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Phasmatodea comprises over 3,000 extant species and stands out as one of

the last remaining insect orders for which a robust, higher-level phylogenetic

hypothesis is lacking. New research suggests that the extant diversity is the result

of a surprisingly recent and rapid radiation that has been difficult to resolve with

standard Sanger sequence data. In order to resolve the early branching events of

stick and leaf insects, we analyzed transcriptomes from 61 species, including 38

Phasmatodea species comprising all major clades and 23 outgroup taxa, including

all other Polyneoptera orders. Using a custom-made ortholog set based on reference

genomes from four species, we identified on average 2,274 orthologous genes in

the sequenced transcriptomes. We generated various sub-alignments and performed

maximum-likelihood analyses on several representative datasets to evaluate the effect

of missing data and matrix composition on our phylogenetic estimates. Based on our

new data, we are able to reliably resolve the deeper nodes between the principal

lineages of extant Phasmatodea. Among Euphasmatodea, we provide strong evidence

for a basal dichotomy of Aschiphasmatodea and all remaining euphasmatodeans, the

Neophasmatodea. Within the latter clade, we recovered a previously unrecognized

major New World and Old World lineage, for which we introduce the new names

Oriophasmata tax. nov. (“Eastern phasmids”) and Occidophasmata tax. nov. (“Western

phasmids”). Occidophasmata comprise Diapheromerinae, Pseudophasmatinae, and

Agathemera, whereas all remaining lineages form the Oriophasmata, including

Heteropterygidae, Phylliinae, Bacillus, Lonchodidae (Necrosciinae + Lonchodinae),

Clitumninae, Cladomorphinae, and Lanceocercata. We furthermore performed a

divergence time analysis and reconstructed the historical biogeography for stick and
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leaf insects. Phasmatodea either originated in Southeast Asia or in the New World.

Our results suggest that the extant distribution of Phasmatodea is largely the result of

dispersal events in a recently and rapidly diversified insect lineage rather than the result

of vicariant processes.

Keywords: phasmids, transcriptomes, historical biogeography, Polyneoptera, Euphasmatodea

INTRODUCTION

Exploring large-scale patterns of species diversity in time
and space is a major research goal for evolutionary biology.
Understanding the evolutionary processes generating
these patterns requires broad comparative investigations
of phenotypic attributes across taxa combined with
well-corroborated phylogenies.

In recent years, numerous large-scale, highly resolved
phylogenies for several insect lineages have been published and
these have led to workable classifications for nearly all major
groups traditionally referred to as insect orders, for instance,
major groups of Polyneoptera (Wipfler et al., 2019), Blattodea
(Evangelista et al., 2019), true bugs (Heteroptera) and other
hemipteroid lineages (Johnson et al., 2018), Hymenoptera (Peters
et al., 2017), Coleoptera (Zhang et al., 2018), Lepidoptera
(Breinholt et al., 2018), and dipteran lineages (Pauli et al., 2018).
Stick and leaf insects (Phasmatodea) however, stand out as one
of the last remaining insect lineages traditionally referred to as
orders for which a robust higher-level phylogenetic hypothesis is
still lacking, as highlighted in numerous textbooks (e.g., Grimaldi
and Engel, 2005; Tilgner, 2009; Beutel et al., 2014; Gullan and
Cranston, 2014). Most recently, phasmatodean systematics were
described as “muddled” and “burdened with much paraphyly
and polyphyly” by Engel et al. (2016). This shortcoming largely
impedes the study of evolutionary patterns within this group and
yet, stick insects are an emerging model system in evolutionary
biology (Brand et al., 2018, for overview, see also Bradler and
Buckley, 2018).

Stick and leaf insects form a mesodiverse group of large,
mostly nocturnal terrestrial herbivores with a mainly tropical
and subtropical distribution. They exhibit impressive forms
of camouflage directed against visually hunting predators by
imitation of various parts of plants, such as twigs, bark and
leaves (Figure 1). Over 3,100 described species are distributed
across nearly 500 genera (Bradler, 2015; Bradler and Buckley,
2018). The relative large number of genera, of which around
175 are monotypic, reflects the degree of disparity regarding the
morphological diversity found in Phasmatodea.

Over recent decades, the debate dealing with phasmatodean
systematics was mostly devoid of an explicit phylogenetic basis.
Instead, unmethodical classifications and numerous artificial
groupings at various taxonomic ranks (e.g., Bradley and Galil,
1977; Zompro, 2004; Brock and Marshall, 2011) resulted in
a highly chaotic taxonomy with incorrectly appointed taxa
still recognized in the current Phasmida Species File database
(Brock et al., 2017).

This situation has now been improved by numerous
phylogenetic analyses of molecular datasets being published
(Whiting et al., 2003; Buckley et al., 2009, 2010; Bradler et al.,
2014, 2015; Goldberg et al., 2015; Robertson et al., 2018).
However, datasets initially were too restricted to allow reliable
conclusions for broader phasmatodean systematics. For instance,
Whiting et al. (2003) and Buckley et al. (2009) did not recover
monophyletic groups, such as Heteropterygidae, that have now
been strongly supported as monophyletic with increased taxon
sampling (Bradler et al., 2015; Goldberg et al., 2015; Robertson
et al., 2018). Even the analyses of mitochondrial genomes
(Kômoto et al., 2011, 2012; Tomita et al., 2011; Zhou et al., 2017)
did not allow for any general systematic conclusion due to their
non-representative, negligible taxon sampling.

In other cases, geographical distribution rather than
morphological similarity appeared to reflect the evolutionary
relationships among stick and leaf insects. Thus, phylogenetic
inferences of the phasmatodean faunas of New Caledonia,
New Zealand, the Mascarene Archipelago and Madagascar
(Buckley et al., 2009, 2010; Bradler et al., 2015; Robertson
et al., 2018) rendered several traditional groupings
as polyphyletic.

In summary, the published studies based on Sanger-
sequencing approaches have resulted in some sound topologies in
regard to shallower nodes, but were unable to resolve the deeper
nodes of the presumed rapid radiation of Phasmatodea (Bradler
et al., 2014). Therefore, much of the early evolutionary history,
such as the relationships between families, subfamilies, and some
perpetually enigmatic taxa such as Agathemera, was difficult to
address in the past and is still a matter of debate (Bradler and
Buckley, 2018).

In order to illuminate these previously unresolved deep
nodes of phasmatodean phylogeny and to test previous
conflicting topologies, we conducted a phylogenomic study
based on 27 novel transcriptomes of a representative set of
stick and leaf insects and combined these with previously
published transcriptomes of 11 phasmatodeans and 23 outgroup
polyneopterans (Misof et al., 2014; Wipfler et al., 2019). We
estimated divergence times for our new phylogeny using a
validated set of fossils as calibration points (Bradler et al.,
2015) and reconstructed the historical biogeography using
explicit models.Whereas in the past phylobiogeographic research
addressing Phasmatodea was restricted to specific geographic
areas such as Australia, New Caledonia, and New Zealand
(Buckley et al., 2010), our present study is the first to formally
infer the historical biogeography for the whole order, albeit with
the shortcoming of lacking some African taxa.
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FIGURE 1 | Various members of Neophasmatodea: (A–D): Occidophasmata; (E–I): Oriophasmata. (A), couple of Pseudosermyle phalangiphora, Diapheromerinae

(Mexico); (B), couple of Oreophoetes peruana, Diapheromerinae (Peru); (C), female of Metriophasma diocles, Pseudophasmatinae (Panama); (D), couple of

Peruphasma schultei, Pseudophasmatinae (Peru); (E), female of Carausius morosus, Lonchodinae (India); (F), female of Heteropteryx dilatata, Heteropterygidae

(Malaysia); (G), couple of Eurycantha calcarata, Lonchodinae (New Guinea); (H), female of Extatosoma tiaratum, Lanceocercata (Australia); (I), couple of Diapherodes

gigantea, Cladomorphinae (Grenada). Photos by Christoph Seiler, Altlussheim, Germany.
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METHODS

Dataset Generation
Our dataset comprised 38 species representing all major
clades of Phasmatodea and 23 outgroup species including all
other Polyneoptera orders (Supplementary Table S1). Data was
derived from transcriptomes, except for the termite Zootermopsis

nevadensis for which we used the official gene set obtained
from a whole genome project (Terrapon et al., 2014). For
most species, we sampled the RNA from the head and
thorax of adult specimens (see Supplementary Table S1.1).
Further detailed information (e.g., sex, collection date, collector,
etc.) can be found at the National Center for Biotechnology
Information (NCBI) under the 1KITE umbrella project and
the respective BioSample number (Supplementary Table S1.1).
RNA extraction and cDNA library preparation, transcriptome
sequencing (HiSeq 2000 platform with 150 bp paired-end (PE)
reads), and de novo assembly (SOAPdenovo-Trans-31kmer; Xie
et al., 2014) were conducted at the Beijing Genomics Institute
(BGI) Shenzhen and are described in detail by Peters et al. (2017).
Transcriptome quality assessment, removal of contaminants and
submission to the NCBI Sequence Read Archive (SRA) as well
as to the Transcriptome Shotgun Assembly (TSA) database were
conducted as described in Peters et al. (2017) and under the
1KITE umbrella project (Supplementary Tables S1.1, S1.2).

The phylogenomic pipeline is described in detail in
Evangelista et al. (2019) (Supplementary Material). Briefly,
for the identification of orthologous transcripts we used the
custom-made ortholog set, specifically designed for Polyneoptera
taxa and comprising 3,247 orthologous genes/groups (OGs)
for the four reference species Ephemera danica, Ladona fulva,
Zootermopsis nevadensis, and Rhodnius prolixus. Transcripts
of each query taxon were assigned to these ortholog groups
(OGs) with Orthograph v.0.5.4 (Petersen et al., 2017) with
following settings: max-blast-searches = 50; blast-max-hits
= 50; extend-orf = 1; substitute-u-with = X. We identified
on average 2,274 OGs in the transcriptomes (minimum: 637;
maximum: 2,861) (Supplementary Table S2). OGs were aligned
applying the L-INS-i algorithm of MAFFT v.7.221 (Katoh and
Standley, 2013) at the translational (amino-acid) level. Each
multiple sequence alignment (MSA) was quality assessed and
outliers were removed using the procedure outlined by Misof
et al. (2014) but using the -addfragments algorithm implemented
in MAFFT. Subsequently, we excluded the sequences of three
reference species Ephemera danica, Ladona fulva, and Rhodnius
prolixus since we aimed to include only Polyneoptera taxa for the
phylogenetic inference, and removed columns resulting in only
gaps. Subsequently, MSAs of nucleotides (nt) corresponding
to the amino-acid (aa) MSAs were generated with a modified
version of the software PAL2NAL (Suyama et al., 2006; see
Misof et al., 2014). We further used the Pfam-A database release
28.0 (Punta et al., 2012) in conjunction with the software
pfam_scan.pl v.1.5 and HMMER (Eddy, 2011; http://hmmer.
org/), Domain-identification-v1.3 and Domain-parser-v1.4.1-
dist, to identify regions in the MSAs annotated as protein clans,
families, single domains or non-annotated regions (so called
voids, see also Bank et al., 2017). In parallel, we identified

putative alignment ambiguities or randomized MSA sections
within each aa MSA with Aliscore v.1.2 (Misof and Misof,
2009) (options -e -r) and combined this information with the
results from the protein domain identification step to generate a
supermatrix. We followed two approaches to create matrices for
the phylogenetic analyses: (1) we used MARE v.0.1.2-rc (Misof
et al., 2013) to remove taxa or partitions with lowest average
information content (IC) from the aa supermatrix, yielding a
selected optimal subset (SOS) (for rationale see also Meusemann
et al., 2010) and defining all phasmatodeans as taxon constraints;
thus, they were not dropped from the matrix (AASOS: 61 taxa,
837,567 aa positions, 2,773 partitions); (2) we only kept partitions
with IC > 0 as identified by MARE removing partitions with
an IC = 0 from the aa and nt supermatrix. Thus, we further
increased data coverage by including only data blocks, i.e., that
contained sequence information for at least one representative
of specified taxonomic groups (Supplementary Table S3)
resulting in a decisive aa dataset (sensu Dell’Ampio et al.,
2014; AAdecisive: 61 taxa, 387,987 aa positions, 388 partitions).
The specified taxonomic groups for Phasmatodea represented
uncontroversial monophyletic groups according to previously
published studies. For the corresponding decisive nt dataset we
subsequently evaluated whether or not our datasets have evolved
under globally stationary, reversible, and homogeneous (SRH)
conditions with SymTest v.2.0.47 (Ho and Jermiin, 2004) (see
for rationale also Evangelista et al., 2019). We applied the in
SymTest implemented Bowker Test on the 1st, 2nd, and 3rd
codon position separately, on the 1st + 2nd, and on all codon
positions. Further downstream analyses were performed on the
decisive nucleotide dataset keeping the 2nd codon position only
(NTdecisive: 61 taxa, 387,987 nt positions, 388 partitions), as this
showed smaller among-lineage heterogeneity compared to the
other nt datasets (see Supplementary Figure S1).

For the two amino-acid datasets, we additionally evaluated
the coverage with respect to pairwise sequence coverage
of unambiguous data using AliStat v.1.6 (https://github.com/
thomaskf/AliStat) (see also Misof et al., 2014; Wong et al., 2017).
Details are provided in Supplementary Figure S2.

Phylogenetic Analyses
Prior to the tree inference, we optimized our partitioning
scheme and searched for the best-scoring substitution
models for the two aa datasets (AASOS and AAdecisive) by
using PartitionFinder v.2.0.0 (prerelease 10) (http://www.
robertlanfear.com/partitionfinder/; Lanfear et al., 2014, 2016)
in combination with RaxML v.8.2.4 (Stamatakis, 2014) (options
–rcluster –rcluster-max 6000 (for AASOS) –rcluster-max 2000
(for AAdecisive) –rcluster-percent 100 -q -p 24 –weights 1,1,0,1
–all-states –min-subset-size 100). We further restricted the
PartitionFinder search to 11 amino-acid substitution models
as these are the most selected models for empirical studies
on Hexapoda (Misof et al., 2014; Peters et al., 2017; Pauli
et al., 2018), namely LG+G, WAG+G, DCMUT+G, JTT+G,
BLOSUM62+G, LG+G+F, WAG+G+F, DCMUT+G+F,
JTT+G+F, BLOSUM62+G+F, LG4X (Yang, 1994; Gu et al.,
1995; Müller and Vingron, 2000; Whelan and Goldman, 2001;
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Veerassamy et al., 2003; Kosiol and Goldman, 2005; Le and
Gascuel, 2008; Soubrier et al., 2012).

In order to find the best-scoring substitution model for each
partition of the nt dataset (NTdecisive), we applied ModelFinder
as implemented in IQ-TREE v.1.5.1 (Kalyaanamoorthy et al.,
2017) (options –m TESTNEWONLY –gmedian). Please note
that the boundaries of the partitions identified on amino-acid
level are equivalent to the boundaries we kept for the decisive
nucleotide dataset.

Phylogenetic relationships were inferred under the maximum
likelihood (ML) optimality criterion as implemented in IQ-TREE
v.1.3.11 and v.1.4.4 (Nguyen et al., 2015; Chernomor et al., 2016)
and by using the best-scoring amino-acid substitution matrix
for each partition (option–spp). We performed 50 independent
ML tree searches with a random start tree for all three datasets,
taking the median for each rate category (–gmedian) and an
increased number of unsuccessful iterations before stopping
(–numstop 200). Note that for each independent tree search,
there were in total 100 initial random trees generated. To
assess the number of unique topologies present within the
50 inferred trees, we used the software UniqueTree v.1.9.
For each dataset, the 50 independently inferred tree showed
all the same, i.e., one unique topology. However, there were
topological differences between these three topologies, see
discussion below.

Branch support was estimated via non-parametric
bootstrapping of 100 bootstraps alignments in IQ-TREE
and mapped onto the ML tree with the best log-likelihood. To
assess the minimum number of replicates needed for a reliable
estimation of bootstrap support, we subsequently used the
“autoMRE” bootstrap convergence criterion (Pattengale et al.,
2010) as implemented in RAxML with default settings. Bootstrap
convergence was reached after 50 replicates for all three datasets
in all tests.

Analyses of Phylogenetic Signal
In addition to the non-parametric bootstrap support, we
determined support for the deeper phylogenetic relationships
with the aid of Four-cluster Likelihood Mapping (FcLM)
(Strimmer and von Haeseler, 1997), see Simon et al. (2018) and
Supplementary Information in Misof et al. (2014) for details
on the strategy. We applied the FcLM analyses on the decisive
amino-acid dataset (AAdecisive) and tested all major relationships
of the Phasmatodea lineages (see Supplementary Figure S3). For
all 17 splits/relationships in question, we defined four groups
and included only partitions for which at least one representative
species of each of the four addressed groups was present. Taxa
that did not address a particular hypothesis were discarded
from the alignment (see Supplementary Table S4 for included
species, group definitions, and number of drawn quartets).
For two incongruent nodes based on the tree inferences (see
section Results and Discussion), we additionally checked for
confounding signal due to among-lineage heterogeneity, non-
random substitution processes and/or distribution of missing
data using the FcLM approach with permuted datasets with
phylogenetic signal destroyed. FcLM analyses were performed
using IQ-TREE v.1.4.2 (Nguyen et al., 2015).

Divergence Time Estimations
For divergence time estimations, we used five fossils (Table 1)
representing the oldest known fossils for the respective groups.
The reported calibration points thus provide a lower limit to
the age of each group. We modeled all fossil constraints as
an exponential distribution with a rigid lower bound equal to
the age of the fossils and a soft upper bound so that 95%
of the distribution lies between the age of the fossil and the
end of the Triassic (201.3 million years ago [mya], fossil 1),
the end of the Jurassic (144.9 mya, fossil 2), and the end of
the Paleogene (66.4 mya, fossils 3–5). For the root, a rather
conservative prior estimate of the divergence date was specified,
using a uniform distribution with rigid lower and upper bound
indicated by the begin of the Permian (298.8 mya) and the end
of the Jurassic. For the divergence date inference, we compiled
a reduced version of the decisive amino-acid dataset (AAdecisive)
only containing sites with unambiguous data for at least 95%
of the 61 taxa (AAdecisive95) comprising 31,298 aa positions.
To reduce computational effort, we chose an unpartitioned
dating analysis. Divergence time estimates were performed in
the program BEAST v.1.8.2 (Drummond et al., 2012) with
a JTT+G+I substitution model, an uncorrelated lognormal
relaxed clock, and a Yule tree prior. The JTT+G+I substitution
model was determined in ModelFinder as implemented in IQ-
TREE as best-scoringmodel of the available models implemented
in BEAST for the reduced unpartitioned dataset. Markov Chain
Monte Carlo analyses were conducted on the fixed topology
obtained by the IQ-TREE ML analyses. Four separate runs
for 50 million generations were conducted and sampled every
5,000 generations. The first 10 million generations of each run
were discarded as burn-in as indicated by the software Tracer
v.1.7.6 (Rambaut et al., 2018), which was also used to inspect
convergence and mixing of parameters and the effective sample
sizes (ESS). Post-burn-in samples were combined across all
four runs to summarize parameter estimates and were used
to construct a maximum clade credibility tree with median
node heights in TreeAnnotator v.1.8.2 (Drummond et al., 2012).
All BEAST analyses were conducted using the CIPRES portal
(Miller et al., 2015).

Ancestral Range Reconstruction
For the reconstruction of ancestral ranges, we determined
five areas according to the current distribution of the
38 extant phasmatodean species and following Wallace’s
zoogeographical regions by Holt et al. (2013): New World
(Nearctic + Neotropical), Palearctic, Madagascan, Australian
(including Oceanian), and Oriental. Based on the dated
phylogenetic tree and allowing a maximum of two areas to
be occupied, biogeographic models were compared using the
maximum likelihood approach implemented in the R package
BioGeoBEARS v.1.1.2 (Matzke, 2013, 2018). To cover a variety
of different settings concerning dispersal, extinction, sympatry,
and vicariance, we conducted the analysis using three models,
namely, the Dispersal-Extinction-Cladogenesis model (DEC)
and the likelihood interpretations of the models DIVA and
BayArea (DIVALIKE and BAYAREALIKE). BayArealike features
a parameter for widespread sympatry, DEC one for subset
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sympatry, and DIVALIKE one for widespread vicariance. Each
model was also run with the +J parameter accounting for jump
dispersal and founder-event speciation (Matzke, 2014). The
best fitting model was assessed with the Likelihood-Ratio-Test
(LRT), the Akaike Information criterion (AIC) and corrected
AIC (AICc).

RESULTS AND DISCUSSION

Phylogenetic Relationships
Overall, our phylogenomic reconstruction received strong
support in all analyses and significantly alters previous ideas
regarding the evolutionary history of Phasmatodea, but at the
same time corroborates clades that appeared well-supported in
past molecular studies, both within and outside Phasmatodea
(see Figure 3 for comparison). All trees were rooted with the
clade Zoraptera + Dermaptera according to Wipfler et al.
(2019). Previously observed topologies by Wipfler et al. (2019)
were fully corroborated, e.g., Plecoptera as sister group to
a polyneopteran clade comprising Orthoptera, Blattodea,
Mantodea, Phasmatodea, Embioptera, Mantophasmatodea, and
Grylloblattodea. We also received in all three tree inferences
support for Dictyoptera (Mantodea + Blattodea) as sister
group to Xenonomia (Grylloblattodea + Mantophasmatodea)
+ Eukinolabia (Embiotera + Phasmatodea) (Figure 2;
Supplementary Figures S4, S5). The only notable topological
differences between the three phylogenetic analyses were
observed within Embioptera in regard to the position of
Rhagadochir, and within Phasmatodea in regard to the positions
of the two phasmatodean taxa Agathemera and Heteropteryx
(see discussion below). Results of all FcLM analyses testing all
major nodes connecting Phasmatodea are mainly compatible
with the ML tree reconstructions showing that they are robust
against taxon sampling (Supplementary Figure S6). There are
only two exceptions, which are further discussed and evaluated
in Supplementary Data Sheet 1.

Within Phasmatodea, the species-poor Timema
(= Timematodea) with 21 described species in western North
America and species-rich Euphasmatodea (over 3,000 described
species with worldwide distribution) form the basal sister groups,
as has been demonstrated in a plethora of studies before (for an
overview see Bradler and Buckley, 2018). The Euphasmatodea
are divided into Aschiphasmatodea and Neophasmatodea as
suggested by Engel et al. (2016). Our study thus confirms the
idea of Aschiphasmatodea (= Aschiphasmatinae) forming the
sister group to all remaining euphasmatodeans, which originally
stems from the cladistic analysis of morphological characters by
Tilgner (2002). In the past, this was controversially discussed
(Bradler et al., 2003), but also recovered most recently by
Robertson et al. (2018).

The subdivision of Neophasmatodea gives rise to an Old
World and New World clade of stick and leaf insects, which was
previously unsuspected. For these well-supported major clades
we introduce the new rank-free taxon names Oriophasmata tax.
nov. (“Eastern phasmids,” Old World) and Occidophasmata tax.
nov. (“Western phasmids,” New World). There has never been
any taxonomic scheme or morphological character presented
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FIGURE 2 | Time-calibrated phylogeny of Phasmatodea. Inferred phylogenetic relationships based on dataset AAdecisive (387,987 aa positions, 205 metapartitions).

Colored circles represent bootstrap support derived from 100 BS. Node dates (posterior mean) were inferred using the dataset AAdecisive reduced to sites containing

>95% data completeness, and five fossil calibrations. Error bars represent 95% confidence intervals. Fossils used for calibrations are indicated as numbers in black

circles at nodes: 1: Nel and Delfosse (2011), 2: Wedmann et al. (2007), 3: Sellick (1994), 4, 5: Poinar (2011) (see also Table 1). OCCIDOPH., Occidophasmata; Neo.,

Neogene; Q., Quaternary.

that suggested these clades, in consequence, neither have
there ever been alternative robust phylogenetic hypotheses
postulated for their major subgroups that would question this
novel assumptions.

The New World clade Occidophasmata comprises the two
species-rich and dominant stick insect groups of South and
North America, the Diapheromerinae and Pseudophasmatinae
(= Pseudophasmatidae by some authors), which were
originally assigned to the two traditional suborders “Areolatae”
(Pseudophasmatinae) and “Anareolatae” (Diapheromerinae),

based on the presence or absence of a triangular field at
the apex of the tibiae (Günther, 1953). While all previous
phylogenetic studies already demonstrated that the traditional
subdivision of Phasmatodea into “Areolatae” and “Anareolatae”
is meaningless, there is not a single morphological character
known to support a close relationship of Diapheromerinae and
Pseudophasmatinae. Yet, this clade receives support from a
biogeographical point of view considering that we have seen in
the past that biogeography generally plays a more important role
for the evolutionary history of stick insects than morphological
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FIGURE 3 | Comparison of topology and divergence time estimations between the herein presented new phylogeny of Phasmatodea (left side) to the most recent and

comprehensive phylogeny based on Sanger sequence data by Robertson et al. (2018). The underlined taxa are African lineages included in the study from Robertson

et al. (2018) but missing in the present study. The blue rhomb symbols indicate taxa supported in both studies. Neo., Neogene; Q., Quaternary.

similarity (Buckley et al., 2009; Bradler et al., 2015). This New
World clade also comprises Agathemera, a wingless South
American taxon with a stout body form and eight described
species from Chile and Argentina (Domínguez et al., 2009,
Vera et al., 2012). The phylogenetic position of Agathemera
has been an evolutionary enigma. Based on morphological
evidence, Agathemera was repeatedly placed as sister group
to all remaining Euphasmatodea (Bradler, 2000, 2009; =

Neophasmatidae sensu Bradler, 2003; = Verophasmatodea
sensu Zompro, 2004; Klug and Bradler, 2006; Klug, 2008;
Friedemann et al., 2012). However, this assumption and
consequently the monophyly of Verophasmatodea have never
been supported by molecular studies, which place Agathemera
as a subordinate taxon, albeit with unstable position among
stick insects (Whiting et al., 2003; Buckley et al., 2009; Bradler
et al., 2014, 2015; Goldberg et al., 2015; Büscher et al., 2018).
Most recently, Agathemera has been found to be the sister
group to Pseudophasmatinae including Heteronemiini and
Prisopidini (Robertson et al., 2018), thus basically re-erecting
the Pseudophasmatinae that included all these taxa as originally
proposed by Günther (1953). Our results partially support
this view here by a placement of Agathemera as sister to
Pseudophasmatinae in the trees inferred from the datasets
AAdecisive (Figure 2) and NTdecisive (Supplementary Figure S4),

yet this is one of the lesser supported clades (BS = 76 and BS
= 94, respectively), and our analysis does not include members
of Prisopodini and Heteronemiini. In contrast, trees inferred
from the dataset AASOS support Agathemera as sister group to
a clade comprising Pseudophasmatinae and Diapheromerinae
(Supplementary Figure S5). However, further FcLM analyses
in combination with permutation tests show that the position
of Agathemera as sister to Pseudophasmatinae in the trees
inferred from the datasets AAdecisive could not be explained
by confounding signal. In contrast, the position of Agathemera
as sister group to a clade comprising Pseudophasmatinae and
Diapheromerinae inferred by the dataset AASOS may be caused
by the presence of confounding signal (e.g., heterogeneous
amino-acid site composition, non-stationary substitution
processes, or non-random distribution of missing data). For
details refer to Supplementary Material Data Sheet 1.

Furthermore, we recovered a subdivision of Pseudo-
phasmatinae (or Pseudophasmatidae) into Pseudophasmatinae
(Peruphasma, Pseudophasma) and Xerosomatinae (Creoxylus,
Metriophasma). Within Diapheromerinae, the subdivision into
Oreophoetini (Libethra, Oreophoetes) and Diapheromerini
(Pseudosermyle) is supported (Robertson et al., 2018).

The Oriophasmata comprise all remaining neophasmatodean
taxa with Heteropterygidae as sister group to the rest. Within
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Heteropterygidae, the Obriminae (Aretaon, Trachyaretaon)
and Dataminae (Epidares, Orestes) (traditionally referred to
as Obrimini and Datamini, see Bradler and Buckley, 2018)
were recovered, and Heteropteryx (representing the third
subgroup Heteropteryginae or, traditionally, Heteropterygini)
as sister to Dataminae in the trees inferred from the
dataset AAdecisive (Figure 2). The latter clade, Dataminae
+ Heteropteryginae, gained extremely low support (BS =

49), but was repeatedly recovered before (Büscher et al.,
2018; Robertson et al., 2018). In contrast, Bradler et al.
(2015) obtained a topology Dataminae + (Heteropteryginae
+ Obriminae), which was also favored based on phylogenetic
analysis of morphological characters by Bradler (2009) and
also in our study supported by the trees inferred from the
datasets NTdecisive and AASOS (Supplementary Figures S4, S5).
The third possible topology Heteropteryginae + (Obriminae
+ Dataminae), as proposed by Zompro (2004), was favored
by one previous molecular phylogeny (Goldberg et al., 2015)
but was not recovered by any of our phylogenetic inferences.
Additional FcLM analyses in combination with permutation
tests revealed that the inferred relationship by the dataset
AASOS (Heteropteryx and Obriminae being closest relatives)
is strongly biased by confounding signal. The FcLM analyses
further supported a sister group relationship of Heteropteryx
with Dataminae which is less prone to confounding signal
in the dataset AAdecisive as well as AASOS (for details, please
refer to Supplementary Material Data Sheet 1). However, given
the low number of possible drawn quartets (88) and the
low support observed in the present analysis for a sister
group relationship of Heteropteryx with Dataminae, the internal
phylogeny of Heteropterygidae must still be considered an
open question.

Within the remaining Oriophasmata, Bacillus + Phyllium
form an early branch together with the Malagasy clade of stick
insects. The subordinate phylogenetic placement of Phylliinae,
the true leaf insects (represented here by Phyllium philippinicum),
within these Old World Euphasmatodea, is in contrast to
recent molecular phylogenies that favor Phylliinae to be a
rather early diverging lineage among Euphasmatodea (Kômoto
et al., 2011; Bradler et al., 2015; Robertson et al., 2018). Again,
our finding corroborates the view of Günther (1953) who
considered Phylliinae to be just one subordinate subfamily of
many within Phasmatodea. A close affinity between Phylliinae
and members of Bacillinae has never been postulated before, yet
we received moderate support (AAdecisive: BS = 96; NTdecisive:
BS = 80; AAsos: BS = 100) for a sister group relationship
of Phyllium and the European Bacillus. However, the FcLM
analyses and further permutation tests of the two amino-acid
datasets (AAdecisive, AAsos) revealed that the tree reconstructions
might be biased by confounding signal (for details refer
to Supplementary Material Data Sheet 1). Nevertheless, this
grouping receives support from a biogeographical point of view:
Although the extant Phylliinae have a predominantly Asian
distribution, the fossil record provides evidence of a European
origin of leaf insects with the 47-million-years-old Eophyllium,
the extinct sister group of all remaining leaf insects, described
from Grube Messel in Germany (Wedmann et al., 2007).

A monophyletic Malagasy clade comprises Anisacanthidae
(Paranisacantha), Achriopterini (Achrioptera), Antongiliinae
(Antongilia), and Phasmatidae taxa incertae sedis
(Spathomorpha), with the former two and the latter two forming
sister taxa in accordance with previous results (Bradler et al.,
2015; Goldberg et al., 2015; Büscher et al., 2018; Robertson et al.,
2018; Glaw et al., 2019). Closely related Malagasy stick insects
were only recently suggested but not recovered as monophyletic
when certain African taxa were included that are lacking in the
present analysis (Bradler et al., 2015; Robertson et al., 2018).

One major radiation within Oriophasmata comprises
Lonchodidae (Lonchodinae + Necrosciinae, Robertson et al.,
2018) that contain over 1,000 described species, thus accounting
for one third of the described extant phasmatodean diversity.
The sister lineage of Lonchodidae contains taxa that have
been recovered multiple times before as monophyletic groups
including Lanceocercata and its sister taxon Stephanacridini,
Cladomorphinae, Medaurini (Medauroidea), Clitumnini
(Ramulus), and Pharnaciini (Tirachoidea) (Buckley et al., 2009,
2010; Bradler et al., 2014, 2015; Büscher et al., 2018; Robertson
et al., 2018), however, with a slightly different topology in our
tree based on transcriptomes.

Monophyly of Lanceocercata with Dimorphodes as sister
group to all remaining Lanceocercata appears to be undisputed
(Buckley et al., 2009, 2010; Bradler et al., 2014, 2015; Büscher
et al., 2018; Robertson et al., 2018). In previous studies,
Stephanacridini were usually observed as sister taxon to
Lanceocercata. Here, we obtain Xenophasmina as sister to
Lanceocercata, a taxon currently considered to be a member
of the Xeroderinae. Since Xeroderinae are an obviously
polyphyletic assemblage (Buckley et al., 2009; Bradler et al.,
2015),Xenophasminamust be considered as a taxon incertae sedis
that might be a member of Stephanacridini, which needs to be
corroborated in subsequent analyses.

Surprisingly, we infermonophyletic Clitumninae as erected by
Hennemann and Conle (2008), to be comprised of Clitumnini,
Medaurini, and Pharnaciini, as well as to be more closely
related to Lanceocercata than the Neotropical Cladomorphinae.
This is in sharp contrast to numerous previous results that
concordantly inferred polyphyletic Clitumninae and suggested a
well-supported lineage of Cladomorphinae + (Stephanacridini
+ Lanceocercata) (Buckley et al., 2009, 2010; Bradler et al.,
2014, 2015; Büscher et al., 2018; Robertson et al., 2018). This
disagreement needs to be further addressed in future analyses
by adding missing taxa such as Stephanacridini and members
of Gratidiini that were demonstrated to be closely related to
Medaurini and Clitumnini in the past (Bradler et al., 2014, 2015;
Büscher et al., 2018; Robertson et al., 2018).

Divergence Time Estimation
According to our analyses, extant Phasmatodea started to
diversify in the Mesozoic with the split between Timema and
Euphasmatodea lying in the Early Cretaceous (95% confidence
interval [CI]: 105.1–139.4 mya; mean: 121.8 mya, Figure 2), with
the oldest currently known fossils assigned unambiguously to
stick insects being from theMesozoic of China,∼128mya (Wang
et al., 2014). This estimation is older than previous estimates
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(see Figure 3 for comparison), for instance, ∼103 mya (CI:
85.52–122.12 mya, Bradler et al., 2015) or ∼95 mya (Buckley
et al., 2009). The overall divergence time estimates for the
early splits of stick and leaf insects are older than in previous
studies, for instance, ∼61.26 mya (CI: 51.04–75.43 mya) for
the earliest node within Euphasmatodea according to Bradler
et al. (2015), and indicate a diversification of Euphasmatodea
around 80.3 mya (CI: 69.6–92.0 mya), which constitutes
the split between Aschiphasmatodea and Neophasmatodea
in our study. Neophasmatodea further radiated into Orio-
and Occidophasmata around 64.8 mya (CI: 58.4–71.8 mya).
Radiation of Occidophasmata in North and South America
began ∼58.9 mya (CI: 52.6–65.7 mya), with Agathemera being
a separate, old genus since about 52.9 mya (CI for the split from
Pseudophasmatinae: 46.8–59.4 mya).

Within Oriophasmata, radiation started approximately at the
same time, namely, 59.5 mya (CI: 54.2–65.6 mya), when the
ground-dwelling Heteropterygidae split off from the remainder
of this clade. The start of Heteropterygidae radiation is estimated
at ∼46.8 mya (CI: 38.7–54.6 mya), which largely confirms the
date recovered by Robertson et al. (2018) who gave a mean of
46.4 mya (between 53 and 40 mya, see Figure 3).

The Malagasy clade radiation started between 38.2 and 52.1
mya (mean: ∼46.8 mya) with the split from its sister group
occurring around 56.6 mya (CI: 51.8–62.2 mya), which is most
probably much younger than the separation of Madagascar from
any significant landmass (65–96 mya; Vences et al., 2009). This
corroborates the previous assumption that stick insects colonized
this fragmentary island long after it became isolated, between 38
and 51 mya (Bradler et al., 2015).

Further significant radiation dates within Oriophasmata
include Lonchodidae at 47.3 mya (CI: 41.1–53.3 mya),
constituting the split between Lonchodinae and Necrosciinae,
and Clitumninae at 37.3 mya (CI: 29.7–44 mya). The Neotropical
Cladomorphinae diverged from the Australasian stick insects
between 42.6 and 54.5 mya (mean: 48.4 mya). This lies within
the dates for the rifting of Antarctica from Australia and South
America, which was implicated as the origin for the split
of the New World Cladomorphinae from their Australasian
sister taxon (Buckley et al., 2010). However, the biogeographic
reconstructions favor an orientally distributed ancestor
(see below).

The Lanceocercata radiation is relatively young, starting
around 30.6 mya (CI: 24.3–37.3 mya), which is in the range of

FIGURE 4 | Ancestral range estimates of Phasmatodea for the BioGeoBEARS DIVALIKE+J model. The nodal pie charts show the relative probability of the

geographic ranges according to the in-figure color code. OCCIDOPH., Occidophasmata, Jura., Jurassic, Neo., Neogene, Q., Quaternary.
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previous estimates (or younger) spanning from 32mya (CI: 29.4–
37.5 mya, Buckley et al., 2009) over ∼40 mya (Bradler et al.,
2015) up to 51.76 mya (36.23–69.78 mya, Buckley et al., 2010),
the latter based on the arthropod molecular clock rates suggested
by Brower (1994), i.e., without fossil calibrations.

In summary, our novel divergence time estimation generally
supports the previous molecular clock analyses that suggested
the extant radiation of stick and leaf insects to be rather
young, having occurred largely after the Cretaceous–Tertiary
(K-T) boundary (∼66 mya) (Buckley et al., 2009; Bradler
et al., 2015; Robertson et al., 2018), although some early
splits and some lower 95% confidence interval boundaries
fall into the Late Cretaceous. The reason for the successful,
rather recent radiation of Euphasmatodea is not yet fully
understood. It has been partly explained by the co-evolution
of phasmatodeans with angiosperms (Archibald and Bradler,
2015) although similar ecological associations such as predator-
prey interactions encountered by plant-mimicry were already
found in Cretaceous stick insects living in gymnosperm forests
(Wang et al., 2014). Other studies suggested that horizontal
gene transfer of pectinase genes from gut bacteria into the
genome of stick insects (Shelomi et al., 2016) or that the
development of hard-shelled seed-like eggs (Robertson et al.,
2018) were key innovations explaining the recent success of
Euphasmatodea. These properties surely enhanced their ability
to mimic and feed on angiosperm plants, and most probably
a combination of these traits might be accountable for the
impressive euphasmatodean diversification.

Historical Biogeography
Our biogeographical model selection analysis under the
maximum likelihood optimization criterion in BioGeoBEARS
resulted in DIVALIKE +J being the best fitting model and,
generally, showed a clear preference for the three models
incorporating the J parameter indicating the significance
of potential jump dispersal and founder events (see
Supplementary Table S5 for details on the results).

The ancestral geographic range at the root of Phasmatodea
was equivocally reconstructed to be New World (Nearctic +

Neotropical) and Oriental, and must be considered unresolved
(Figure 4). The recent report of Burmese amber fossils
interpreted as mid-Cretaceous members of Timematodea (Chen
et al., 2018) would further support an Oriental origin of
Phasmatodea, but a critical re-evaluation of this finding is still
pending. Every following node is clearly resolved. However, while
the ancestral region of Aschiphasmatinae and Neophasmatodea
is depicted as Oriental according to the best-fitting model
DIVALIKE +J, the estimations calculated by the models DEC
and BAYAREALIKE (with and without parameter J) show
the node as unresolved (see Supplementary Data Sheet 2).
Similarly, the ancestral range of Neophasmatodea is Oriental
according to the best-fitting model, but unresolved for some
of the other models, whereas the origin of Oriophasmata
is unambiguously reconstructed as Oriental and that of
Occidophasmata Nearctic/Neotropical.

Beyond this ambiguity at the base of the tree, reconstruction of
the historical biogeography appears to be rather straightforward.

On account of the young age of the recovered phasmatodean
lineages, their geographic distribution must be explained by
dispersal events rather than vicariant processes. A few major
colonization events out of Southeast Asia can be observed: A
single colonization of Madagascar, although this might have
occurred via Africa (Bradler et al., 2015) with the African
taxa in question lacking in our study. Furthermore, Southern
Europe was colonized once (Bacillus) by a lineage probably
also including the leaf insects (Phylliinae) with a potential
European origin (see above). The Cladomorphinae of Central
and South America also originated in Southeast Asia and
can be interpreted as the result of a transoceanic, most
probably trans-Pacific dispersal event, or via Antarctica which
was connected to Australia and South America. Ancient long-
distance dispersals in eastward direction across the Pacific have
been reported for terrestrial arthropods before, for instance
in Amaurobioides coastal spiders (Araneae; Ceccarelli et al.,
2016) and metalmark moths (Lepidoptera: Choreutidae, Rota
et al., 2016). Transoceanic crossings repeatedly played a pivotal
role for stick and leaf insect distribution (Buckley et al., 2009,
2010), with oceanic distances covered as far as from Australia
to the Mascarene Archipelago (Bradler et al., 2015). Above-
water dispersal might have occurred via animals rafting on mats
of vegetation (King, 1962) or as eggs that are exceptionally
robust in phasmatodeans and have been shown to survive
extended periods floating in sea water (Kobayashi et al., 2014)
and even passing the digestive tract of insectivorous birds
(Suetsugu et al., 2018).

CONCLUSION AND OUTLOOK

Our study confirms the power of phylogenomic approaches
for inferring evolutionary relationships that have been difficult
to assess in the past by yielding a well-supported topology
at the base of the tree of life of stick and leaf insects. We
provide strong evidence for resolving the deep phylogenetic
nodes among all major lineages of Phasmatodea, and were
furthermore able to date the individual divergence events and
reconstruct their biogeographic history. Our study provides
a substantial basis for establishing a natural classification of
the stick and leaf insects and for further developing the role
of phasmatodeans as emerging model systems in evolutionary
research. Future studies need to address minor but crucial
taxonomic problems that still await revelation such as the
phylogenetic placement of the Southeast Asian Stephanacridini,
the African Gratidiini, Bacillinae, and Palophinae, and the
Neotropical Heteronemiini, by for instance, applying DNA
enrichment methods in order to generate phylogenetically
informative data sets that can be combined with those generated
in the present study.

DATA AVAILABILITY

The transcriptome data will bemade available via NCBI GenBank
BioProject ID PRJNA183205 (https://www.ncbi.nlm.nih.gov/
bioproject/183205). Supplementary data files are available from
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the Dryad Digital Repository: https://doi.org/10.5061/dryad.
65492qt (Simon et al., 2019).
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