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Soil organic matter (SOM) is central to soil carbon (C) storage and terrestrial nutrient

cycling. New data have upended the traditional model of stabilization, which held that

stable SOM was mostly made of undecomposed plant molecules. We now know that

microbial by-products and dead cells comprise unexpectedly large amounts of stable

SOM because they can become attached to mineral surfaces or physically protected

within soil aggregates. SOM models have been built to incorporate the microbial to

mineral stabilization of organic matter, but now face a new challenge of accurately

capturing microbial productivity and metabolism. Explicitly representing stoichiometry,

the relative nutrient requirements for growth and maintenance of organisms, could

provide a way forward. Stoichiometry limits SOM formation and turnover in nature, but

important nutrients like nitrogen (N), phosphorus (P), and sulfur (S) are often missing

from the new generation of SOM models. In this synthesis, we seek to facilitate the

addition of these nutrients to SOM models by (1) reviewing the stoichiometric bias—

the tendency to favor one element over another—of four key processes in the new

framework of SOM cycling and (2) applying this knowledge to build a stoichiometrically

explicit budget of C, N, P, and S flow through the major SOM pools. By quantifying

the role of stoichiometry in SOM cycling, we discover that constraining the C:N:P:S

ratio of microorganisms and SOM to specific values reduces uncertainty in C and

nutrient flow as effectively as using microbial C use efficiency (CUE) parameters. We

find that the value of additional constraints on stoichiometry vs. CUE varies across

ecosystems, depending on how precise the available data are for that ecosystem and

which biogeochemical pathways are present. Moreover, because CUE summarizesmany

different processes, stoichiometric measurements of key soil pools are likely to be more

robust when extrapolated from soil incubations to plot or biome scale estimates. Our

results suggest that measuring SOM stoichiometry should be a priority for future empirical

work and that the inclusion of new nutrients in SOM models may be an effective way to

improve precision.
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INTRODUCTION

Why does some soil organic matter (SOM) persist for hundreds
of years while other SOM turns over quickly, rapidly losing its
carbon (C), and nutrients? Throughout the twentieth century,
most scientists believed that stable SOMwas composed primarily
of plant compounds that persisted in soil because their complex
chemical structures resisted microbial degradation (Brady and
Weil, 2007). Now, new evidence indicates that more than 50%
of stable SOM may instead be made of chemically simple
compounds incorporated into microbial residue and dead
microbial cells (i.e., necromass; Simpson et al., 2007; Ludwig
et al., 2015). Microbial residues and necromass can become
attached to mineral surfaces or trapped within soil aggregates,
rendering them inaccessible to decomposition (Prescott, 2010;
Bradford et al., 2013; Cotrufo et al., 2013; Kallenbach et al.,
2015; Lehmann and Kleber, 2015; Jilling et al., 2018). These
new findings represent a major shift in our understanding of
SOM formation, and have spurred the development of a new
generation of SOM models. These models outperform those
without microbial and mineral pathways (Wieder et al., 2013;
Robertson et al., 2019).

However, to represent the influence of microbial productivity
and mineral sorption accurately, models need to include not only
a new set of pathways, but also the factors that control those
pathways. One of the most important determinants of microbial
productivity is the degree to which the relative elemental
composition, or stoichiometry, of microbial biomass matches the
substrate on which it grows (Sterner and Elser, 2002; Schimel and
Weintraub, 2003; Cleveland and Liptzin, 2007; Buchkowski et al.,
2015). A closer match enables greater thermodynamic efficiency
and reduces the potential for nutrient limitation (Sterner and
Elser, 2002; Schimel and Weintraub, 2003). The stoichiometries
of plant inputs, SOM, and microbial biomass are known to affect
C and nutrient flows in soil (Griffiths et al., 2012; Tipping et al.,
2016) but remain absent from many SOM models (Allison et al.,
2010; Wieder et al., 2014).

SOM models developed in the past decade often contain no
more than two elements (Moorhead et al., 2012; Abramoff et al.,
2017; Sulman et al., 2019) because analytical tractability decreases
sharply with the inclusion of each additional elemental cycle.
Instead, newmodels designed to assess themicrobial components
of SOM often rely on substrate use efficiency parameters, which
succinctly represent the proportion of nutrient uptake that can be
converted into organism biomass (Allison et al., 2010; Manzoni
et al., 2012). In fact, substrate use efficiency is a summary
of a number of factors such as resource chemical quality,
stoichiometry, and climatic conditions. Modeling work has
repeatedly demonstrated that adding the underlying mechanisms
behind substrate use efficiency can improve our predictions about
SOM cycling (Schimel and Weintraub, 2003; Wieder et al., 2013;
Abramoff et al., 2017; Sulman et al., 2019).

To facilitate the development of stoichiometrically
comprehensive SOM models capable of better prediction
and accuracy, we (1) qualitatively review any changes in
stoichiometry that occur during the flow of organic matter into
soil, and (2) use this information to build a stoichiometrically

explicit SOM budget, which we refer to as the Linear SOM
Description (LSD). The LSD is a static representation of the
SOM cycle, including microbial and mineral pathways as well as
flows of C, nitrogen (N), phosphorus (P), and sulfur (S). Rather
than assessing changes in flow rates over time, as in dynamic
SOM models like CENTURY (Parton et al., 1987), LSD allows us
to calculate the possible range of possible flow rates in the system
(van Oevelen et al., 2010). Just as a set of pool measurements
can be used to build a whole-ecosystem C and nutrient budget,
LSD shows us how data on substrate use efficiency and the
stoichiometry of different pools changes the range of flows that
mass balance can allow. Using this approach, we can quantify
how effectively new information reduces uncertainty (i.e., the
range between minimum and maximum possible flows) in
the system.

The LSD can be used to efficiently analyze many model
structures and parameter sets. When selecting model structures,
we considered recent conceptual advances about SOM in
the context of stoichiometry, so we could determine when
stoichiometry can be an effective tool for incorporating field
data into numerical models (sensu Blankinship et al., 2018).
We hypothesized that the specific stoichiometric constraints on
microbes andmineral-associated organicmatter (MAOM)would
reduce model uncertainty as effectively as carbon use efficiency
(CUE), especially when we included the stoichiometry of many
elements (i.e., C, N, P, and S).

We also parameterized versions of the LSD for 27 terrestrial
ecosystem× biome combinations with open-source data (Bond-
Lamberty and Thomson, 2014; Iversen et al., 2017; Qiao et al.,
2019). Our goal was to ground the analysis of model structures
and parameters by using case studies from real ecosystems. We
hypothesized that the difference in the information available for
these systems combined with the difference in structure across
them would reverse whether stoichiometric or substrate use
efficiency measurements were better at constraining flows. By
addressing these hypotheses, we (1) demonstrate the value of
stoichiometric data for improving our understanding of SOM
cycling, (2) provide upper and lower bounds for feasible element
flows across different ecosystem types, which can be used to
evaluate the performance of predictive SOM models, and (3)
identify high-value targets for future theoretical and empirical
research efforts.

STOICHIOMETRY AND SOM FORMATION

The structure of the LSD reflects our current understanding of
SOM cycling. Following the new generation of SOM models,
we focused on microbial productivity and mineral sorption
as primary pathways of SOM stabilization. We also included
other processes, like physical protection, that are important
contributors to SOM formation, transformation, and turnover
(Six et al., 2002).

In this section, we provide a qualitative overview of
stoichiometry in four important SOM pathways represented in
the LSD: litter losses through abiotic processes and soil animals,
belowground inputs of organic matter, microbial productivity
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and CUE, and the stabilization of MAOM. Other processes
important for SOM formation, transformation, and loss have
been reviewed elsewhere (e.g., stoichiometry and leaf litter
decomposition by soil microorganisms; Manzoni et al., 2010).
Figure 1 provides a simplified visualization of the pools and flows
reviewed here (see Figure S1 for a diagram of the entire system
in the LSD). In each subsection, we identify both how a particular
process is dependent on stoichiometry and how that process itself
can alter stoichiometry.

Aboveground Litter Fragmentation and
Decomposition
Plants contribute large pulses of C, N, P, and S into soil
ecosystems through litterfall (Schlesinger and Bernhardt, 2013).
Leaf litter can be incorporated into the soil through abiotic
and biotic pathways, each of which has the potential to alter
the stoichiometry of SOM inputs (Figure 1). Here, we focus
on abiotic pathways of litter losses and processing of litter by
soil animals.

Abiotic Litter Loss
Litter losses through abiotic processes can change stoichiometry
or be stoichiometrically neutral. For example, physical
fragmentation caused by freeze-thaw or animal movement
isn’t associated with stoichiometric changes (Fahey et al., 2013).
Because fragmented litter is more easily incorporated into the
particulate organic matter (POM) pool, this process helps to
transfer higher C:N:P:S compounds from litter into SOM. In
contrast, photodegradation preferentially degrades lignin (Austin
and Ballare, 2010; Brandt et al., 2010; Austin et al., 2016). Limited
data suggest that changes in litter stoichiometry across the first
year of decomposition are similar between photodegradation
and degradation by microbial exoenzymes (Frouz et al.,
2011; Wang et al., 2015). Photodegradation is not, however,
independent of microbial decomposition; photodegraded litter
is more accessible to microbial decomposers, which facilitates
subsequent transformation and incorporation into microbial
biomass or leaching into dissolved organic matter once it is
broken into small enough molecules (DOM; Kaiser and Kalbitz,
2012; Cotrufo et al., 2015; Austin et al., 2016).

FIGURE 1 | A framework for the formation and loss of soil organic matter. Dashed orange arrows represent pathways with a stoichiometric bias, while solid blue

arrows represent pathways with stoichiometry matching the source pools. This is not a model diagram and for readability does not show that most pools have variable

chemical quality, multiple species, and multiple elements. The diagram also does not show inputs (root exudates, carbon to symbionts, nitrogen fixation, leaf, wood,

and root litter) or outputs (leaching and respiration). See the model diagram in the supplemental (Figure S1; Table S1).
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DOM lost from leaf litter can be incorporated into theMAOM
pool as it moves into the soil profile. Once adsorbed, DOM
can desorb, partially as a function of redox-sensitive elements,
and undergo processing by microbes (Fahey et al., 2011; Kaiser
and Kalbitz, 2012). As a result, DOM stoichiometry in upper
soil profiles more closely matches the original litter, while DOM
in lower soil profiles has a lower C:N because of microbial
processing (Cotrufo et al., 2015). In some ecosystems, the DOM
pathway can account for losses of up to a third of litter C
(Cotrufo et al., 2015). Carbon and nutrients in litter that are not
photodegraded or leached out are instead decomposed by soil
animals and microorganisms.

Litter Consumption by Soil Animals
Through consumption and digestion, soil animals alter the
stoichiometry of leaf litter entering the soil (Kautz et al., 2002;
David, 2014; Frouz et al., 2015). However, their effects are
extremely variable because soil animals have a wide range
of stoichiometric requirements (Teuben and Verhoef, 1992;
Martinson et al., 2008). For example, soil macrofauna, like
isopods and millipedes, usually lower the C:N ratios of their food
when converting them to feces (Kautz et al., 2002; Bastow, 2011;
Frouz et al., 2015). However, soil mesofauna, like collembola,
can raise the C:N ratio of leaf litter passing through their guts
(Teuben and Verhoef, 1992). Data on the assimilation of P and S
by soil animals are sparse, but studies on isopods and collembola
indicate that gut passage tends to increase bulk C:P andC:S ratios,
as well as the amount of P and S in dissolved forms (Morgan
and Mitchell, 1987; Teuben and Verhoef, 1992). Some animals
may reduce C: nutrient ratios because easily degradable C-rich
compounds in the leaf litter are decomposed and assimilated
in their guts (David, 2014). If this is true, understanding the
impact of soil animals on SOM stoichiometry will require data
on chemical quality as well as stoichiometry (David, 2014). These
generalizations are based on limited data sets because the nutrient
ratios of soil faunal feces, especially those of smaller-bodied
organisms, are rarely measured (Osler and Sommerkorn, 2007).
While the role of soil animal gut processing is partially dependent
on the animal’s nutrient requirements, it is also driven by the
activity of litter-degrading microorganisms.

Belowground Inputs of Organic Matter
Our understanding of SOM inputs that originate belowground
is poorly constrained compared to that of aboveground litter
transformations (Sokol et al., 2019). Since a sizable portion
of terrestrial ecosystem productivity is allocated belowground
(Gill and Finzi, 2016), this represents a major knowledge gap
hindering our ability to model SOM formation. Here, we
discuss two major pathways by which belowground organic
matter inputs can be incorporated into SOM: roots and
mycorrhizal fungi.

Roots
A majority of the decomposition literature is devoted to leaf
litter (Sokol and Bradford, 2019), despite the disproportionate
importance of fine root turnover and the marked difference
between foliar and root chemistry. Indeed, root-derived Cmay be

more important to SOM formation than aboveground C inputs
by a factor of 2.4–2.7 (Crow et al., 2009; Kong and Six, 2010;
Clemmensen et al., 2013; Sokol et al., 2019). Roots also have a
longer mean residence time (Rasse et al., 2005) and are more
likely to be incorporated into stable SOM. Like annual inputs
of leaf litter, fine root litter chemical quality strongly influences
initial (<1 year) litter decomposition dynamics (Adair et al.,
2008; Cotrufo et al., 2013; See et al., 2019).

In the first stage of decomposition, fine roots decompose
slowly (See et al., 2019). This is a function of chemical
recalcitrance, which summarizes not only stoichiometry but also
the composition of chemical constituents in organic matter.
Therefore, the impact of chemical quality and stoichiometry in
roots matches trends for leaf litter (Aerts, 1997; Hobbie, 2005;
Adair et al., 2008; Harmon et al., 2009; Keiser and Bradford,
2017). However, while foliar litter inputs tend to be nutrient poor,
with a global average C:N:P of 3007:45:1 (McGroddy et al., 2004),
fine roots (<2mm) are relatively nutrient rich, with a global
average C:N:P of 522:12:1 (Gordon and Jackson, 2000). Fine root
litter maintains the C:N of fine roots, but has higher C:P because,
unlike leaf litter, only modest P resorption has been identified in
fine roots (Gordon and Jackson, 2000; Yuan et al., 2011).

The finest roots have extremely slow decomposition rates
despite their low C:N ratios (∼21) and high turnover rates
(Sun et al., 2018). The chemical structure of roots is important
for determining decomposition rates, because microbes need
to depolymerize these compounds to metabolize them. Organic
matter with less favorable stoichiometry (e.g., high C:N ratio)
and high glucose content, for example, is more easily degraded
than organic matter with favorable stoichiometry (e.g., lower
C:N ratio) and a high portion of lignin and suberin. Therefore,
stoichiometry is one indicator of the chemical quality and
decomposition of fine roots, but cannot be totally separated
from differences in other dimensions of chemical quality (Sugai
and Schimel, 1993). As in leaf litter, where higher proportions
of structural (i.e., lignin) and inhibitory compounds decrease
microbial decomposition and the assimilation of C and nutrients
(Manzoni et al., 2010; Sinsabaugh et al., 2013), many first
order roots contain low energy C compounds that limit their
decomposition rates, and may contribute to C limitation in soil
microbes (Mooshammer et al., 2014; Sun et al., 2018).

Root litter is an important belowground input, but several
other classes of root-derived C also make large contributions to
SOM (Crow et al., 2009; Kong and Six, 2010; Clemmensen et al.,
2013; Sokol et al., 2019). These inputs include several classes
of root exudates, including those that contribute to priming
(Kuzyakov et al., 2000; Kuzyakov, 2010; Di Lonardo et al., 2017),
desorption (Keiluweit et al., 2015), defense (Jung et al., 2012), and
symbiont signaling/support (Badri and Vivanco, 2009; Jung et al.,
2012).

Root exudation is an important component of belowground
C inputs because it can promote the decomposition of SOM
compounds that require more energy to degrade or don’t have
a stoichiometric ratio that matches microbial demand (Brzostek
et al., 2013; Drake et al., 2013; Di Lonardo et al., 2017).
Such root exudates may promote microbial N mining in some
circumstances by providing the energy required to decompose N
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rich SOM (Dijkstra et al., 2013). By providing lower C:N inputs
to mine SOM, root exudates are an indirect pathway that allows
soil microorganisms to overcome C limitation (Drake et al.,
2013). Exudation into rhizosphere soils occurs alongside another,
more direct plant-to-microbe C exchange involving symbiotic
microorganisms that support plant nutrient acquisition.

Symbionts
Mycorrhizal fungi and symbiotic N-fixing bacteria are soil
microorganisms that provide nutrients to plants in exchange
for photosynthetic C (Smith and Read, 2008; Menge et al.,
2017). The activities of these specialized symbioses can alter soil
stoichiometry. For example, by facilitating plant nutrient uptake
from soil, mycorrhizal fungi could increase SOM C:nutrient
ratios (Smith and Read, 2008). In contrast, by incorporating
new N into the plant-soil system, N-fixers could decrease SOM
C:N ratios.

Almost all plants rely on root-associated mycorrhizal fungi
to obtain the soil nutrients needed for growth (Smith and
Read, 2008). Most of these plants associate with one, or
sometimes both, of the two most common types of mycorrhizal
fungi: ectomycorrhizal and arbuscular mycorrhizal. Due to
their geographic ubiquity and importance to plant nutrition,
mycorrhizal fungi constitute a major pathway by which plant
C enters the soil (Leake et al., 2004) and by which soil N, P,
and S exit the soil, mediating changes in SOM stoichiometry
(Allen and Shachar-Hill, 2009; Orwin et al., 2011; Rosling et al.,
2016). Crucially, these two mycorrhizal types are functionally
different, resulting in systematic variation in nutrient cycling
between ecosystems where most plants associate with one or the
other (Phillips et al., 2013).

In general, ectomycorrhizal fungi promote plant uptake of
organic nutrients from soil more than arbuscular mycorrhizal
fungi (Smith and Smith, 2011; Phillips et al., 2013; Hodge and
Storer, 2014; Shah et al., 2016), which can allow ectomycorrhizal
plants to increase SOMC:nutrient ratios (Orwin et al., 2011). Leaf
litter from ectomycorrhizal plants also decomposes more slowly
than leaf litter from arbuscular mycorrhizal plants (Cornelissen
et al., 2001), reducing litter nutrient accessibility. These above-
and belowground traits interact, enabling ectomycorrhizal plants
to thrive in environments where slow mineralization limits
nutrient availability (Steidinger et al., 2019), and, potentially,
to also reinforce these conditions (Lin et al., 2017; Fernandez
et al., 2019; Smith and Wan, 2019). Together, these dynamics
contribute to correlations between global ectomycorrhizal plant
abundance and higher SOM C:N ratios (Averill et al., 2014).

Mycorrhizal fungi also form extensive hyphal networks in soil
that can directly contribute to SOM (Leake et al., 2004). In a
Mediterranean poplar plantation, C derived from the turnover
of mycorrhizal hyphae exceeded that of fine roots and leaf litter,
forming the majority of total SOM inputs (Godbold et al., 2006).
In boreal forests, a large proportion of primary productivity
is allocated belowground (Gill and Finzi, 2016), and much of
the SOM in these environments is derived from roots and
mycorrhizal fungal biomass (Clemmensen et al., 2013). Fungal
biomass has a higher nutrient content than plant roots, so inputs

from mycorrhizal mycelia are likely to lower SOM C:nutrient
ratios (Zhang and Elser, 2017).

In contrast to mycorrhizal fungi, which help plants acquire
nutrients already present in soil, symbiotic N fixers introduce
new N into the system (Menge et al., 2017). The majority of
N fixation is performed by plant-associated symbionts, so these
symbionts likely have the largest impact on SOM stoichiometry
(Cleveland et al., 1999). Most N fixed by plant symbionts enters
SOM after first traveling through the host plant; returning to the
soil as root exudates and litter deposited above- or belowground
(Sulman et al., 2019). Some of the fixed N, however, can enter the
soil system directly through death of the symbionts themselves.
This flow of nutrients may impact the stoichiometry of inputs
into SOM (Brophy and Heichel, 1989).

Microbial Productivity and Carbon Use
Efficiency
Microbial metabolism controls the speed at which organic
matter is decomposed. Microbial CUE measures the fate of
metabolites as the proportion of total C uptake that is allocated
to biomass (Manzoni et al., 2012). Microbial CUE is also highly
variable (Qiao et al., 2019), affected by the chemical composition
of substrate (Sugai and Schimel, 1993; Frey et al., 2013), as
well as by the match between resource stoichiometry and
microbial stoichiometry (Sinsabaugh et al., 2013, 2016). Carbon
use efficiency determines how efficiently substrate inputs are
transformed into stable, microbially-derived SOM. As such, even
small changes in CUE can have important downstream impacts
on SOM formation (Six et al., 2006). Because CUE succinctly
captures the relationship between organic matter inputs and the
SOM precursors produced by microorganisms, it appears as an
important parameter in the new generation of microbe-focused
SOM models (Allison et al., 2010; Wieder et al., 2014; Sihi et al.,
2016).

Stabilization of Mineral-Associated
Organic Matter
Soil organic matter can be stabilized by association with
mineral surfaces. The strength and nature of organo-mineral
interactions varies with edaphic conditions like soil mineralogy
and texture (Dungait et al., 2012; Lehmann and Kleber, 2015;
Kallenbach et al., 2016; Jilling et al., 2018). Soil pH also
plays an important role in SOM stabilization. Organo-metal
complexes are associated with aluminum- and iron-dominated
clay minerals in acidic systems and with calcium in alkaline
systems (Rasmussen et al., 2018). The MAOM pool can persist
over long time scales when physically protected within soil
aggregates (Tipping et al., 2016), even if the organic compounds
that are attached to mineral surfaces would otherwise be
prone to microbial degradation. Predicting the stoichiometry of
MAOM thus requires an understanding of which compounds are
adsorbed onto mineral surfaces under what conditions.

The quantity, stability, chemistry, and distribution of MAOM
in an ecosystem is determined by the relative dominance of
biotic vs. abiotic pathways to sorption, whether DOM is adsorbed
directly to mineral surfaces or after it is processed by soil
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microbes (Mikutta et al., 2019; Sokol et al., 2019). Because
microbes tend to outcompete minerals for organic matter
(Fischer et al., 2010), the biotic pathway increases in prevalence
with microbial biomass such that sorption of microbially-
processed compounds dominates in surface soil horizons and
rhizosphere soils (Sokol et al., 2019). In the rhizosphere, sugars
and amino acids exuded by roots can release SOM from mineral
associations, allowing for microbial processing and turnover
of previously adsorbed compounds (Keiluweit et al., 2015).
However, the high-quality substrates exuded into the rhizosphere
also promote the production of large quantities of microbial
necromass, which can be readily converted into stable MAOM
and aggregates (Knicker, 2011; Cotrufo et al., 2013; Schrumpf
et al., 2013; Craig et al., 2018). The balance of decomposition and
formation of MAOM in the rhizosphere appears to produce a net
increase in stable MAOM, likely because root exudates provide
plenty of C and nutrients for sorption (Sokol et al., 2019).

The two classes of biomolecules most susceptible to sorption
on mineral surfaces are proteins (peptide compounds) and
inositol phosphates (Sollins et al., 2006; Celi and Barberis,
2007; Kleber et al., 2007; Tipping et al., 2016; Newcomb
et al., 2017), both of which can introduce strong stoichiometric
biases. The accumulation of N-rich proteins lowers MAOM C:N
while the accumulation of inositol phosphates strongly (and
variably) lowers MAOM C:P (Celi and Barberis, 2007; Tipping
et al., 2016; Jilling et al., 2018). Inositol phosphates are the
most common phosphate monoesters, making them the most
abundant, highest-affinity organic P compounds in soils (Turner
et al., 2002). Though they interact with exchange sites via their
phosphate groups much like inorganic phosphates (Goldberg
and Sposito, 1985), each inositol phosphate can have one to six
phosphate groups. Many minerals, especially iron oxides, have a
much higher affinity for these organic P compounds than their
inorganic counterparts (Celi et al., 1999; Celi and Barberis, 2007).
However, the extent of MAOM P enrichment resulting from the
sorption of inositol phosphates (Adams et al., 2018) depends
on the minerals in a given soil (Celi and Barberis, 2007). The
flow of organic matter into the MAOM pool is thus subject
to a variable stoichiometric filter, which generally concentrates
nutrients relative to C and specifically concentrates N and/or P
according to soil mineralogy.

THE LINEAR SOM DESCRIPTION

The LSD is a static description of the soil system (van Oevelen
et al., 2010; Liang et al., 2011) with pools and processes included
in recent dynamic SOM models as well as several new additions
identified in our review (Wieder et al., 2014; Robertson et al.,
2019; Sulman et al., 2019). It contains leaf/wood litter, root
litter, soil animals, POM, DOM, saprotrophic microorganisms,
symbiotic microorganisms, MAOM, and inorganic nutrients,
as well as pools of POM and MAOM that are physically
protected (Figure 1; Figure S1). We track the possible flows of
four elements (C, N, P, and S) through these pools. We chose
to include N, P, and S in addition to C because they are often
in high demand relative to their supply in soil (Sterner and

Elser, 2002; Brady andWeil, 2007). However, rather than tracking
the mass of C, N, P, and S in these pools, we instead use pool
stoichiometry to constrain the ranges of possible C and nutrient
flows between them.

Most SOM models use a dynamic approach (e.g., Jenkinson
et al., 1987; Parton et al., 1987; Wang et al., 2013; Sulman et al.,
2014; Wieder et al., 2014; Abramoff et al., 2018), where pool
sizes are explicitly modeled so that flows or fluxes between them
can be quantified (Equation 1). We will use the term flow to
describe the rate of carbon and nutrient movement between
pools (van Oevelen et al., 2010), but note that the term flux is
used interchangeably in the ecosystem literature (Chapin et al.,
2011). In a linear dynamic model, flows (y; mass • time−1) are
calculated by multiplying a rate constant (k; time−1) by the pool
size (X;mass):

y = kX (1)

In contrast to dynamic linear models like CENTURY (Parton
et al., 1987) or Roth-C (Jenkinson et al., 1987), the LSD is
always at equilibrium, so neither rate constants (k) nor pool
sizes (X) are explicitly modeled over time. The LSD does not
include equations like Equation 1. Instead, equations settingmass
balance, stoichiometry, and substrate use efficiency relationships
are used to constrain flows (see Model Example; Equation 2). By
constraining possible flows, the LSD indirectly determines the
reasonable combinations of rate constants and equilibrium pool
sizes (Equation 1). The flows in the LSD are comparable to those
that would be reached at equilibrium in a linear model such
as CENTURY (Parton et al., 1987) or a non-linear SOM model
such as MIMICS or the Millennial model (Wieder et al., 2014;
Abramoff et al., 2018).

Our approach has three major benefits. First, a linear system
can effectively account for the interaction between flows that have
stoichiometric constraints placed upon them (van Oevelen et al.,
2010; Yang et al., 2017). Second, linear systems at equilibrium
can be solved in high dimensions, allowing us to evaluate many
structural and parameter changes (van Oevelen et al., 2010).
Third, a linear system built with minimal assumptions yields
the set of equilibria obtainable from structurally analogous non-
linear models (Stevens, 2009). An equilibrium approach does
not simulate or predict how systems evolve over time, which
means that the LSD does not replicate the efforts of new non-
linear models that include many of the same processes (Wieder
et al., 2014; Abramoff et al., 2018; Sulman et al., 2019). Instead,
it is useful for comparing equilibrium scenarios and evaluating
what new data would provide the most effective constraints on
equilibrium soil C and nutrient cycling.

Model Constraints
We imposed a few initial constraints to capture the biologically
feasible range of state space in the absence of stoichiometric
information. The baseline model conditions were:

1. System inputs, defined as leaf/wood litter, root litter, plant root
exudates to DOM, and plant C to microbial symbionts, are
constrained between 180 and 2,500 g C m−2 year−1 (Chapin
et al., 2011).
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2. There are two pools each of leaf/wood litter, root litter, DOM,
POM, and MAOM that arbitrarily divide the multivariate
differences in chemical quality into categories with different
stoichiometry and CUE (see below; Cotrufo et al., 2013).

3. There are bacterial, saprotrophic fungal, ectomycorrhizal
fungal, arbuscular mycorrhizal fungal, and nitrogen fixer
microbial pools (Smith and Read, 2008; Waring et al., 2013;
Wieder et al., 2014), as well as primary and secondary
detritivores (Scheu, 2002).

4. Unless otherwise stated, substrate use efficiencies are between
5 and 95%, and CUE values are lower for the pools with higher
chemical recalcitrance (Qiao et al., 2019).

5. The rate of physical protection of POM and MAOM pools
cannot exceed their fresh input rates.

6. The rate of DOM sorption onto MAOM cannot exceed the
rate of depolymerization.

7. Microorganisms cannot immobilize inorganic nutrients faster
than they enter the system.

Constraint 1 places the model output within a realistic range of
elemental flows for ecosystems. Constraints 2 and 3 establish a
reasonable model structure for soil elemental cycling including
the important components discussed in our review. Finally,
constraints 4–7 prevent infinite cycling between pools that
exchange nutrients (e.g., microorganisms and inorganic N).
These constraints are not necessary in models like CENTURY
that mass balance pools, but are necessary in systems like the LSD,
which mass balances flows (van Oevelen et al., 2010).

The pools with different chemical qualities defined in
constraint 2 capture important mechanisms linking organisms
to soil elemental cycling. They also help confirm that the
importance of stoichiometry is not nullified by adding a
categorical difference in chemical quality to our accounting.
Many SOM models include some measure of quality, but
two general strategies predominate: ontogeny models track the
quality change of each unit of organic matter as it is processed,
effectively treating quality as a continuous variable (Bosatta and
Agren, 1991; Moore et al., 2004). Other models divide organic
matter into discrete quality pools (Parton et al., 1998; Adair et al.,
2008; Wieder et al., 2014). Because tractability is one of our
primary goals, we chose to follow the latter approach.We include
two pools with different levels of chemical recalcitrance, which
are distinguished by their stoichiometry and the CUE with which
they can be used (Moore et al., 2004; David, 2014). We recognize
there are limitations in defining chemical recalcitrance purely on
stoichiometry and differences in CUE, as opposed to a metric
which also includes constituent compounds like lignin:N. Future
expansions of the LSD could include many more biochemical
categories, allowing it to track molecular differences in CUE that
extend beyond stoichiometry (Yang et al., 2017).

Analytical models of SOM decomposition use different
strategies to constrain the cycling of nutrients through microbial
biomass. Many models combine the stoichiometric imbalance
between organic matter, microorganisms, and their exoenzymes
with flexible microbial CUE (Manzoni and Porporato, 2009;
Moorhead et al., 2012, 2013; Manzoni, 2017) and overflow
respiration (Schimel and Weintraub, 2003). Others represent

stoichiometric biases in SOM decomposition by shifting
microbial community composition or microbial community
homeostasis (Sinsabaugh and Shah, 2012; Sinsabaugh et al.,
2013, 2015; Waring et al., 2013; Warton et al., 2015; Hartman
et al., 2017). Both of these modeling approaches demonstrate
that stoichiometric constraints, soil community composition,
and substrate use efficiencies are intertwined. In the LSD, we
impose stoichiometry and substrate use efficiency as constraints
that set a range of possible values (e.g., minimum to maximum
of CUE or C:N ratio for bacteria). Since these constraints act
in similar ways, we can identify the relative ability of either
stoichiometry or substrate use efficiency to constrain the range of
possible flows.

Model Example
In Figure 2, we illustrate how the LSD works by following C
and N partitioning through ectomycorrhizal fungi. This example
demonstrates how the flow changes as new constraints (i.e.,
substrate use efficiency or stoichiometric data) are added. It also
highlights that the LSD does not currently incorporate empirical
data on the flows between specific SOM pools or track the
dynamics of SOM pool sizes, but instead uses C and nutrient
input rates plus stoichiometry and substrate use efficiency to
derive the range of possible flows.

Total C taken up by the ectomycorrhizal fungi (EYc) is equal
to losses, since the model is mass balanced and static. Carbon
lost from ectomycorrhizal fungi can exit the system through
respiration (YEc), or can be partitioned into the MAOM pool
(YMc + YJc), the POM pool (YPc + YQc), or the DOM pool
(YDc+ YUc), each with two levels of chemical quality:

EYC = YEC + YMC + YJC + YPC + YQC + YDC + YUC (2)

When applicable, CUE constrains the proportion of C uptake
(EYc) that ectomycorrhizal fungi respire (YEc). Respiration is
equal to 1-CUE multiplied by the total quantity of C taken
up (EYc):

YEC = (1− CUE) × EYC (3)

In the example given by Figure 2A, the quantity of C taken up
by ectomycorrhizal fungi (EYc) is between 0 and 10 g C m−2 y−1.
If neither CUE nor stoichiometric constraints are imposed, the
C partitioned to respiration (YEc), DOM (YDc+YUc), MAOM
(YMc +YJc), or POM (YPc + YQc) all have the same potential
size range, which is also 0–10 g Cm−2 y−1. However, all pathways
must sum to inputs (Equation 2), which means that as one flow
grows, all others must shrink.

If we define CUE as 0.5 (Figure 2B), the size of the respiration
flow, YEc, becomes 0.5 ∗ EYc, which constrains it between 0 and
5 g C m−2 y−1. Because the flows are mass balanced (Equation
3), the other three flows must now be between 0 and 5 g C
m−2 y−1. In this way, including CUE reduces the uncertainty,
i.e., the range between minimum and maximum flows,
in the system.
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FIGURE 2 | A visual representation of how LSD works using ectomycorrhizal fungi (ECM) as an example. Each tube and arrow represent the C or nutrient transfer to a

specific pool (i.e., POM), while the brackets inside each tube define the minimum and maximum flow. The general model (A) shows the possible range of C flows in

the absence of stoichiometric or substrate use efficiency constraints. Once the CUE of the fungi is defined in (B), the maximum flow for CO2 (respiration) is

constrained, which also reduces the potential maximum flow of C for the three remaining pools because the system is at equilibrium and mass balanced. The general

model (C) shows the possible range of N flow in the absence of stoichiometric or substrate use efficiency constraints. In (D), we define the C:N of ECM as 10:1.

Because the maximum total C uptake is 10 (A/B), the maximum size of the N flows to POM, MAOM, DOM N pools is reduced to 1. The N flow is constrained due to

stoichiometric limitations, since the ECM pool must have ten units of C for every unit of N. The Lost N flow (i.e., transfer to plants) now has a maximum flow size of 7,

because the system must remain mass balanced.

The LSD can also be constrained by imposing stoichiometric
ratios, such as a fixed C:N ratio, as follows (van Oevelen et al.,
2010):

EYC − YEC = YCN [LYN + RYN + VYN +WYN + DYN

+UYN + PYN + QYN + IYN − YIN − YEN] (4)

Here, net C gain by the ectomycorrhizal fungi (EYc–YEc) is equal
to the C:N ratio of the ectomycorrhizal pool (YCN) multiplied
by its net N gain. Net N gain is calculated by adding up
N acquired from leaf/wood litter (LYN + RYN), root litter
(VYN + WYN), DOM (DYN + UYN), POM (PYN + QYN), and
inorganic N (IYN), and subtracting inorganic N losses through
mineralization (YIN), and N provided to plants (YEN; Equation
4). In the example given in Figure 2C, no substrate use efficiency
or stoichiometric constraints are imposed and the net N gain
is constrained between 0 and 8 g N m−2 y−1. This means that
without a fixed C:N ratio, the range of flows to POM, MAOM,
and DOM as well as the quantity of N lost can be between 0
and 8 g N m−2 y−1. In contrast, if we define the C:N ratio of
ectomycorrhizal fungi as 10 (Figure 2D), the potential flows for
N lost to POM, MAOM, and DOM have a maximum of only 1 g

N m−2 y−1. This change occurs because ectomycorrhizal fungi
mineralize or send to plants up to 7 g N m−2 y−1 to maintain
their C:N ratio.

With each additional stoichiometric relationship defined in
the model (i.e., going from C:N to C:N:P), a further equation
of the same form as Equations 3 or 4 is added to represent the
partitioning of each element. Each additional equation is likely
to shrink the difference between the minimum and maximum
flows, thus reducing uncertainty. However, the impact of each
constraint on the entire LSD network is not obvious a priori
because not all constraints will be binding. For example, the
C:N constraint we described does not reduce uncertainty in C
flow, because there is enough N to span the entire range of
available C (i.e., N is limiting; Figure 2). Consequently, we can
use the LSD as a tool to determine if and when stoichiometry and
substrate use efficiency matter in the network of ∼400 flows that
we consider (Figure S1).

Application of the LSD
We used the LSD to consider three fundamental stoichiometric
biases: soil organism homeostasis (stoichiometric demands),
mineral sorption biases, and abiotic litter loss biases (i.e., leaching
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throughDOM).We then evaluated how three classes of empirical
information constrained the state-space in which our linear
system could exist. First, we considered the effects of broad
stoichiometric ranges (e.g., animal C:N ratio is between 4 and
25; Sterner and Elser, 2002). Second, we considered specific
stoichiometric constraints, where the exact C:N:P:S ratios of each
process are known (e.g., animal C:N ratio is 6; Equation 4).
Finally, we considered the case where substrate use efficiency is
a set as at exact value (Equation 3). For each, we assessed the
effect of these data on model uncertainty, defined as the range
between the minimum and maximum flows possible under the
prescribed constraints.

We also quantified the value of stoichiometry and substrate
use efficiency information across 27 different biome× ecosystem
type combinations. These systems have different animal and
microbial communities, as well as different mineral properties,
albeit with varying levels of data to constrain them (Chapin
et al., 2011; Bond-Lamberty and Thomson, 2014; Adams
et al., 2018; Steidinger et al., 2019). We first confirmed that
the LSD was producing reasonable flows by comparing its
litter inputs and heterotrophic respiration estimates to values
from the SRDB (version 3.0) dataset (Bond-Lamberty and
Thomson, 2014; Figure S6). Then, we used the LSD to examine
how stoichiometric vs. substrate use efficiency information
constrained the range of possible C and nutrient flows into
stabilized pools across ecosystem types.

Solving the LSD and Quantifying
Uncertainty
We solved the LSD using inverse linear programming in R
(van Oevelen et al., 2010; R Core Team, 2014; see section
Model Example for a case study on one pool). We explored
the importance of stoichiometry and substrate use efficiency
in the LSD across differences in structure, parameterization,
and type of stoichiometric information available, as detailed
above. Structures varied the number of microbial pools or
the presence of different stabilization pathways. Modifying
parameters allowed us to confirm that our results were
general across possible parameter ranges, and modifying the
pools that receive constraints allowed us to assess the impact
of stoichiometric or substrate use efficiency information for
different pools.

We present these data at the level of overall uncertainty to test
whether changes in structural conditions or parameters influence
the value of stoichiometric information. Here, overall uncertainty
means the range of possible flows across the entire linear system.
To calculate a value of overall uncertainty (Equation 6), we solved
for the individual flows that maximize (ymax) and minimize
(ymin) the total flow throughout the linear system. Uncertainty
is the overall difference between all i flows in the maximum and
minimum cases for each element.

Uncertainty =

N
∑

i

∣

∣ymax,i − ymin,i
∣

∣ (5)

Given that the LSD is static and does not explicitly account
for pool sizes and rate constants, our uncertainty estimates

are not directly comparable with those derived from dynamic
SOM (and carbon cycle) models, which do not always
operate at equilibrium (Sihi et al., 2018; Sulman et al., 2018).
Instead, the magnitude of uncertainty in the LSD indicates
the precision of each flow at equilibrium. Although this
metric may differ from the general measure of uncertainty
used within the soil (and terrestrial) ecology community,
inverse linear programming has been extensively used to solve
network flow problems and their associated uncertainties in
community ecology, metabolic networks, engineering, nutrition,
and transport planning (Dantzig, 1963; van Oevelen et al., 2010;
Yang et al., 2017; Goldford et al., 2018).

RESULTS

The general model scenario constrained soil processes within
ranges set by the described structural conditions (see section
Model Constraints) and by mass balance. The uncertainty
calculated for the basemodel was at least two orders ofmagnitude
higher than the system inputs (i.e., 180–2,500 g C m−2 y−1;
assumption 1). Uncertainty was higher than the system inputs
because many flows recycled C and nutrients among pools in
the soil system (This does not occur in the one pool example
provided; Figure 2).

Specific stoichiometric constraints, such as an exact C:P
ratio for bacteria, had a much more important impact on
uncertainty than broad stoichiometric ranges (Figure 3A).
Adding broad constraints on the relationship between C, N, P,
and S encompassing all potential minimum to maximum ratios
had a negligible impact on uncertainty in C (Figure 3A), but
reduced uncertainty in N, P, and S flows whenever that nutrient
was included (Figure S2). We tested the system using specific
stoichiometric constraints (fixed C:N:P:S ratios across all pools)
and found that they reduced the uncertainty in C flow by 20%
when we included only C:N and by 80% when we included at
least C:N:P (Figure 3A).

We then tried including substrate use efficiency for C,
N, P, and S rather than imposing stoichiometry (Figure 3B).
Information on CUE for microorganisms and soil animals was
effective at reducing the uncertainty in C flows (Figure 3B) but
the substrate use efficiency of other nutrients (i.e., N, P, and
S) did not provide additional benefits (Figure 3B; Figure S2).
Unlike specific stoichiometric information, which became more
useful with additional elements, most of the value of substrate
use efficiency data came from CUE (Figure 3B; Figure S2). The
general trends in uncertainty across stoichiometry and substrate
use efficiency were robust to changes in the parameter values
(Figure 3: error bars). These results show that stoichiometry,
especially precise C:N:P ratios, is on par with substrate use
efficiency at constraining C flows (Figure 3).

Modifying the model structure (see section Model Example)
altered the overall uncertainty and, in certain cases, altered the
value of stoichiometric and substrate use efficiency information.
Removing differences in chemical quality and microbial pools
dramatically reduced the overall uncertainty, while removing
MAOM pools and physical protection had a more modest effect
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FIGURE 3 | A summary of C cycle uncertainty in the LSD using different amounts of stoichiometry and substrate use efficiency information. (A) The scenarios

represent an increasing number of links between element cycles, ranging from entirely independent to linkage between “C:N,” “C:N:P,” and “C:N:P:S.” The general

scenario has the widest possible bounds, while still avoiding infinite recycling between pools. Broad scenarios are constrained by a wide range of potential ratios

between C and the indicated nutrients, while specific scenarios are constrained to a point estimate of that ratio. (B) Scenarios with CUE, NUE, PUE, and SUE are

constrained to a point estimate of C, N, P, and S use efficiency, respectively. Uncertainty is shown for the general model containing all pools and information along with

error bars that span the 25th−75th quantiles of 100 random parameters draws within ± 20% of the base value. Uncertainty is calculated as the sum of the absolute

difference in flows between the minimum and maximum flow scenarios. See Figure S2 for N, P, and S.

FIGURE 4 | Uncertainty in C cycling when the model structure is changed by removing the indicated pool(s). Points higher on the y-axis indicate that the addition of

stoichiometric (A) or substrate use efficiency (B) information less effectively reduces model uncertainty. The inset shows raw uncertainty values in the general case.

The caption for Figure 3 provides a description of the axes. A version of this plot for N, P, and S is presented in the supporting information (Figure S3).

(Figure 4A: inset). The fact that differences in chemical quality,
microbial biomass, and MAOM increased uncertainty in the
model is consistent with our new understanding of them as
central to SOM formation and loss (Lehmann and Kleber, 2015).
Whenmicrobial pools were taken out of the budget, substrate use

efficiency information had no effect on uncertainty even though
animals were still included (Figure 4B). Removing chemical
quality from the budget also made substrate use efficiency
information less useful. Similarly, stoichiometric ratios were
much less important without differences in chemical quality,

Frontiers in Ecology and Evolution | www.frontiersin.org 10 October 2019 | Volume 7 | Article 382

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Buchkowski et al. Stoichiometry Improves SOM Models

FIGURE 5 | Uncertainty in C cycling when stoichiometric and substrate use efficiency constraints are applied to all pools except the focal. Stoichiometric (A) or

substrate use efficiency (B) information for the focal pool is most important when the line associated with that pool remains high on the graph. See caption for

Figure 3 for a description of the axes. Versions of this plot for N, P, and S are presented in the supporting information (Figure S4).

MAOM pools, or saprotrophic microbial pools (Figure 4A).
Since recent empirical findings indicate that such interactions
drive the formation of large pools of stable SOM (Lehmann and
Kleber, 2015), our results establish stoichiometry as a necessary
component of SOM models that focus on microbial and mineral
SOM formation. These results highlight an important interaction
between stoichiometry and the structural assumptions used to
build predictive models of SOM formation and loss.

Changing the organisms or pools that received stoichiometric
or substrate use efficiency constraints altered their impact on
uncertainty. For reducing C flow uncertainty, stoichiometric
and substrate use efficiency constraints on saprotrophic
microorganisms (i.e., bacteria and fungi) were the most
important (Figure 5). Stoichiometric constraints on MAOM also
reduced uncertainty, but were much less impactful (Figure 5A).
For N flow, constraints on symbionts were also important.
For P and S, constraints on MAOM stoichiometry reduced
uncertainty (Figure S4). Overall, specific stoichiometric data for
microbial C:N:P ratio was the most useful for reducing model
uncertainty (by > 50%).

Nutrient flows responded differently to a reduction in the
possible range of pool stoichiometry and organism CUE across
ecosystem types. The differences reflect both the pathways
present in a given ecosystem (analogous to structural changes)
and starting uncertainty in the potential range of CUE or
C:N:P:S for each ecosystem type (Table S2). For example, we
found that stoichiometric information is much more effective
at constraining flows in tropical systems, where uncertainty
in stoichiometric ratios is high and all three plant symbionts
can occur (Figure 6; Steidinger et al., 2019). In contrast,
stoichiometry and CUE could both reduce uncertainty in
temperate systems, with CUE being particularly effective given

the wide range of CUE estimates available for temperate forests
(Figure 6; Qiao et al., 2019). In general, specific stoichiometric
information was more effective than substrate use efficiency
at constraining the flows of all elemental cycles (Figure 6).
Microbial and animal CUE was most effective at constraining C
(Figure 6). Even though temperate forests have more data with
which to estimate CUE, the trend in Figure 6 held when we
made the range of initial CUE values the same for temperate and
tropical systems.

In general, our analysis indicated that acquiring more precise
stoichiometric data will reduce uncertainty in soil nutrient
cycling, confirming our hypothesis and the conclusions of our
qualitative review (Figure 6; Figure S5). We also found that a
budgeting approach, like the LSD, can quantify the usefulness of
new stoichiometry and CUE data for a particular system.

CONCLUSIONS AND FUTURE
DIRECTIONS

Our review traced several of the many stoichiometric changes
that can occur along the path separating soil inputs from
SOM. With the LSD, we quantified whether these stoichiometric
relationships could constrain uncertainty in the size of SOM
flows at equilibrium. We discovered that adding stoichiometric
information narrowed the range of possible flows, and that the
inclusion of elements other than C and N substantially improved
the precision of overall flow patterns. In fact, stoichiometric
data allowed us to constrain all elemental cycles, improving our
representation not only of nutrient flows but also of C flows.

The new generation of SOM models generally use CUE
parameters, either fixed or as a function of abiotic conditions,
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FIGURE 6 | A comparison of model behavior across ecosystem types, using temperate and tropical, forests, and grasslands as an example. The baseline uncertainty

corresponds to the broad C:N:P:S scenario in earlier model results (Figure 3), but is different across ecosystem types due to stricter constraints on the range of

possible C:N:P:S ratios and CUE. The base scenario is compared with a 90% reduction in the uncertainty of stoichiometry (analogous to the minimum of the error

bars in Figure 1: Broad C:N:P:S) and a 90% reduction in the uncertainty of CUE. Plots for the 27 different ecosystem-biome combinations are presented Figure S5.

to constrain the flow of C inputs into microbially-derived
SOM pools (Allison et al., 2010; Wieder et al., 2014). Though
appealing for its simplicity, this approach cannot capture the
dependency of CUE on resource availability and often relies on
empirical point measurements, which can obscure the variability
inherent in CUE (Manzoni et al., 2012). Fixed parameters
also do not capture the changes in CUE at different levels of
mineral nutrient availability, meaning that models relying on
prescribed CUE parameters instead make implicit stoichiometric
assumptions. By contrast, stoichiometrically explicit models
allow this component of CUE to emerge dynamically as a
function of nutrient availability. Our findings demonstrate that
a stoichiometric approach can effectively reduce uncertainty in
C flow to SOM, justifying the addition of multiple elements
into a dynamic accounting of SOM (Schimel and Weintraub,
2003; Buchkowski et al., 2015, 2017; Sulman et al., 2019).
Parameterizing such a model would require stoichiometric
measurement of important pools, but this is likely to be

both more cost-effective and more consistent than measuring
substrate use efficiencies at a large scale. Our results also
show that such SOM models could be effectively constrained
with open-source C and nutrient data on soil and plant
inputs available from environmental research and observation
networks (Weintraub et al., 2019).

Measurement of SOM pool stoichiometry is a clear
opportunity for high-value empirical work. For instance,
our review and analysis strongly support several recent
theoretical advances (Lehmann and Kleber, 2015; Jilling et al.,
2018) highlighting the importance of the microbial to MAOM
transition as a hub of C and nutrient exchange in the SOM
system. Unfortunately, data on the nutrient content of the
MAOM pool remain sparse, especially outside of agricultural
and temperate forest ecosystems and for ratios other than C:N.
While flows into this pool are predicted to be nutrient-enriched,
the quality and extent of this enrichment is highly dependent
upon soil characteristics and processes, such as sorption, that
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are non-linear and require data across substrate × mineral
combinations to parameterize SOMmodels.

Despite the fact that stoichiometry is more consistent than
CUE (Cleveland and Liptzin, 2007), the stoichiometry of MAOM
and other large soil pools can be sensitive to disturbance, and
may therefore be vulnerable to global change. For example,
fire (e.g., Butler et al., 2019), warming (e.g., Sihi et al.,
2019), and nutrient addition (e.g., Crowther et al., 2019) have
been known to influence the stoichiometry of soil, invertebrate,
saprotrophic microorganisms, mycorrhizal fungi, and enzyme
kinetic activities, which in turn can affect SOM pools and flows.
Likewise, MAOM stoichiometry is likely to change with soil pH
and associated organo-metal complexation with sesquioxides (Fe
and Al oxides) and exchangeable Ca (Rasmussen et al., 2018).
Adding these stoichiometric mechanisms into dynamic SOM
models may help them replicate larger-scale changes in soil
stoichiometry and resolve global patterns.

By synthesizing recent advances in SOM cycling and
developing a simple, stoichiometrically explicit budget, we
were able to quantify the size of organic matter flows in soil
and identify which SOM flows were well-constrained by new
data across 27 different ecosystem × biome combinations.
Information not only on soil organic C and N but also on P and S
was central to achieving this goal, which indicates that collecting
data on the distribution of these soil nutrients is an effective way
to strengthen our capacity to predict SOM stocks and flows. With
our work, we have provided a foundation for incorporating these
new stoichiometric data into dynamic SOM models, where they
have the potential to significantly enhance accuracy. Together,
empirical and theoretical advances like these can allow us tomove
away from equilibrium and toward a better understanding of the
non-linear dynamics that characterize our changing world.
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