that housed
four families or orders. The most commonly found taxon in
cyanobacteria-dominated crusts was the Rubrobacteraceae
(Actinobacteria), and Shingomonadaceae (Alphaproteobacteria)
in lichen- and moss-dominated crusts. These patterns may serve
as a starting point for a conversation to find novel community
patterns among biocrust copiotrophs. In all BSCs, regardless
of the type, heterotrophic bacteria exert significant influence
over soil biogeochemistry and structure by regulating carbon
and nitrogen cycling (Schimel and Schaeffer, 2012; Nelson
et al., 2016). In addition, the production of exopolymeric
compounds by many heterotrophic bacteria contributes to soil
aggregation that has a direct influence on water infiltration
and soil structure (Costa et al., 2018). The presence of free-
living diazotrophs (N-fixing bacteria and archaea) within the
cyanosphere (Couradeau et al., 2019) adds essential available
nitrogen to predominantly nitrogen-limited desert soils. In
Microcoleus vaginatus-dominated crusts, Couradeau et al. (2019)
identified multiple heterotrophic diazotrophs associated with
several taxa from the Alphaproteobacteria, Betaproteobacteria,
and Gammaproteobacteria groups. Furthermore, in developing
cyanobacteria-dominated BSCs several of the same diazotrophs
were identified by Pepe-Ranney et al. (2016) using 15N-DNA
SIP methods.

Biological soil crust bacteria, like other soil bacteria, reproduce
rapidly by binary fission when conditions are favorable.
Otherwise, they enter a reversible state of reduced metabolic
activity or dormancy. Dormancy establishes reservoirs of inactive
individuals that resume metabolic and reproductive activity
when appropriate environmental conditions return (Lennon and
Jones, 2011; Joergensen and Wichern, 2018). Potentially, as
much as 90% of the BSC microbial community is inactive with
more than 50% of all bacterial taxa dormant during periods of
stress (Alvarez et al., 1998; Lennon and Jones, 2011; Aanderud
et al., 2015). Invariably, the single most limiting resource
contributing to the onset of dormancy in the BSC community
is soil moisture. For example, using H218O RNA-stable
isotope probes in a cyanobacteria-dominated BSC community
in Israel’s Negev Desert, the rewetting of dry crusts caused
bacteria to grow, resulting in the development of a distinctly
different bacterial community with the previously dominant
Actinobacteria population significantly reduced (Angel and
Conrad, 2013). BSCs host a diverse bacterial community whose
members grow, interact, and alter community composition
depending on environmental conditions and activities that may
impact BSC structure and health.

The primary dispersal mechanism for heterotrophic bacteria
and diazotrophs within the BSC community is bioaerosols.

Although BSCs generally stabilize desert soils against wind
erosion, dust entrainment is the primary pathway for the
movement of BSC bacteria from arid and semi-arid BSC
communities. The various biological components of BSCs differ
in their contributions and role in reducing soil erosion (Belnap
and Gardner, 1993; Mazor et al., 1996; Bowker et al., 2008; Tisdall
et al., 2012). Notwithstanding all the erosion benefits provided
by BSCs, deserts remain a primary source of dust globally with
desert winds aerosolizing several billion tons of soil-derived dust
each year (Kellogg and Griffin, 2006). Local dispersal of bacteria
occurs through the soil matrix but is extremely limited (at a cm
scale) compared to dispersal through the air (intercontinental, at
a km scale) (Choudoir et al., 2018). Dust from deserts may travel
across continents providing an opportunity for BSC organismal
groups to disperse across long distances. For example, dusty snow
on Mont Blanc in the alps on the French and Italian border
contained soil bacteria deposited by four Saharan desert dust
storms over a 3-year period (Chuvochina et al., 2011). Similarly,
dust from deserts in Chad were deposited in the Cape Verde
Islands with many of the dust-borne bacterial families identical
to families commonly reported for BSC communities (Favet
et al., 2013). Dust contains an immense diversity of bacteria
(Choudoir et al., 2018; Dastrup et al., 2018) and retains much
of the diversity profile typical of soil surfaces (Boose et al., 2016;
Weil et al., 2017; Dastrup et al., 2018). Dust also acts as a
source of wind-borne propagules with dust particles settling in
response to gravity or acting as ice nucleators enhancing snowfall
(Christner et al., 2008). Dust entrainment from deserts is also
enhanced by anthropogenic disturbance of soil surfaces (Belnap
and Gillette, 1998). Disturbed BSC communities have been
shown to serve as a source of inoculants (Warren et al., 2019),
further enhancing dispersal bridges between crust communities
or into open habitats—suitable for biocrust development.

FUNGI

Three categories of fungi are reported for BSC communities
including free-living fungi, lichenized fungi, and mycorrhizal
fungi. All three groups of terrestrial fungi play important
ecological roles in the establishment and maintenance of
BSC communities.

Free-Living Fungi
Free-living fungi are eukaryotic heterotrophs that acquire energy
and matter from other organisms (living or dead). They produce
a wide range of enzymes that degrade chitin, keratin, cellulose,
and lignin (Alexopoulos et al., 1996; Kendrick, 2017), substrates
that are not readily degraded by other organisms. Fungi have
the unique ability to digest/consume organic substrates while
also releasing compounds that are often appropriated by other
organisms. Moreover, fungi are also able to survive extreme
environments such as temperature extremes, desiccation, pH
extremes, etc. (Kendrick, 2017). Fungi in general are recognized
for their role as decomposers, and their ability to withstand
environmental extremes. They are now often included in the
suite of microorganisms that comprise BSCs, primarily because
of their contributions to the process of consolidating and
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TABLE 1 | Abundant chemoheterotrophic bacterial families/orders in cyanobacteria-dominated, lichen-dominated, and/or bryophyte-dominated biocrusts based on

eleven studies.

Phylum or Class Orders/Family Cyanobacteria-dominated Lichen-dominated Bryophyte-dominated

ACIDOBACTERIA

Acidobacteriaceae Maier et al., 2018 Maier et al., 2018; Aanderud

et al., in review

Maier et al., 2018

ACTINOBACTERIA

Actinomycetales

Actinomycetaceae

Gundlapally and Garcia-Pichel, 2006;

Angel and Conrad, 2013

Maier et al., 2014

Nocardioidaceae Maier et al., 2018 Aanderud et al., in review

Rubrobacteraceae Nagy et al., 2005; Gundlapally and

Garcia-Pichel, 2006; Angel and

Conrad, 2013; Maier et al., 2018

Kuske et al., 2012; Maier et al.,

2018; Aanderud et al., in review

Maier et al., 2018

Solirubrobacterales Angel and Conrad, 2013

ALPHAPROTEOBACTERIA

Shingomonadaceae Maier et al., 2018 Kuske et al., 2012; Steven et al.,

2013; Maier et al., 2014, 2018;

Aanderud et al., in review

Moquin et al., 2012;

Navarro-Noya et al., 2014; Maier

et al., 2018; Aanderud et al., in

review

Bradyrhizobiaceae Maier et al., 2018 Maier et al., 2018 Navarro-Noya et al., 2014; Maier

et al., 2018

Rhizobiales

Methylobacteriaceae

Angel and Conrad, 2013; Steven

et al., 2014

Aanderud et al., in review

Rhodobacterales

Rhodobiaceae

Angel and Conrad, 2013; Maier et al.,

2018

Maier et al., 2018 Maier et al., 2018

Rhodospirillales

Acetobacteraceae

Angel and Conrad, 2013 Aanderud et al., in review

Rubrobacteraceae Angel and Conrad, 2013

ARMATIMONADETES

Armatiomonadaceae Maier et al., 2018

BACTEROIDETES

Chitinophagaceae Maier et al., 2018 Kuske et al., 2012; Maier et al.,

2018

Maier et al., 2018

Cytophagaceae Maier et al., 2018 Maier et al., 2018 Maier et al., 2018

Sphingobacteriales Angel and Conrad, 2013 Maier et al., 2014

BETAPROTEOBACTERIA

Burkholderiales Angel and Conrad, 2013

Oxalobacteraceae Nagy et al., 2005 Maier et al., 2018 Moquin et al., 2012

DEINICOCCUS-THERMUS

Trueperaceae Maier et al., 2018

DELTAPROTEOBACTERIA

Cystobacteraceae Steven et al., 2013

VERRUCOMICROBIA

Chthoniobacteraceae Maier et al., 2018 Maier et al., 2018 Maier et al., 2018

Abundance is based on taxa possessing >1% of the community relative recovery from next-generation sequencing or a high percent of sequences from cloning efforts. Taxa from

polar biocrusts are excluded due to polar crusts often being phylogenetically distinct. Studies investigating lichen- and moss-dominated biocrusts contained cyanobacteria with some

moss-dominated biocrusts containing low levels of lichen cover and vice-vs. for lichen-dominated crusts.

stabilizing soil particles and aggregates (Caesar-TonThat and
Cochran, 2001; States et al., 2001). Free-living fungi are found
in greater abundance in well-developed BSCs than uncrusted
neighboring soils (Maier et al., 2016). Although free-living fungi
have been recognized as an important component of the BSC
micro-community, research on free-living fungal communities
in biocrusts has been limited and generally descriptive in
nature (Bates and Garcia-Pichel, 2009; Bates et al., 2012; Steven
et al., 2015). Ascomycota represents the predominant fungal
phylum in BSCs (Maier et al., 2016). However, research has
shown that the composition of BSC fungal communities differs

based on soil types and geographical location (Reininger et al.,
2015). In general, fungi produce vegetative filaments (hyphae)
which bind soil particles together and help to consolidate
the surface of BSC communities (Tisdall, 1991; Degens et al.,
1996). More specifically, many of the major BSC free-living
fungi in the Ascomycota are classified in the Dothideomycetes
class of the Pleosporales order. Members of this group of
fungi are called dark-septate endophytic fungi, due to the
dark pigments commonly found in their cell walls. These
pigments are usually melanin and mycosporine-like amino acids
which provide protection in environments of severe desiccation
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and high levels of UV light (Oren and Gunde-Cimerman,
2007; Gostinčar et al., 2009). There are two types of melanin
produced by melanized fungi: 1,8-DHN melanin and L-Dopa
melanin (Henson et al., 1999). Dark-septate fungi have also
been suggested as contributors to nutrient links between desert
vascular plants and the BSC community (Maier et al., 2016). As
a result, free-living fungi have been proposed as an important
component in the fungal loop hypothesis that suggests that
nutrient exchange and the vascular plant-BSC connection may
be mediated by fungi (Collins et al., 2008; Green et al., 2008).

While almost all free-living fungi are capable of sexual
reproduction, sex is costly (Aanen and Hoekstra, 2007), and
most fungi generally reproduce using a variety of asexual
mechanisms (Nieuwenhuis and James, 2016; Ojeda-López et al.,
2018). Asexual reproduction may be accomplished by fission
or budding of somatic cells, fragmentation of mycelial strands
or hyphae, or production of asexual spores. All such processes
result in haploid individuals. Because sexual reproduction is
possible yet infrequent, outcrossing is, likewise, rare to infrequent
(Nieuwenhuis and James, 2016; Ojeda-López et al., 2018).
Indeed, sexual reproduction is infrequent in many fungi, yet
self-fertility is relatively common (Lee et al., 2010). In BSCs,
free-living fungi are generally classified based on their asexual
reproductive structures and confirmed more specifically by
limited observations of sexual fruiting bodies (Maier et al.,
2016). BSCs are dominated by Dothideomycetes fungi (Steven
et al., 2015) which are most often found in their anamorph
(asexual) state and are recognized as filamentous molds
when cultured in the laboratory. They reproduce asexually
by producing non-motile conidia type spores that can be
dispersed by wind or insects. Black yeasts are a second common
morphotype encountered when culturing fungi from BSCs
and encompasses two distinct fungal evolutionary lineages,
Dothideomycetes and Chaetothyriales (Eurotiomycetes). The
black yeasts are characterized by thick, melanized cell walls,
and exopolysaccharide production that support a variety of
extremophile properties that allow them to endure high UV
radiation and extreme desiccation, while also contributing to the
consolidation of soil particles. The black yeasts have only been
documented to reproduce asexually through the production of
conidia type spores and unicellular budding. Some species of
black yeasts produce fission or budding divisions when grown in
submerged environments while others are capable of producing
conidiophores when growing in low moisture environments
(Seyedmousavi et al., 2014).

Some free-living fungi produce specialized structures that
forcibly eject thousands of spores into the air (Roper et al., 2010;
https://www.anbg.gov.au/fungi/dispersal.html). Ascomycota are
the dominant group of fungi in BSCs, and are also the
dominant fungi found in aerobiota (Frölich-Nowoisky et al.,
2016). Generally, fungal species, which rely on windblown
dispersal, produce aerodynamically shaped spores that can be
transported thousands of kilometers through the atmosphere
(Golan and Pringle, 2017). Abundant and diverse numbers of
fungal spores have been collected from the atmosphere above
Antarctica (Marshall, 1997), Australia (Mitakakis and Guest,
2001), Brazil (Womack et al., 2015), Chile (Ibañez et al., 2001),

China (Fang et al., 2005), India (Priyamvada et al., 2017), Iran
(Shams-Ghahfarokhi et al., 2014), Italy (Sandrone, 2014), Kuwait
(Halwagy, 1994), Mexico (Rosas et al., 1990), Nigeria (Ezike et al.,
2016), Poland (Stȩpalska and Wolek, 2005), Spain (Sabariego
et al., 2007), and the United States (Dupont et al., 1967), among
others. The quantity and diversity of airborne fungal spores is
seasonally variable (Reineria Diaz et al., 1998; Kasprzyk and
Worek, 2006). Their function is dispersal followed by growth and
development of vegetative structures when essential resources
and ideal environmental conditions are available (Kendrick,
2017). Due to the arbitrary nature of wind dispersal, spores may
not encounter conditions suitable for germination and viability.
To increase their chances of reproductive success, many fungi
produce and release an “over-abundance” of spores throughout
the year to ensure that a sustainable number encounter a
suitable environment with essential resources to accommodate
germination and establishment (Kendrick, 2017). The regional
production of spores is dependent on the availability of water
and local spore trapping show a cyclical pattern dependent on
moisture patterns. Global dispersal of fungal spores is facilitated
by dust-borne transport that in turn supports proliferation
processes (Shinn et al., 2003).

Lichenized Fungi
Lichenized fungi include more than 19,000 species (Lücking
et al., 2016, 2017). Lichens are composite systems involving
complicated symbiotic interactions between heterotrophic fungi
primarily of the phylum Ascomycota or less frequently of
the phylum Basidiomycota, and a green alga and/or a
cyanobacterium (Brodo et al., 2001). The fungus, or mycobiont,
provides structure and a favorable living environment in the
form of a thallus or vegetative plant-like body undifferentiated
into true stems, roots, and leaves, and lacking a vascular system.
The green alga and/or cyanobacterium photobionts provide a
carbon-based food source for themselves and the mycobiont
through photosynthesis. In those cases where the photobiont
is a cyanobacterium, it also fixes atmospheric nitrogen. Lichen
scientific names are based strictly on the fungal symbiont, which
can cause some confusion when trying to determine if a BSC
fungus is lichenized or not—unless an intact lichen thallus is
observed or collected and identified by a trained lichenologist.
Lichens are broadly classified based on their thallus morphology
as being crustose, squamulose, foliose, or fruticose. Crustose
lichens are crust-like. They are slow-growing and adhere tightly
to the substrate or, in some cases, are physically integrated
into the surface of the substrate (Armstrong and Bradwell,
2010). Squamulose lichens are composed of tightly clustered
or overlapping scale-like structures (squamules) with no or
only a poorly developed lower surface. However, squamules of
some squamulose species form rhizoidal hyphae on their lower
surface that effectively anchor the squamules to the soil surface.
Squamulose lichens constitute one of the most common growth
forms associated with BSCs (St. Clair et al., 1993). Foliose lichens
are leaf-like, with distinctive upper and lower surfaces and are
generally loosely attached to the substrate by root-like structures
called rhizines (Brodo et al., 2001). Fruticose lichens are highly
branched and are either upright and shrubby or pendant with a
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single point of attachment (Baron, 1999). BSC lichen dominated
communities tend to be more common in undisturbed locations
with well-developed vertical BSC structure (Rosentreter et al.,
2007). Some BSC lichens, mostly foliose forms referred to as
“vagrant lichens” (e.g., the lichen genera Xanthoparmelia and
Rhizoplaca), occur unattached on the soil surface (Rosentreter,
1993). Generally, some of the more common BSC lichen genera
include Psora, Placidium, Xanthocarpia, Lecanora, Circinaria,
and Acarospora. Lichens have a broad distribution, occurring
on a variety of substrates and occupying habitats ranging from
the humid tropics to hyper-arid zones, and from the frigid
tundra to hot deserts. When dry, they suspend all metabolic
activity and are able to tolerate extremely high temperatures
for extended periods of time. Lichens occur on a variety of
substrates, including soil, rocks, monuments, statues, roofs, walls,
fences, bark, and decorticated wood (St. Clair and Seaward,
2004). Lichens contribute to the weathering of stone substrates
by producing weak organic acids (Chen et al., 2000; Souza-Egipsy
et al., 2004; Leger and Forister, 2009). Lichens are desiccation-
tolerant allowing them to inhabit very harsh environments and
experience drought conditions for extended periods (Nash et al.,
1990; Kranner et al., 2008).

Some lichens reproduce asexually using unspecialized thallus
fragments (Armstrong, 2017; Almeida Pereira et al., 2018) or
through the formation of small-specialized asexual structures
containing cells of both the mycobiont and the photobiont.
These specialized asexual structures include soredia, isidia,
and lobules (Ott et al., 1993). Soredia are small, spherical
bundles of algal cells wrapped in a mesh of fungal hyphae.
Soredia frequently occur as powdery patches (soralia), which
erupt through the upper surface (cortex) of some lichens.
Isidia are specialized thallus fragments of various shapes and
configurations attached to the upper surfaces of lichens. Like
soredia, isidia contain both algal cells and fungal hyphae;
however, unlike soredia the surfaces of isidia are encased in
a layer of cortical cells. Lobules are small, flattened, variously
shaped structures that generally occur along the edges of the
thallus of some lichens. These specialized asexual regenerative
structures are easily detached from the thallus surface by wind,
rain, or other physical disturbance (Blackwell et al., 1996) and
may subsequently be dispersed to a new suitable substrate
where they become attached and form a new lichen thallus.
Lichens commonly reproduce sexually as well; however, sexual
reproduction in lichens is limited to the fungal partner, which
produces sexual spores called ascospores within fruiting bodies
called ascocarps. The photobiont (alga or cyanobacterium) is
also capable of sexual reproduction, but, unlike the fungus,
not while engaged in the lichen symbiosis. The primary
limitation to sexual reproduction in lichens is the obstacle of
the germinating ascospore encountering a viable photobiont
partner in the process of attempting to reconstitute a new
lichen thallus (Bowler and Rundel, 1975). However, the fact
that many broadly distributed lichen species reproduce only
sexually through the production of ascospores suggests that
the likelihood of an ascospore germinating and surviving long
enough to encounter an appropriate photobiont happens with
impressive frequency. Though little is known about the dispersal

of lichen gametes, the gametes of the lichen-forming fungus,
Lobaria pulmonaria, are known to have an aerial dispersal
range of several hundred meters to kilometers from mature
individuals. On the other hand, clonal propagules (i.e., soredia
and isidia) disperse over a distance of tens of meters while
spores may be dispersed for several kilometers (Ronnås et al.,
2017). However, joint dispersal of the mycobiont and photobiont
does not necessarily imply that the two will be rejoined
(Wornik and Grube, 2010). Indeed, they may switch symbiotic
partners (Ertz et al., 2018).

Lichen thalli, are readily dispersed into adjacent and expanded
habitats as both sexual and asexual propagules. Dispersal of either
non-specialized or specialized thallus fragments over significant
distances is accomplished by wind, water, or as attached to animal
feathers, fur, or feet (Bailey, 1966). Researchers in northeastern
Germany, a region not known for high winds, found that
the dispersal distance of lichen fragments was negligible, and
was measured in centimeters (Heinken, 1999). In contrast,
areas where high surface winds are more common, lichen
thallus fragments, detached reproductive structures (soredia,
isidia, lobules), and spores can be lifted into the atmosphere
and transported very long distances (Després et al., 2012). For
example, lichen soredia have been collected at high altitudes in
southwest Spain (Tormo et al., 2001) and Antarctica (Marshall,
1996). Airborne asexual lichen fragments have been collected
from rooftops throughout the continental United States (Tripp
et al., 2016). On an ocean voyage from the Polish Antarctic
Station on King George Island by way of South Shetland Island
to Gdynia, Poland, scientists intended to collect pollen grains
daily on blotter paper. In addition to pollen, the scientists
commonly found fungal spores, lichen thallus fragments, isidia,
and soredia in abundance in all samples, indicating widespread
distribution of airborne lichen propagules (Harmata and Olech,
1991). The abundance and distribution of fungal spores vary
by species and climate (Marshall, 1997). The lichen genus
Ramalina is found on the main island of New Zealand, as
well as the outlying islands of New Zealand (Bannister and
Blanchon, 2003), suggesting long-distance dispersal. The foliose
lichen genus Xanthoparmelia, purportedly originated in South
Africa, but is now present in South and North America as well as
Australia (Amo de Paz et al., 2012).

Mycorrhizal Fungi
Mycorrhizal fungi are obligate plant root symbionts that provide
their host plants with increased water and nutrient absorption
capacity while the plant provides the fungus with carbohydrates
from photosynthesis (Berruti et al., 2015). The roots of more
than 80% of terrestrial plant species are obligatorily associated
with mycorrizal fungi (Pirozynski, 1981; Smith and Read, 2008).
In a mycorrhizal association, the fungus colonizes the host
plant’s roots, either intracellularly as in endomycorrhizal fungi or
extracellularly as in ectomycorrhizal fungi. In endomycorrhizal
fungi, the fungal hyphae penetrate the cortical layer of cells
below the epidermis of the plant root. Some endomycorrhizal
fungi form an intercellular multi-branched hyphal structure
with slightly swollen chambers to store nutrients. Such a
structure resembles a tree. Hence, such endomycorrhizal fungi
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are often referred to as vesicular mycorrhizae or vesicular-
arbuscular mycorrhizae, or simply VM or VAM for short.
All vesicular or vesicular-arbuscular mycorrizae are formed
by members of the Glomeromycota phylum of the kingdom
fungi (Kehri et al., 2018). There is a trend toward host-
specificity among mycorrhizal fungi (Torrecillas et al., 2012)
such that mycorrhizal fugal diversity can be used as an index
of plant biodiversity in similar ecosystems (van der Heijden
et al., 1998). Soils with vesicular arbuscular mycorrhizal fungi
have significantly more stable aggregates than soils without
(Andrade et al., 1995). The mycelia of mycorrhizal fungi can
extend several centimeters beyond the plant roots, forming a
mycelial mesh that binds soil particles (Miller and Jastrow, 1992;
Soka and Ritchie, 2014). The mycelia also produce a glue-like
glycoprotein, glomalin, that functions as an adhesive that binds
soil particles together thus reducing soil erosion (Gianinazzi
et al., 2010; Singh, 2012; Gomathy et al., 2018; Prasad et al.,
2018), while enhancing the structural integrity of the BSC
community (Chaudhary et al., 2009).

Sexual reproduction in Glomeromycota is unknown
(Pawlowska, 2005). Hence, reliance on asexual modes of
reproduction is essential. Typically, mycorrhizal fungi reproduce
by asexual spores (Camargo-Ricalde, 2002; Marleau et al., 2011)
or by hyphal fragments or plant roots containing mycorrhizal
hyphae (Berruti et al., 2014).

Dispersal of mycorrhizal fungi is facilitated by the activity
of burrowing insects, rodents as well as birds that disperse
spores or hyphal fragments for short distances or expose them
to the erosive forces of water and wind (Camargo-Ricalde,
2002) that can move them much farther. Recent research has
documented large numbers of airborne mycorrhizal spores in
a variety of different biomes and ecoregions in North America
where they were previously unknown (Egan et al., 2014). Spores
were most frequent in the air above more arid ecosystems,
suggesting that they are more likely dispersed aerially from
those systems. Efforts to detect and identify airborne mycorrhizal
propagules is often difficult and tends to under-report some
fungal taxa. The use of molecular approaches such as DNA
metabarcoding, however, can uncover fungal diversity missed
by traditional morphological techniques including microscopy
(Pashley et al., 2012; Chen et al., 2018), thus providing a
more comprehensive estimate of fungal diversity in aerial
samples (Banchi et al., 2018).

TERRESTRIAL ALGAE

Terrestrial eukaryotic algae of BSC communities include
green algae, diatoms, xanthophytes, and eustigmatophytes.
Like cyanobacteria, eukaryotic algae are photoautotrophic,
using energy from sunlight to synthesize energy-rich organic
compounds. Unlike cyanobacteria, they possess well-defined,
membrane-bound, subcellular structures (e.g., nuclei,
mitochondria, etc.) and may reproduce sexually. Although
eukaryotic algae are usually aquatic, many species inhabit the
soil, and participate in the formation of BSCs. Here we focus
specifically on two groups of eukaryotic algae that are known

to contribute to the structure of BSCs, namely, the green algae
and diatoms.

Green Algae
Green algae of BSCs include free living and lichenized species,
and most are unicellular, colonial, or filamentous in morphology.
Several classes of green algae (Chlorophyceae, Trebouxiophyceae,
Ulvophyceae, Klebsormidiophyceae, and Zygnematophyceae)
including dozens of genera are found in BSC communities. In
many cases, species of BSC green algae are closely related to
aquatic sister species found in freshwater habitats, suggesting
that the evolutionary transition to BSC habitats has happened
many times in the green algae (Lewis and Lewis, 2005; Fučíková
et al., 2014). As a group, green algal cell walls are highly
diverse and include cellulose as well as other polysaccharides, and
glycoproteins (Domozych and Domozych, 2014). Under certain
conditions, filamentous green algae (e.g., Klebsormidium) may
achieve high biomass and contribute to the consolidation of soil
particles in BSCs due to their sticky polysaccharide-containing
cell sheaths and exudates (Hoppert et al., 2004; Warren, 2014;
Büdel et al., 2016). Other green algae may have lower biomass,
but they alsomay produce sheathmaterial that directly adheres to
cyanobacteria, fungi, and other green algae (Hoppert et al., 2004).
Hu et al. (2003) characterized the vertical profile of algae in a BSC
“horizon,” intricately mapping the physical locations of green
algae and other species. Green algae typically are distributed just
below the surface of desert crusts, but they are known to form
thick mats at the soil surface in other types of BSC communities
(Hu et al., 2003; Hoppert et al., 2004). Some green algal taxa
also live symbiotically as lichen photobionts and are typically
distributed just below the surface of lichen thalli, their cells
protected by fungal sunscreens (Nguyen et al., 2013).

Among BSC green algae, propagules include zygotes, asexual
spores, or filament fragments. In nearly all cases, the green
algae of BSC are small, unicellular, with dominant haploid
vegetative stages. They can reproduce sexually, or asexually by
fragmentation of filaments or simple cell division, by autospores
(non-motile cells formed inside the mother cell wall), and
through zoospores (flagellated cells). In aquatic relatives of BSC
green algae, the diploid stage (zygote) is considered the stage
that persists under conditions not supporting active growth (e.g.,
lack of water, freezing temperatures). For example, in temperate
regions, the zygotes of pond algae persist in sediments over
winter, and in the spring they undergo meiosis directly to form
haploid vegetative cells. Likewise, if zygotes were formed by BSC
green algae, they also could potentially serve as resistant aerial
propagules. Motile cells have been documented in BSC species
(Flechtner et al., 2013) but it is not clear if these represent gametes
or zoospores because these stages often are morphologically
similar. Sexual reproduction is difficult to demonstrate in
unicellular terrestrial green algae unless the fusion of motile
gametes is observed directly or zygotes are observed. Sex is
difficult to induce even in the laboratory, and generally is not
tested in cultured algae. It is also impossible to detect directly in
field-collected material. That said, sexual reproduction is thought
to be possible in these species, even if rare. Support for this is
indirect, coming from surveys of genomic and transcriptomic

Frontiers in Ecology and Evolution | www.frontiersin.org 7 October 2019 | Volume 7 | Article 344

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Warren et al. Biological Soil Crust Organisms

data for meiosis genes in diverse eukaryotes, which are present
in many trebouxiophycean genera, including terrestrial taxa
(Fučíková et al., 2015). However, compared to algae living in
aquatic habitats the opportunities for sexual reproduction in BSC
taxa is greatly constrained because green algae require liquid
water for their swimming gametes and because green algae in
BSCs often are not present in high densities.

Green algae of BSCs do not necessarily need specialized spores
or zygotes to disperse. Reproductive propagules of unicellular
and multicellular eukaryotic algae are mostly dispersed aerially
(Brown et al., 1964; Broady and Smith, 1994; Tesson et al., 2016).
Genitsaris et al. (2011) documented 353 morphological taxa that
have been reported in the literature related to aerobiology, with
more reported regularly. The fact that new, cryptic species are
being discovered and described (Cardon et al., 2008) suggests
that additional species will be added to the list of aerobionts.
Many algae occur in both the Arctic and Antarctic polar regions
demonstrating a significant capacity for global long-distance
dispersal (Jungblut et al., 2012). In addition to their occurrence
in BSCs, airborne algae may also be deposited and survive on
a variety of other substrates, including tree bark (Kharkongor
and Ramanujam, 2014), glaciers and snow fields (Takeuchi,
2001; Kvíderova, 2012), polar fellfields (Marshall and Chalmers,
1997), and exterior building walls (Nakajima et al., 2015).In fact,
the ability of vegetative cells to survive without water can be
immediate. Hydrated, actively growing cells from diverse genera
of green algae have been shown to survive rapid desiccation
(Gray et al., 2007; Cardon et al., 2008) indicating the presence
of mechanisms that prepare even actively growing cells for
desiccation. In other species, the ability to survive is a function
of the age of vegetative cells. For example, compared to young
cells of the alpine taxon Zygnema that are tolerant to exposure
to high UV-B stress (Holzinger et al., 2018) and Herburger et al.
(2015) demonstrated that older vegetative cells (akinetes) are
more tolerant to desiccation. Such stages likely are important to
the ability of some species to survive long-range dispersal. To
be part of the aerial flora, and in order to successfully colonize
BSC habitats after dispersal, algae need to produce structures
that can be lifted and moved in the air, and they need traits that
enhance survival under drying conditions (Sharma and Singh,
2010). These algae exhibit the hallmarks of poikilohydry, by
equilibrating to ambient humidity and having rapid responses
upon water gain [reviewed in Green and Proctor (2016)]. Green
algae, like cyanobacteria, and other photosynthetic species must
also be able to survive in high light and possibly high UV
habitats (Karsten and Holzinger, 2014), allowing them to survive
in harsh, high elevation terrestrial habitats and during transport,
deposition, and settlement while airborne (Tesson et al., 2016).
Protective compounds including carotenoids, mycosporine-like
amino acids, and a variety of phenolics are known in green algae
(Kitzing et al., 2014; Holzinger et al., 2018). Diverse airborne
green (and other) algae were noted by early researchers including
van Overeem (1937) and Brown et al. (1964), with a recent review
by Tesson et al. (2016). Given that BSC green algae are so diverse,
and that different reproductive stages can survive dispersal, it
is reasonable to assume that the underlying mechanisms that
allow these species to live in habitats supporting BSCs may also

vary (Holzinger and Karsten, 2013). While airborne, microalgae
are tolerant to freezing temperatures and desiccation and are
important ice nucleators contributing to the formation of ice and
snow (Tesson and Šanti-Temkiv, 2018).

Diatoms
Diatoms, the second group of eukaryotic algae included in this
section are commonly found in BSC communities (Ettl and
Gärtner, 1995; Büdel et al., 2016). Diatoms are species diverse and
best known from aquatic habitats, often being in high abundance
in both marine and freshwater communities. However, several
groups of diatoms include terrestrial species known to occur
in damp soils or ephemeral aquatic habitats, as well as more
arid habitats. BSC diatoms are phylogenetically diverse but are
dominated by pennate species from at least four taxonomic
orders. On a broad geographical scale, diatoms occur in diverse
BSC habitats on all continents (Sharma et al., 2007; Souffreau
et al., 2013a; Büdel et al., 2016), and many of the same species
have been found on different continents, indicating that diatoms
can be transported great distances (Souffreau et al., 2013a). More
locally, diatom diversity in BSCs can be high, with upwards of
50 species reported (Borchhardt et al., 2017). Unlike green algae,
whose walls are carbon-based, diatom cell walls are made of
silicon dioxide. Often pennate diatoms, typical of many BSC
species, have a slit-like channel (raphe) along the length of
the cell that produces carbon-based mucilaginous exudates that
accommodate motility (Edgar and Pickett-Heaps, 1982). These
mucilaginous exudates also likely contribute to soil aggregation
and stabilization in BSC habitats. Motile diatoms exhibit vertical
movement in BSCs, in response to light and water availability
(Hu et al., 2003). A significant diversity of diatom vegetative cells
isolated from damp soils have been shown to be tolerant of wide
temperature fluctuations (both heating and freezing), but they
were not tolerant of desiccation. On the other hand, resting stages
of terrestrial diatoms were resistant to periods without water
(Souffreau et al., 2010, 2013b). This ability would allow for aerial
transport, and a number of viable diatoms have been detected
in airborne samples (Brown et al., 1964; Sharma et al., 2007).
However, the precise mechanisms used by diatoms to tolerate
periods of desiccation are not well-known.

Diatom vegetative cells including other cell types relevant to
dispersal and perennation (e.g., auxospores) are diploid (2n).
Asexual reproduction in diatoms involves mitotic divisions of
vegetative cells (Mann, 1993). Initiation of sexual reproduction
is directly related to the size of vegetative cells and is typically
triggered when vegetative cell size has been reduced through
repeated mitotic cell divisions, to a minimum size—usually
smaller than half of the normal size for most species (Edlund
and Stoermer, 1997). This overall reduction in cell size, through
repeated mitotic divisions, is due to the fact that as vegetative
cells divide the overlapping cell halves (valves or frustules)
separate with both the top (larger) and bottom (smaller) halves
regenerating a new bottom (smaller) half. The specific processes
associated with sexual reproduction differs between the twomain
groups of diatoms—centric and pennate forms. However, the
outcome is similar for both groups—production of a diploid
structure—the auxospore that eventually restores the vegetative
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cell to the normal size and form (Kaczmarska et al., 2001). With
subsequent mitotic cell divisions again reducing the size of future
generations of vegetative cells to a point that sexual reproduction
is triggered with meiosis producing gametes, by either oogamy or
isogamy depending on the species. Gametes subsequently fuse to
form the next generation of diploid auxospores (Mann, 1993).

Aquatic diatoms are generally dispersed by water currents.
However, terrestrial diatoms (e.g., vegetative cells and
auxospores) are typically dispersed through the atmosphere
under very dry conditions (Sharma and Singh, 2010; Aguilera
et al., 2018). Research has shown that diatoms can reach the
atmosphere in various ways including volcanic eruptions (Pike,
2013; Van Eaton et al., 2013) and dust and sand storms (Griffin
et al., 2002). Airborne diatom propagules have been collected by
various methods from a variety of locations (Holzapfel, 1978;
Vanormelingen et al., 2008; Pearce et al., 2016; Tesson et al.,
2016).

BRYOPHYTES

BRYOPHYTES are small spore-producing plants with a
dominant and normally persistent gametophyte and include
mosses, liverworts, and hornworts. Although without true xylem,
many species of mosses are capable of effectively conducting
water both endohydrically (in specialized water conducting
tissues containing xylem precursors) and ectohydrically by
quickly wicking up liquid water along external cell surfaces, often
in a matter of seconds from the substrate into the shoot apices
(Glime, 2017). Bryophytes, similar to lichens, are poikilohydric,
whereby their tissues are capable of exchanging water vapor
from ambient air and equilibrating their tissue water content
with the water potential of the surrounding air (Glime, 2017).
Most bryophytes differ from lichens in being unable to fully
activate metabolism using just water vapor, although imbibing
water vapor while yet desiccated acts to mitigate desiccation
damage to tissues (Pardow and Lakatos, 2013; Slate et al., 2018).
Nevertheless, carbon balance can be positive and recovery
complete in some mosses without the addition of liquid
water (Lange, 1969; Lakatos, 2011). Between the three groups,
bryophytes comprise some 20,000 species (Shaw et al., 2011).
Although there is a common misconception that bryophytes
occur only in damp, shady environments, some species occur in
hot, dry environments, or dry polar environments (McCleary,
1959; Scott, 1982). With the exception of the liverwort genus
Cryptothallus, virtually all bryophytes contain chlorophyll and
are photosynthetic. Cryptothallus has no chlorophyll and gets
its photosynthates indirectly from a host tree via a symbiotic
relationship with a saprophytic fungus of the Basidiomycota
(Wickett and Goffinet, 2008). Most bryophytes are capable of
surviving desiccation during rainless periods (Proctor et al.,
2007) and desiccation tolerance even extends to antheridia
and male gametes (Shortlidge et al., 2012; Stark et al., 2016b),
embryonic sporophytes, and asexual propagules (Brinda et al.,
2016; Stark et al., 2016a). Upon addition of liquid water, shoots
become metabolically active (Harten and Eickmeier, 1987) and
require about 24 h to recover in most instances (Coe et al., 2014).

Bryophytes are able to anchor themselves to the ground or to
other suitable substrates with slender root-like rhizoids that
occur on the underside of the thallus, bases of shoots, or when
protonemata become subterranean (Odu, 1978; Jang et al., 2011;
Glime, 2017).

Bryophytes may reproduce sexually and asexually and these
modes may co-occur in time. Although dependent upon liquid
water for gamete transfer, in deserts selection has likely favored
monoecious over dioecious (monoicy over dioicy) reproduction
(Wyatt, 1982). A significant number of dioecious BSC mosses
exist, and some of the more common species may (e.g.,
Bryum argenteum) or may not (e.g., Syntrichia caninervis, S.
ruralis) produce aboveground specialized asexual propagules.
Such asexual propagules may be cryptic and only produced
during periods of abundant moisture, as in the protonemal
gemmae of S. caninervis, Funaria hygrometrica, and B. argenteum
(Glime, 2017). One of the most successful and widespread BSC
species, B. argenteum, is capable of producing not only abundant
spore capsules when both sexes are present, but also two kinds
of gemmae (bulbils and protonemal gemmae). While the spores
of B. argenteum are dispersed by air currents, their gemmae
float and are likely instrumental in short distance dispersal by
water. In addition to spores and propagules, probably all BSC
bryophyte species commonly disperse by fragmentation of the
plant body, the cells of which are totipotent (Glime, 2017). In
their sexual life cycle bryophytes produce multicellular haploid
individuals (gametophytes) which produce gametes through
mitosis (Glime, 2017). Male and female gametes then fuse to
form diploid individuals (sporophytes) which remain attached to
the gametophytes and produce haploid spores by meiosis that
in turn divide by mitosis to produce the multicellular haploid
gametophyte generation—thus completing the bryophyte life
cycle (Glime, 2017). Sexual reproduction in many bryophytes
is uncommon in dry environments due to the paucity of
sexual spores or the rarity of male plants (Bowker et al., 2000;
Stark et al., 2000; Horsley et al., 2011). Asexual reproduction
in bryophytes is far more prevalent than sexual reproduction
(During and van Tooren, 1987; Hugonnot and Celle, 2012) and
generally regarded as the primary avenue of species dispersal
(Mishler, 1988). Genetic diversity of at least some BSC bryophyte
species can remain high regardless of whether reproduction is
sexual or asexual (Paasch et al., 2015). Asexual reproduction is
more common in mosses (Pohjamo and Laaka-Lindberg, 2003)
whereas sexual reproduction is more common in liverworts
(Peñaloza-Bojacá et al., 2018).

Some bryophyte species are capable of producing millions
of meiospores from individual sporophyte capsules or from a
single m2 (Longton, 1997; Australian National Botanic Gardens,
2016). However, the release of aerial propagules and particles
can vary significantly over the period of a year based on
weather conditions (Barbé et al., 2017), including wind speed
and turbulence (Johansson et al., 2014). Aerial dispersal of
bryophyte propagules is common (Flø and Hågvar, 2013)
and long-distance dispersal rates may exceed shorter-distance
dispersal (Lönnell et al., 2012). Long-distance aerial dispersal
of diaspores (spores, gemmae, and/or leaf fragments) have
all been reported (Laaka-Lindberg et al., 2003). Trans-oceanic
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and intercontinental dispersal is common (van Zanten, 1978;
Shaw et al., 2011) and contributes to the intercontinental and
bipolar distribution of species (Piñeiro et al., 2012; Lewis et al.,
2014; Biersma et al., 2017). Such long-distance dispersal is
now regarded as explanatory for the relative rarity of narrow
endemics among bryophytes and other spore-bearing organisms
(Shaw and Goffinet, 2000) when compared to seed plants.
Gene flow through occasional long-distance dispersal events
apparently prevents the evolution of, for example, sister species
on different continents. The apparent lack of connectivity of
populations is due in large part to the lack of environmental
uniformity. Although propagules may be widely dispersed, not
all end up in a climate or on a substrate conducive to their
survival. Desert soils of the world are often dominated by a
relatively few, widely distributed species of bryophytes. These
are characterized by strongly developed traits of desiccation
tolerance, whereby a constitutive or strongly inducible ecological
strategy of desiccation tolerance has evolved (e.g., the genera
Syntrichia, Tortula, Bryum, Crossidium, Aloina, Pterygoneurum).
Interestingly, an inducible strategy of tolerating desiccation
characterizes some of the common arid land mosses in the latter
three genera. Such strategies enable the gametophyte shoots of
mosses to tolerate rapid or slow rates of drying to the very low
equilibrating relative humidity typical of desert habitats. Even
so, the life phases of bryophytes exhibit a range of desiccation
tolerance, with protonema and juvenile structures normally less
resistant to desiccation (Greenwood et al., in review). In Janice
Glime’s E-book chapter on diaspore dispersal in bryophytes
(2017), a number of studies based on several species and lines
of reasoning support the idea of long-distance transport of
diaspores that in turn lends credibility to the Baas-Becking
hypothesis that “everything is everywhere and the environment
selects.” Briefly, bryophyte species disperse farther than vascular
plants, bryophyte species are generally more widely distributed
than those of vascular plants, and the large numbers of disjunct
bryophyte taxa between distant regions align with long-distance
dispersal as the most supported process underlying these facts.
The Baas-Becking hypothesis has been demonstrated for at
least two bryophyte species, Bryum argenteum and Plagiobryum
zierii, and also for the Sphagnum flora on an archipelago in
the Baltic Sea. In addition, her review determined that spore
size differences (small vs. large) does not inhibit dispersal,
and that trans-continental spore dispersal is occurring. The
Sphagnum spore rain is significant and thermal updraft and
wind are significant factors controlling the dispersal of spores.
Both updrafts and smoke from fires also likely facilitate spore
dispersal. In the species Discelium nudum, evidence suggests that
the majority of spores “escape the parent colony to travel greater
distances” on the order of at least kilometers. Such evidence
is consistent with the life history of many bryophyte species.
Further, van Zanten (1976, 1978) and van Zanten and Pocs
(1981) document spore survival under conditions typical of high
altitude atmospheric air currents (i.e., desiccation, wetting, and
freezing) and provide evidence that bryophyte spores can enter
the jet stream and travel great distances, adding to other studies
indicating that spores may be recovered in rainwater. Multiple
genetic studies support a long distance dispersal hypothesis.

Bryophyte spores are capable of surviving in the desiccated state
for decades. Comparisons of spore desiccation tolerance and frost
resistance between transoceanic and endemic species support
long distance dispersal patterns, and the spore wall chemical
composition suggests high survival capability befitting long
distance transport.

SUMMARY AND DISCUSSION

Biological soil crust communities include a variety of organisms
that occupy the surface layer of the soil and consolidate soil
particles and aggregates into a distinguishable stable crust
resistant to the erosive forces of wind and water. The most
common and abundant BSC organismal groups include—cyano-,
heterotrophic, and diazotrophic bacteria, free-living, lichenized,
and mycorrhizal fungi, eukaryotic algae including diatoms, and
bryophytes. Historically, BSCs have been most noticeable and
researched in arid and semiarid environments where the vascular
plant community tends to be dominated by smaller shrubs
with open inter-shrub spaces that offer minimal competition
for direct sunlight and provide for more equitable distribution
of essential resources. BSCs are becoming more recognized in
humid environments, including the humid tropics; particularly,
where disturbance has temporarily removed vascular plants that
normally compete for sunlight and other essential resources at
soil surfaces.

Herein, we provide a thorough discussion of the various
modes of reproduction and dispersal employed by the core
BSC organismal groups. Modes of reproduction vary between
the organismal groups but generally include both sexual
and asexual alternatives, although asexual options (e.g.,
fission, budding, fragmentation, etc.) are far more prevalent
among BSC organisms. Following successful reproduction,
sexual, and/or asexual propagules must be dispersed to new,
suitable environments in order to avoid competition with
established local BSC communities. Almost universally, BSCs
are dispersed aerially, often for very long distances, sometimes
intercontinentally and interhemispherically (Muñoz et al., 2004;
Sharma and Singh, 2010; Smith et al., 2013, 2018; Herbold et al.,
2014; Maki et al., 2019; Warren et al., 2019).

In spite of the extensive, research concerning arid BSC
communities over the last 50 years there are still areas of
research that need additional work. Specifically, some of the
organismal groups are poorly known—particularly in terms of
species diversity and ecological roles. For example, very little
is known about the diversity and ecological roles of both
the free-living and mycorrhizal fungi associated with BSCs.
More work is also needed in terms of better understanding
the community and ecosystem dynamics of BSCs. This
paper provides important background information about the
occurrence, reproduction, and dispersal of the various core
organismal groups that contribute to the development and
maintenance of BSC communities. However, effective application
of modern molecular and microenvironment sampling tools will
be pivotal in answering key questions about the diversity and
functional attributes and relationships within BSC communities.
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