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Screening is a strategy for detecting undesirable change prior to manifestation of

symptoms or adverse effects. Although the well-recognized utility of screening makes

it commonplace in medicine, it has yet to be implemented in ecosystem management.

Ecosystem management is in an era of diagnosis and treatment of undesirable change,

and as a result, remains more reactive than proactive and unable to effectively deal

with today’s plethora of non-stationary conditions. In this paper, we introduce spatial

imaging-based screening to ecology. We link advancements in spatial resilience theory,

data, and technological and computational capabilities and power to detect regime shifts

(i.e., vegetation state transitions) that are known to be detrimental to human well-being

and ecosystem service delivery. With a state-of-the-art landcover dataset and freely

available, cloud-based, geospatial computing platform, we screen for spatial signals

of the three most iconic vegetation transitions studied in western USA rangelands:

(1) erosion and desertification; (2) woody encroachment; and (3) annual exotic grass

invasion. For a series of locations that differ in ecological complexity and geographic

extent, we answer the following questions: (1) Which regime shift is expected or of

greatest concern? (2) Can we detect a signal associated with the expected regime shift?

(3) If detected, is the signal transient or persistent over time? (4) If detected and persistent,

is the transition signal stationary or non-stationary over time? (5) What other signals

do we detect? Our approach reveals a powerful and flexible methodology, whereby

professionals can use spatial imaging to verify the occurrence of alternative vegetation

regimes, image the spatial boundaries separating regimes, track the magnitude and

direction of regime shift signals, differentiate persistent and stationary transition signals

that warrant continued screening from more concerning persistent and non-stationary

transition signals, and leverage disciplinary strength and resources for more targeted

diagnostic testing (e.g., inventory and monitoring) and treatment (e.g., management)

of regime shifts. While the rapid screening approach used here can continue to be

implemented and refined for rangelands, it has broader implications and can be adapted

to other ecological systems to revolutionize the information space needed to better

manage critical transitions in nature.
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INTRODUCTION

Screening is widely applied to the early detection of undesirable
change. Pioneering approaches to screening in medicine made
it possible to detect diseases before consequences to health were
realized by the individual or confirmed through practitioner
diagnosis (Morabia and Zhang, 2004). The use of spatial medical
imaging in early screening for a variety of diseases is now
commonplace. It is important to differentiate between screening,
which indicates the potential presence of a disease, ideally before
the emergence of signs and/or symptoms, and diagnostic testing,
which confirms the presence of a disease following the emergence
of characteristics signs and/or symptoms or screening-based
detection (Gilbert et al., 2001). Screening generates information
that can be used to proactively diagnose and treat a disease, and
thereby, avoid or mitigate its detrimental effects (Morris, 1994;
Saunders et al., 2001).

Despite its clear utility in medicine, screening for undesirable
ecological change (i.e., regime shifts; state transitions) has
yet to be implemented in ecosystem management. Ecosystem
management to date has largely focused on diagnosing (e.g.,
monitoring and inventorying) and treating (e.g., managing)
regime shifts (Figure 1). It is not surprising then that ecosystem
management as a whole has remained more reactive than
proactive in an era of global change, uncertainty, and surprise.
Even though ecology has long sought objective early warning
indicators of regime shifts, in the language of medicine, most
applications of early warning indicators are diagnostic, in that
they are predicated on the detection of the signs and/or
symptoms of change that has already begun to occur (Biggs
et al., 2009; Dakos et al., 2015). Furthermore, many early warning
indicators of ecological regime shifts require extensive data and
a priori understanding of focal systems and/or the disturbances
they experience (Gsell et al., 2016). This means that such
applications may be incapable of objectively representing the
risk of undesirable regime shifts prior to the manifestation of
their symptoms, which limits preventative management efforts
and leaves professionals reliant upon reactive strategies that lag
behind transition signals.

The study of regime shifts in ecology is rooted in resilience
thinking (Folke et al., 2010), where resilience is defined as the
capacity of a system to absorb disturbance without transitioning
to an alternative regime, whether the present or alternative
regime is desirable or undesirable from a human perspective.
Beyond its utility as a metaphor, the quantification of resilience
has long been heralded for its potential to enhance the ability
of management to prevent undesirable regime shifts; however,
resilience quantification has proven notoriously elusive (Angeler
and Allen, 2016). Among the major advances toward resilience
quantification and operationalization in ecological management
is Carpenter et al.’s (2001) recommendation to consider the
“resilience of what to what” at the outset of any resilience-
based assessment. In other words, identifying the focal system
and disturbance(s) affecting it is fundamental for managing for
resilience and avoiding undesirable regime shifts.

The “resilience of what to what” has factored into theoretical
and quantitative advances in spatial resilience—an extension

of resilience that can be defined simply as the contribution
of spatial attributes to feedbacks that generate resilience
(Allen et al., 2016). This includes, but is not limited to, the
spatial arrangement of and interactions among internal system
components, spatial variation in internal system phases (e.g.,
successional stages), and the system’s spatial context (Cumming,
2011a,b). When disturbances exceed system resilience, regime
shifts occur with spatial-temporal order (Sundstrom et al.,
2017; Roberts et al., 2019). Through the lens of landscape
ecology, one example of a spatial regime shift playing out
over time is the spread of an initially rare invasive species
patch through an initially abundant background landcover
matrix. With some degree of spatial-temporal order, propagation
of the invasive species fragments and reduces cover of the
background matrix until the invasive species is so abundant
and connected that it becomes the new background matrix,
with the former matrix persisting only in isolated patches
(Zurlini et al., 2014). When framed in succession theory,
regime shifts may occur when alteration of historical disturbance
regimes pushes systems into earlier or later successional stages.
For example, increased fire frequency and severity may shift
forests to woodlands and woodlands to grasslands, just as
decreased fire frequency and severity may cause shifts in the
opposite direction (Twidwell et al., 2013a; Fuhlendorf et al.,
2017). There is certainly promise in enhancing understanding
of systems and the disturbances that affect them, as well as
in examining the spatial attributes of resilience and regime
shifts from the perspective of different ecological subdisciplines;
however, in returning to the language of medicine, these advances
and explorations are more closely aligned with diagnosis
than screening.

The development of approaches for screening for
environmental change could contribute to improved decision-
making in and effectiveness of ecological management.
Undesirable regime shifts in ecological systems are often
hysteretic (Scheffer et al., 2001), meaning that restoration is
less feasible and more costly than if actions are put in place
to avoid them from occurring in the first place (Holling and
Meffe, 1996). Screening could be used to identify core areas
of desirable regimes not yet experiencing regime shifts, which
may be prioritized for preventative management that builds
resilience of desirable regimes (Chapin et al., 2010). In the same
way, areas in which screening indicates regime shift imminence
may be prioritized for intensive management aimed at halting
or reversing the regime shift. Finally, areas in which screening
indicates that regime shifts have already occurred—particularly
at large scales—or areas in which it is infeasible to halt regime
shift advances, may explore avenues for transformation in law,
policy, and governance to better deal the realities of the new
regime (Chaffin et al., 2016; Garmestani et al., 2019).

Instead of replacing diagnostic approaches to regime shift
detection, screening complements them and maximizes their
utility. The absence of screening in ecosystem management
up to this point in time is at least partly the result of
data and computation limitations (Guttal and Jayaprakash,
2009); however, advances in technology and monitoring
continue to make more accurate data available at greater
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FIGURE 1 | In medicine, screening is used for early disease detection, prior to the emergence of disease signs and/or symptoms. Technological and theoretical

barriers have prevented the implementation of screening methods in ecology, so the discipline has been largely reactive and incapable of dealing with large-scale

undesirable changes that affect human well-being. Now, critical theory–data–technology linkages enable imaging and screening for ecological regime shifts.

spatial and temporal resolutions (i.e., grains) and extents (i.e.,
areas) (Pimm et al., 2015; Jones et al., 2018; Xie et al., 2019), and
advances in geospatial cloud-computing enable efficient analysis
of such data (Yang et al., 2011). At the same time, metrics are
being developed in resilience science to quantify spatial contexts
and signals that correspond with changes in ecological resilience,
the collapse of ecological regimes, and their displacement by
novel ecosystem states (Cline et al., 2014; Kéfi et al., 2014; Allen
et al., 2016; Roberts et al., 2018a). Now, for the first time, critical
components of theory, data, and technology are converging in
linkages that make it plausible to screen for and image ecological
regime shifts.

In this study, we introduce the practice of screening for
the early detection of undesirable regime shifts in ecological
systems, using rangeland systems of the Western United States
as test cases. Rangelands are idealized systems for studying
regime shifts, as different rangeland vegetation regimes (i.e.,
alternative stable states) are more-or-less desirable for certain
suites of ecosystem services and are therefore the basis
of ecosystem management (Westoby et al., 1989). Although
not completely irreversible, undesirable regime shifts present
considerable restoration challenges (Twidwell et al., 2013b),
making it advisable to avoid shifts in the first place and to
consider how screening might help do so. With a spatial
informatics approach that links resilience theory with a state-
of-the-art landcover dataset and a powerful cloud-computing
platform, we screened for the following set of iconic rangeland
vegetation transitions in landscapes of the western United States:
(1) erosion and desertification; (2) woody plant encroachment;
and (3) exotic annual grass invasion. In adherence to the First
Law of Geography (Tobler, 1970), these regime shifts tend

to manifest as spatially contagious processes, meaning that
the likelihood that a location will experience a regime shift
increases with geographic proximity to other locations that have
experienced the shift. Simply put, spatial context is a critical
determinant of a location’s spatial resilience, and conversely, its
spatial vulnerability to change.

During screening, we answer five questions: (1)Which regime
shift is expected or of greatest concern? (2) Can we detect a
signal associated with the expected regime shift? (3) If detected,
is the signal transient or persistent over time? (4) If detected and
persistent, is the transition signal stationary or non-stationary
(i.e., moving) over time? (5) What other signals do we detect
while screening? We then discuss the potential of our approach
to detect vegetation transition signals and to characterize them
according to their degrees of persistence and non-stationarity
with little-to-no a priori understanding of focal system state,
feedbacks, disturbances, or alternative stable states, and thereby,
to contribute to more preventative and efficient management of
rangelands and other ecological systems.

MATERIALS AND METHODS

Data, Metric, and Analytical Platform
We used a state-of-the-art rangeland landcover raster dataset and
a powerful, freely-accessible, cloud-based, geospatial computing
platform to rapidly screen for spatial regime shift (i.e., vegetation
transition) signals in five rangeland-dominated landscapes of
the western United States from 2000 to 2017. The landcover
dataset contains yearly, 30m resolution, continuous percent
cover estimates for the following four plant functional groups
and three abiotic landcover components (hereafter referred
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to collectively as functional groups) in western United States
rangelands from 1984 to2018: annual forbs and grasses, bare
ground, litter, perennial forbs and grasses, rocks, shrubs, and
trees (Jones et al., 2018), with rangelands delineated according
to Reeves and Mitchell (2011). We used spatial covariance
between functional group combinations as a screening metric.
In rangelands, bare ground is representative of a state transition
to an unvegetated state; however, litter has no basis as an
alternative state and rock is stationary over the scale of our
analysis. Therefore, neither percent litter nor percent rock were
used for screening in this study, which reduced the number of
contrasting functional groups to 5, and the number of unique
pairwise functional group combinations to 10.

Our approach to regime shift screening emerges from
resilience theory, which posits that a system exists in one, not
multiple, regimes (i.e., stability domains; basins of attraction) at a
time (Holling, 1973; Folke et al., 2010) and that transitions from
one ecological regime to another exhibit spatial order at one or
more scales of organization (Allen et al., 2016; Roberts et al.,
2019). Given that alternative ecological regimes cannot occupy
the same space over time, the simultaneous existence of multiple
alternative regimes means that every regime is neighbored in
space by an alternative regime(s)—each with its own reinforcing
feedbacks and structures.

As a screening metric, we used a moving window algorithm
to calculate spatial covariance between rangeland functional
groups, where strong negative spatial covariance provides a
geographic transition signal of regime boundaries that can be
tracked through time. More generally, covariance is useful for
highlighting boundaries and other correlations in data that
averaging-based methods tend to smooth over (Frasinski et al.,
1989; van der Heijden, 1995; Ando, 2000), and for decades,
has been utilized to quantify spatial and temporal dynamics
of ecological systems (Kershaw, 1961; Goodall, 1965; Noy-Meir
and Anderson, 1971; Greig-Smith, 1983; Dale and Blundon,
1991; Wagner, 2003; Houlahan et al., 2018). Our selection
of spatial covariance as a screening metric builds on the
efforts of Pielou (1961), Goodall (1965), and other pioneers of
methods for quantifying the spatial arrangement of ecological
entities in relation to one-another. Functional groups that do
not coexist should exhibit negative spatial covariance at their
boundaries because of spatial irregularities (i.e., asymmetries,
Norberg and Cumming, 2008) in their relational organization
(i.e., tendency to separate from one another in space). In addition
to quantifying the spatial arrangement of functional groups in
relation to one another, spatial covariance is multivariate, and
multivariate metrics tend to outperform univariate metrics in
the detection of regime shifts in complex systems (Spanbauer
et al., 2014; Roberts et al., 2018a). When computed in a moving
window algorithm, spatial covariance also incorporates spatial
context—an important external element of spatial resilience
(Zurlini et al., 2006, 2014; Cumming, 2011a,b; Allen et al.,
2016). Therefore, spatial covariance acts as an edge-detection
technique, and importantly, one closely aligned with spatial
resilience theory.

In the computation of spatial covariance, the more two
entities are negatively associated with one another in space (i.e.,

one increases while the other decreases in a given area), the
more strongly negative is their spatial covariance, whereas the
more two entities are positively associated with one another
in space (i.e., they increase or decrease together over the
given neighborhood), the more strongly positive is their spatial
covariance (Wagner, 2003). Spatial covariance of 0 means that
no spatial relationship exists between two entities. In other
words, spatial covariance provides a measure of the degree
of coexistence between two entities. In the case of functional
groups, more strongly negative spatial covariance provides
a signal that emerges from the inability of two functional
groups to coexist in a given space. For example, in Figure 2,
strong negative spatial covariance mirrors the visual boundary
between adjacent perennial grassland and tree regimes. With
movement away from the boundary into either the core of
grassland or forest regimes, perennial–tree spatial covariance
increases from <-200 toward 0. The lack of trees within the
core of the grassland regime results in the absence of a spatial
relationship between grasses and trees in that area, just as the
lack of grass within the core of the forest regime results in the
absence of a spatial relationship between grasses and trees in
that area.

To rapidly compute spatial covariance between pairwise
functional group combinations at relatively high spatial
resolutions and over relatively broad geographic extents, we
used Google Earth Engine—a powerful, freely-available, cloud-
based geospatial computing platform (Gorelick et al., 2017).
Within Google Earth Engine, we applied the covariance reducer
function (Pébay, 2008) in a moving window (i.e., neighborhood)
analysis to compute spatial covariance over four geographic
neighborhood sizes: 3 by 3 pixels, 9 by 9 pixels, 27 by 27 pixels,
and 113 by 113 pixels. In the moving window analysis, all kernels
were weighted uniformly with values of 1 (i.e., no distance decay
within neighborhoods). Analyses were conducted at a spatial
grain of 30m for the 3 by 3 pixel (0.81 hectares), 9 by 9 pixel (7.29
hectares), and 27 by 27 pixel (65.61 hectares) neighborhoods,
and at a spatial grain of 60m for the 113 by 113 pixel (4,596.84
hectares) neighborhood. Larger neighborhoods incorporate
more spatial context into map pixel spatial covariance outputs.
For each map pixel in each year, the raw output of Google Earth
Engine’s covariance function is a spatial variance–covariance
matrix, in which matrix diagonals are spatial variance values (i.e.,
the spatial associations of functional groups with themselves)
and the top and bottom matrix triangles are spatial covariance
values (i.e., the spatial associations of functional groups with
one another). Because the top and bottom spatial variance–
covariance matrix triangles contain identical values, we extracted
and mapped values from the top triangle of each pixel’s matrix
in five focal landscapes between 2000 and 2017. We exported
spatial covariance maps of all 10 functional group combinations
in all years as raster images in GeoTIFF format for processing
and visualization in ArcMap (Esri, 2016) and R (R Core Team,
2018), with the lattice (Sarkar, 2008), latticeExtra (Sarkar and
Andrews, 2016), sp (Bivand et al., 2013), raster (Hijmans,
2018), RColorBrewer (Neuwirth, 2014), rasterVis (Lamigueiro
and Hijmans, 2018), rgdal (Bivand et al., 2018), and stringr
(Wickham, 2018) packages for R.
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FIGURE 2 | (A) Landscape with visually apparent grass–tree boundaries and an example area (red box) for spatial covariance computation, and (B) The same

landscape with perennial–tree spatial covariance mapped in the example area, where negative spatial covariance provides a regime shift signal associated with a lack

of coexistence between perennials and trees (i.e., spatial regime boundary).

Screening Workflow
We screened for regime shifts by asking and answering five
questions: (1) Which regime shift is expected or of greatest
concern? (2) Can we detect a signal associated with the
expected regime shift? (3) If detected, is the signal transient
or persistent over time? (4) If detected and persistent,
is the transition signal stationary or non-stationary (i.e.,
moving) over time? (5) What other signals do we detect
while screening? The spatially explicit answers to these
questions—each derived through spatial imaging—are useful
for flagging locations for continued screening, as well as
diagnostic testing and treatment by local experts, stakeholders,
managers, and scientists. Whether a spatial transition signal is
present vs. absent, persistent vs. transient, and non-stationary
vs. stationary informs the screening–diagnosis–treatment
decision (Figure 3).

Of the greatest concern are regime shift signals that are
present, persistent, and non-stationary (i.e., moving). If signals
are not persistent (i.e., transient), then they cannot be associated
with regime shifts. This may be the case in instances where
vegetation recovers in the wake of a disturbance. Another
possibility is that vegetation signals persist through time but
are spatially stationarity (i.e., do not spread), which is likely
to occur along the geographic boundaries of opposing spatial
regimes. Such places are also unlikely to be flagged as areas
of concern during screening. Areas that are likely to be
flagged as areas of concern are those that display spatially
persistent and dynamic vegetation transition signals over time
(i.e., non-stationarity). Such areas, where one spatial regime
is actively displacing another, should be targeted for in-depth
diagnosis of the change occurring (e.g., through remotely sensed
imagery, monitoring, inventory, and local expert opinion) and/or

treatment (e.g., management for preventing, halting, mitigating
the effects of, or adapting to regime shift). Areas ahead of
persistent and non-stationary transition signals (i.e., areas where
change has not yet occurred but is likely to in the future)
should be targeted for preventative management action, as they
provide opportunities to anchor conservation efforts and build
resilience against approaching regime shifts. The speed and
degree of non-stationarity provide varying temporal windows
for such vulnerability assessments and responses. Importantly,
the targeting of areas for preventative management is predicated
on the expectation that management is capable of preventing a
given regime shift, which is not always true, particularly when
dealing with broad-scale regime shift drivers (e.g., changing
climatic conditions make the persistence of an established
plant community below a given elevation unlikely, regardless
of management) (Wonkka et al., 2019). For this reason, it is
important to link screening results to management through a
formal diagnosis of the regime shift and its likely causes. If
management is incapable of preventing an approaching regime
shift, then management resources and efforts may be more
effectively devoted to transforming the system to mitigate the
negative effects of the regime shift (Chapin et al., 2010; Chaffin
et al., 2016; Garmestani et al., 2019).

We possessed varying degrees of knowledge about potential
drivers of the spatial transition signals detected through
screening in each of the focal landscapes. For illustrative
purposes, we moved from screening to diagnosis by simply
examining aerial imagery of focal landscapes and by speculating
about potential spatial transition signal drivers. Further diagnosis
could have been applied via on-site field inventory, monitoring,
and analysis. In practice, there is a clear distinction between
screening and diagnostic testing, so we avoid blurring screening
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FIGURE 3 | Workflow for screening for vegetation transitions in ecological systems, according to spatial signal presence vs. absence, persistence vs. transience, and

non-stationarity vs. stationarity over time. The yellow-color in box number 6 represents transition signals that are particularly concerning because of their temporal

presence, persistence, and non-stationarity.

and diagnosis here except where a focal example required further
investigation and explanation.

Focal Transitions and Landscapes
We screened for signals of the following three iconic rangeland
vegetation transitions: (1) erosion and desertification; (2) woody
encroachment; and (3) exotic annual grass invasion. Erosion
and desertification involve shifts from vegetated to non-
vegetated (i.e., bare ground) states; woody encroachment is a
shift from grass-to-woody plant dominance resulting from the
displacement of herbaceous perennial vegetation to shrubs or
tree dominance; and exotic annual grass invasion is a shift from
herbaceous perennials, shrubs, or trees to annual grasses. All
of these spatial regime shifts, and the mechanisms by which
they occur, are dependent on local contexts and differ across
western USA rangelands. We therefore chose multiple study sites
spanning the American Southwest, the Southern and Northern
Great Plains, and the Great Basin to screen for spatial vegetation
transition signals from 2000 to 2017. Each focal landscape is
dominated by rangeland but possesses a unique environmental
setting, species assemblage, disturbance history, and set of
alternative regimes to which its rangelands may shift. Below, we

overview briefly each of the three types of vegetation transitions
and the focal landscape(s) we selected for screening.

Erosion and Desertification
Erosion and desertification are problematic phenomena that
threaten human livelihoods in dryland rangelands worldwide
and are therefore actively managed against (Bestelmeyer et al.,
2015). In the United States, substantial investments are allocated
each year to reducing erosion in order to avoid catastrophes
like the Dust Bowl that accompanied the historic drought of the
1930s (Egan, 2006). We screened two landscapes with supposed
heightened vulnerabilities to erosion and desertification: the
Sandhills of north-central Nebraska and a cropped valley of the
Mojave Desert of southwestern Nevada.

Nebraska sandhills
Large-scale erosion is a constant subject of concern in
the Nebraska Sandhills—an ecoregion with sandy soils that
are stabilized by perennial vegetation—particularly during
wildfire and drought (Arterburn et al., 2018). At a smaller
scale, blowouts (i.e., de-vegetated sand pits) are a common
landscape feature throughout the Sandhills, but the spread
of blowouts to neighboring grass-dominated areas is actively
managed against, especially under dry conditions (Schmeisser
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McKean et al., 2015). Using spatial covariance between bare
ground and perennial forbs and grasses (hereafter perennials)
functional groups in a moving window algorithm over a 27
by 27 pixel neighborhood, we screened for large-scale erosion
and desertification in a Sandhills landscape centered around
42.8033◦N and −100.0414◦W in the years leading up to and
following 2012, a year of extreme drought and in which the
Region 24 Complex Wildfire occurred. At a smaller scale, we
also used bare ground–perennial spatial covariance in a moving
window algorithm over a 3 by 3 pixel neighborhood to screen for
increased erosion in the vicinity of a randomly selected blowout
centered around 42.7294◦N and−100.0502◦Wwithin the Region
24 Complex Wildfire perimeter over the same set of years.

Mojave desert
Despite arid conditions, portions of the Mojave Desert support
irrigated rowcrop agriculture; however, tilled soils are easily
eroded and carried by wind into neighboring, non-tilled
shrublands (Okin et al., 2001). Using spatial covariance between
annual forbs and grasses (hereafter annuals) and bare ground in
a moving window algorithm over a 9 by 9 pixel neighborhood,
we screened for transition signals associated with erosion
of croplands in a network of center-pivot irrigated rowcrop
fields in southwestern Nevada centered around 37.7605◦N
and−118.0783◦W.

Woody Encroachment
Woody plant encroachment threatens grasslands and savannas
worldwide (Lasslop et al., 2016). In many systems, the dramatic
shift in fire management associated with European colonization
has facilitated the spread of woody plants into grasslands
(Bowman et al., 2011). This class of regime shift demonstrates
how disturbance regime alteration—in this case, severe reduction
or elimination of historical disturbances—permits systems to
advance to later successional trajectories with a high degree
of spatial-temporal order. In other words, this regime shift
is associated with lags in response to human-induced land
management (Streit Krug et al., 2017). Herbaceous perennial
species and woody plants tend not to coexist on a large scale
in grasslands; therefore, woody encroachment results in a shift
from herbaceous-to-woody plant dominance. We screened for
transition signals associated with the encroachment of three
woody species in two landscapes of the North American Great
Plains: mesquite (Prosopis spp.) and ashe juniper (Juniperus
ashei) in rangelands near the City of Breckenridge in north-
central Texas and eastern redcedar (Juniperus virginiana) in
rangelands of the Loess Canyons of west-central Nebraska.

North-central texas
Increases in mesquite cover have become a serious rangeland
management challenge throughoutmuch of northern Texas, with
evidence that significant increases in mesquite cover can occur
in treated (e.g., root-plowed) and untreated areas (Ansley et al.,
2001). Using spatial covariance between perennials and trees in a
moving window algorithm over a 27 by 27 pixel neighborhood,

we screened for woody plant encroachment in a set of north-
central Texas properties, near the City of Breckenridge, centered
around 32.8635◦N and−98.9537◦W.

Nebraska loess canyons
The Loess Canyons landscape is located in southwest Nebraska,
south of the Platte River, in the area centered around 40.9339◦N
and −100.5338◦W. Steep hills and canyons are grazed for cattle
production, but in recent decades, have rapidly experienced
increases in eastern redcedar cover (Roberts et al., 2018b). We
used spatial covariance between perennials and trees in a moving
window algorithm over a 113 by 113 pixel neighborhood to
screen for transition signals associated with shifts from grass-
to-woody plant dominance in the Loess Canyons between 2000
and 2017.

Exotic Annual Grass Invasion
Over the past several decades, the exotic annual cheatgrass
(Bromus tectorum) has rapidly invaded rangelands of the western
United States, many of which were historically dominated by
fire-intolerant shrubs and herbaceous perennial species. One
of the major consequences of cheatgrass invasion has been
fire regime alteration (D’Antonio and Vitousek, 1992; Balch
et al., 2013; Chambers et al., 2019) and the emergence of
a self-perpetuating annual grass/fire cycle. Cheatgrass changes
fine fuel bed characteristics, resulting in larger and more
frequent fires than would have occurred in uninvaded rangelands
where fire was rare and spatially discontinuous. Reseeding
is a commonly implemented management action for shifting
vegetative dominance back from cheatgrass to perennials and to
avoid further loss of sagebrush (Artemisia spp.) dominated areas
to cheatgrass (Chambers et al., 2014).

Southeastern oregon
In a southeastern Oregon landscape centered around 42.3662◦N
and −117.8300◦W, we used spatial covariance between annuals
and shrubs in a moving window algorithm over a 27 by 27 pixel
neighborhood to screen for transition signals associated with
cheatgrass invasion and management. In this case, management
included herbicide treatment to control brush and reseeding
to an introduced perennial bunchgrass (crested wheatgrass;
Agropyron cristatum) in the late 1960s (Heady and Bartolome,
1977). The management unit and surrounding landscape burned
in the 2012 Long Draw wildfire.

RESULTS

Erosion and Desertification in the Sandhills
In the Nebraska Sandhills ecoregion, screening returned no
evidence of large-scale erosion/desertification following the
Region 24 Complex wildfire (Figures 4A–D). Although a stark
signal that corresponded with the wildfire perimeter occurred
in 2012 (Figure 4C), it vanished the following year and was
therefore considered transient over time. From a practitioner’s
standpoint, we would conclude that no large-scale erosion or
desertification is occurring, and therefore, the location could be
flagged for continued screening, but neither additional diagnosis
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FIGURE 4 | Screening and spatial imaging for vegetation transitions following wildfire in the Sandhills of Nebraska, USA, during a severe drought. (A–D) Large-scale

imaging at the extent of a 2012 wildfire perimeter; (E–H) local-scale imaging at the extent of a single blowout within the 2012 wildfire perimeter. Shown here are

perennial–bare ground spatial covariance images, where more strongly negative spatial covariance values indicate increasing spatial incompatibility of the two

functional groups at the relative scale of analysis.

(e.g., intensive field monitoring) nor expensive treatment (e.g.,
reseeding) are warranted. This conclusion is supported by a
previous study that found rapid re-establishment and recovery
of Sandhills prairie following the historic drought and wildfire
(Arterburn et al., 2018).

An alternative explanation for the lack of a persistent,
large-scale transition signal in the Sandhills landscape could
be that erosion and destabilization are occurring at a finer
scale of analysis but are not yet evident at the scale of the
entire wildfire. When reviewing localized spatial signals, we
detected a strong, persistent, and largely stationary bare ground–
perennial signal that corresponded with a blowout within the
wildfire perimeter (Figures 4E–H). The only notable change in
the spatial transition signal representing the boundary between
prairie and the blowout was in 2012 (Figure 4G), when the
signal disappeared entirely from the blowout and moved to the
wildfire perimeter. However, in the years following the fire, the
bare ground–perennial signal associated with the fire perimeter
rapidly faded and the signal associated with the perimeter of
the blowout reappeared. Thus, from 2007 to 2017, the blowout’s
spatial transition signal was present and persistent, but it failed
to exhibit non-stationary by spreading into surrounding areas—
before, during, or after the wildfire—in a manner that led to
the expansion of the blowout and displacement of perennial
grassland. From a practitioner’s standpoint, we would once
again conclude that no additional diagnostic monitoring or
treatment is warranted for this screening result. For illustrative

purposes, we only analyzed a single, randomly-selected blowout
for spatial transition signals of erosion and expansion; however,
our approach could be used by a resource professional to monitor
the entire networks of blowouts.

While screening for potential erosion and destabilization of
the Sandhills prairie ecosystem, we also screened for spatial
transition signals from other functional group combinations that
might not have been expected (Supplementary Figure 1). At the
large-scale, we detected a strong, persistent, and non-stationary
spatial transition signal associated with perennial–tree spatial
covariance over a 27 by 27 pixel neighborhood (Figure 5). This
spatial transition signal corresponded geographically with the
Niobrara River valley forest corridor. In the 5 years preceding
the 2012 wildfire, the transition signal was present, persistent,
and stationary (Figure 5A). However, there was a drastic shift in
the spatial order of the signal following the wildfire that carried
over into subsequent years (Figure 5B). This is indicative of a
rapid and drastic collapse of a major portion of the riverine
forest corridor, which included a mix of coniferous (ponderosa
pine and eastern redcedar) and deciduous species. Local experts
could use this information to focus their attention on the
most pertinent regime shift occurring in this landscape, thereby
avoiding overtreatment and potential misuse of funds because
of a signal that will likely regain its intensity (recover) without
human intervention, and hold in-depth discussions about the
next steps needed to diagnosis the specifics of the regime shift
and whether management intervention is necessary.
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FIGURE 5 | Screening for additional vegetation transitions in the Nebraska Sandhills revealed (A) a present, persistent, and stationary large-scale perennial–tree

spatial covariance signal from 2007 to 2011 and (B) a present, persistent, and non-stationary perennial–tree spatial covariance signal from 2012 to 2017, following the

wildfire-induced collapse of the riparian forest corridor. More strongly negative spatial covariance values indicate increasing spatial incompatibility of the two functional

groups at the relative scale of analysis Below, the outline of groups of pixels with perennial–tree spatial covariance of <100 in 2007, 2011, 2012, and 2017.

Erosion and Desertification in the Mojave
Persistent spatial transition signals associated with the individual
perimeters of a network of center-pivot irrigated rowcrop fields
were apparent in the Mojave (Figure 6). These persistent spatial
transition signals remained stationary for many of the individual
fields between 2003 and 2017 (Figure 6A), but non-stationarity
was detected at other locations, where erosion is likely occurring
and contributing to the desertification of adjacent lands. For
example, in Figure 6B, the eastward bleeding of the spatial
transition signal over time provides evidence of erosion and
desertification.We did not detect any additional persistent spatial
transition signals.

Woody Encroachment and Brush
Management
Brush management for mesquite often results in a patch-work of
properties with hard, stationary boundaries, where one property
is dominated by perennial grass vegetation and the adjacent
property is dominated by a mesquite shrubland. We were able
to detect a transition signal for this type of boundary near
Breckenridge, Texas (Figure 7A). Prior to 2008, a persistent
and stationary transition signal was observed on an east–west
line bisecting the landscape. We confirmed this to be two
pastures separated by a fence-line post-hoc. The spatial transition
signal became non-stationary in 2012. Aerial imagery for the
years 2008, 2012, and 2017 revealed an increase in mesquite
density and cover in the southwestern pasture over time that
corresponded with the spatial transition signal, with the key

implication being that an undesirable vegetation regime shift
was detected and began to spread to areas previously dominated
by perennial vegetation. Local in-depth diagnosis is warranted
to determine why management is no longer holding the line,
whether management has been discontinued, and how this
regime shift can be prevented from continuing to expand into
the surrounding rangeland landscape.

While screening for the expected and concerning spatial
transition signal, we noted a secondary signal in the spatial
covariance between bare ground and perennial functional groups
over a 9 by 9 pixel neighborhood (Figure 7B). This signal
appeared from 2011 to 2014 and exhibited markedly different
patterns than in previous years. Further diagnostic investigation
using aerial imagery over the same time period revealed that
the spatial signal was associated with energy development and
associated road infrastructure. Although the signal was the
outcome of a purposeful, small-scale vegetation transition, this
example shows how this rapid screening technique can image and
track both known and unknown types of regime shifts occurring
in rangelands, irrespective of whether shifts are of human or
non-human origin.

Regional-Scale Juniper Encroachment
In the Loess Canyons ecoregion, we detected a strong,
persistent, and directionally non-stationary spatial transition
signal indicating a shift from grass-to-woody plant dominance
(Figure 8A). A peak in the intensity of the spatial transition
signal occurred from 2010 to 2011 and was followed by a
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FIGURE 6 | Screening for spatial transition signals associated with erosion and desertification in a network of center pivot-irrigated rowcrop fields in the Mojave Desert

every other year from 2003 to 2017, where more strongly negative spatial covariance values indicate increasing spatial incompatibility of the two functional groups at

the relative scale of analysis, with examples of: (A) present, persistent, and stationary boundaries (i.e., no erosion/desertification); and (B) present, persistent, and

non-stationary boundaries (i.e., erosion and desertification).

brief interruption from 2012 to 2014 (Figure 8B), after which
directional change resumed and then plateaued from 2015 to
2017 (Figure 8C). The interruption of the spatial transition
signal was likely the result of a severe drought in 2012 that
differentially affected perennials and trees and briefly masked
spatial associations driven by grass–tree interactions (i.e., strong
negative spatial covariance), and the stabilization of the signal
from 2015 to 2017 is presumably the result of large-scale,
coordinated eastern redcedar management by a local prescribed
burn association. No other persistent spatial transition signals
were detected.

Cheatgrass Invasion and Management
We detected a persistent spatial transition signal with a geometry
that corresponded to the boundary of a site with a history
of wildfire and management against cheatgrass invasion (1960s
herbicide treatment and reseeding to crested wheatgrass) in
southeastern Oregon (Figure 9). Multiple transition signals
were evident in the year preceding wildfire (2011), weakened
in the year post-fire (2013) when vegetation was absent,
and subsequently re-emerged or disappeared with vegetation
recovery. The shrub–annual transition signal varied in intensity
yet retained its overall spatial structure over time (Figure 9A).
The emergence and disappearance of additional, localized shrub–
annual transition signals in the vicinity of the original transition
signal make it difficult to ascertain the degree to which the regime
shift is spreading over time. It is likely the disappearance of these

local signals corresponds with a loss of sagebrush and increase in
annuals in the untreated landscape adjacent to the management
unit following the 2012 wildfire. Similar overarching patterns
emerged in the bare ground–annual (Figure 9B) and perennial–
annual (Figure 9C) transition signals. The spatial covariance
between perennials and annuals at the management unit
border was slightly positive, which may be the result of
cheatgrass replacing bare ground between bunchgrasses but
not immediately replacing the bunchgrasses. Indeed, the strong
negative spatial covariance between annuals and bare ground
likely stems from the loss of bare ground in plant interspaces that
accompanies transitions to cheatgrass. Therefore, these spatial
transition signals may be collectively reflecting differences in the
ability to resist cheatgrass invasion between the management
unit dominated by perennial bunchgrasses and surrounding
untreated lands. Additional on-site inventory and monitoring is
needed to confirm the degree to which management has been
successful at stemming cheatgrass conversion at this site and if
regime shifts are occurring and spreading in the adjacent area.
Analysis of temporal trends in data (e.g., detection of boom–
bust cycles in the growth, spread, and interaction of annuals with
other functional groups) may provide additional insights.

DISCUSSION

This paper explores the potential to image and screen
for rangeland vegetation transitions. For a diverse set of
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FIGURE 7 | Screening for spatial transition signals associated with woody plant encroachment near Breckenridge, Texas, where more strongly negative spatial

covariance values indicate increasing spatial incompatibility of the two functional groups at the relative scale of analysis, with: (A) a present, persistent, and

non-stationary perennial–tree spatial transition signal associated with woody encroachment from 2008 to 2016 and (B) the emergence of a present, persistent, and

non-stationary bare ground–perennial spatial transition signal associated with energy and road development from 2008 to 2011.

rangeland-dominated landscapes of the western United States,
we implemented a workflow (Figure 3) that: (1) identified
the regime shift of greatest concern or that was most
expected; (2) detected the presence of spatially explicit signals
that were potential regime shift candidates; (3) differentiated
transient signals of vegetation response from more persistent
signals of vegetation transition over time; (4) determined
whether persistent transition signals were stationary or non-
stationary over time, and therefore, transitioning in space;
and (5) repeat the process to screen for additional transitions

in rangeland vegetation that were or lesser concern, not
expected, or unknown a priori. This flexible methodology allows
professionals to use spatial imaging to image spatial regime
boundaries, track the magnitude and direction of regime shift
signals, differentiate persistent and stationary transition signals
from more-concerning persistent and non-stationary transition
signals, and leverage disciplinary strength and resources for
targeted diagnostic testing (e.g., inventory and monitoring) and
treatment (e.g., management) of regime shifts. Because ecological
systems experience frequent disturbances and are subject to
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FIGURE 8 | Screening for spatial transition signals associated with woody plant encroachment in the Loess Canyons ecoregion of Nebraska, where more strongly

negative spatial covariance values indicate increasing spatial incompatibility of the two functional groups at the relative scale of analysis, with: (A) a present, persistent,

and non-stationary perennial–tree spatial transition signal from 2000 and 2011; (B) a brief interruption of the transition signal from 2012 to 2014 following historic

drought; and (C) an increased and then management-driven stabilization of the transition signal from 2015 to 2017.

external forcing, screening for regime shifts—according to
signal presence, persistence, and non-stationary—may help
differentiate between temporary aberrations in conditions and
major, possibly permanent, shifts.

Imaging and screening for regime shifts in ecology follows
a similar logic to the mission of screening in medicine
(Morris, 1994; Saunders et al., 2001), in that the consequences
of such shifts are often so severe that it is in humanity’s
best interest to prevent the emergence of detrimental regime
shifts or to treat them at the earliest possible point of
detection. Many consequences of spatial regime shifts are
unable to be predicted until after the shift occurs. Cheatgrass
invasion and regional dominance led to surprising changes in
wildfire behavior and occurrence, heightened exposure of urban
populations to smoke and air pollution, and cascading impacts
to endemic wildlife (D’Antonio and Vitousek, 1992; Balch et al.,
2013; Chambers et al., 2014). Juniper displacement of prairie
ecosystems in the Great Plains is now linked to concerning
impacts on water resources (Zou et al., 2018), public school
funding (Lally et al., 2016), wildfire suppression potential, and
collapses in pastoral agricultural revenue and rural livelihoods
(Twidwell et al., 2013a). Erosion and desertification has been
a notorious regime shift that has been actively avoided since
the tragedy of the Dust Bowl (Wallace and Silcox, 1936),

which was driven in part by human conversion of rangeland
to cropland.

Spatial metrics derived from resilience theory, next-
generation data products, technological capabilities, and
computational power have all advanced to the point where
spatial signals of regime shifts can be imaged and tracked
at geographic and temporal extents and resolutions that
were previously infeasible. In the past, the computation and
application of resilience theory metrics across large geographic
extents and through time was logistically infeasible due both
to data limitations and extreme computational requirements.
Advances in geospatial cloud-computing have overcome such
computational hurdles and have also contributed to recent
advances in landcover data (Xie et al., 2019), including the
data used in this study—continuous (i.e., not categorical)
percent cover estimates for major functional groups at high
spatiotemporal resolution (i.e., 30m and yearly) and extent (i.e.,
western United States and multi-decadal) (Jones et al., 2018).
Additional theory–data–technology linkages are foundational
for the continued testing and application of resilience theory at
multiple scales in ecological systems.

Moving forward, it is important to continue advancing regime
shift screening with a guiding understanding of its strengths and
limitations, which reflect those of screening in general. Regime
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FIGURE 9 | Screening for spatial transition signals associated with exotic annual grass invasion in a southeastern Oregon landscape that experienced a 2012 wildfire,

where more strongly negative spatial covariance values indicate increasing spatial incompatibility of the two functional groups at the relative scale of analysis. From

2000 to 2017, matching transition signals between (A) shrubs and annuals and (B) bare ground and annuals were present and relatively persistent and stationary.

Over the same set of years, (C) a similarly-patterned perennial–annual spatial covariance signal (albeit slightly positive) between perennials and annuals was also

evident. The management boundary is associated with the application of herbicide and reseeding with crested wheatgrass (Agropyron cristatum) in the 1960s (Heady

and Bartolome, 1977).

shift screening may be most useful in circumstances where
regime shifts have strongly negative consequences for people
and the environment (Scheffer et al., 2001), when the scale(s) of
policies match the scale(s) at which regime shifts are occurring
(Cumming et al., 2006), and when there are established pathways
between screening, diagnosis, and treatment. Alternatively, a
general limitation of screening that should be addressed in
future research endeavors is the susceptibility of screening to
false positives. Here, the precautionary principle should be
applied and candidate locations should be flagged for continued
screening, diagnosis, and treatment, as it is arguably better
to erroneously flag undesirable transition signals than to fail
to detect them and be surprised by them. Additionally, the
implementation of Holling and Allen (2002) adaptive inference
could help minimize type II error (i.e., false negatives) during
the initial screening stage and then subsequently reduce type
I (i.e., false positives) through continued screening, diagnostic
testing, and treatment. In diagnostic tests for regime shifts,
spatial transition signals could also be paired with other sources
of information (e.g., proportional cover of functional groups,
Jones et al., 2018, vegetation inventory data, and local expert
knowledge) to confirm the presence or absence of specific regime
shifts. Regime shift screening may also benefit from comparisons
with existing screening approaches, such as those based in

medicine (Morabia and Zhang, 2004), environmental toxicity
(Kramer et al., 2009), crop drought-tolerance (Tuberosa, 2012),
and wildlife disease (Grogan et al., 2014). Such comparisons
may also involve exploration of alternative screening metrics.
We selected spatial covariance as a screening metric because of
its alignment with ecology (Pielou, 1961; Goodall, 1965; Greig-
Smith, 1983), complex systems theory (Norberg and Cumming,
2008), and spatial resilience theory (Cumming, 2011a,b; Allen
et al., 2016). Although the primary focus of this study is the
overall regime shift methodology, future studies should formally
compare spatial covariance to alternative screening and diagnosis
metrics with similar backings in resilience and complex systems
theory. Such comparisons will be critical for extending and
refining our approach to regime shift screening.

Using spatial imaging to screen for ecological regime shifts
notably diverges from the existing and prevailing application
of early indicators of regime shifts in ecology. Our approach
to regime shift screening is not diagnostic and requires
little-to-no a priori understanding of focal systems, their
characteristic feedbacks, the disturbances they experience, or
the alternative regimes to which they may shift. Many early
warning indicators are largely diagnostic in their approach to
undesirable transitions, as they focus on detecting change in its
early stages (Biggs et al., 2009; Dakos et al., 2015) and require
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extensive understanding of the focal system and its characteristic
disturbances (Gsell et al., 2016). This has contributed to the
tendency of ecosystem management to remain reactive instead
of proactive in the present era of global change. Importantly,
we do not disregard or devalue diagnostic approaches or
place-based information, but instead emphasize the power of
applying screening beforehand, at the front-end of the scientific
process, as part of the overall mission of translating science
to the general citizenship (Figure 1). Screening simply informs
where to continue screening, diagnosing (e.g., inventorying), and
treating (e.g., restoring and monitoring) at different points in
time. Given the inherent spatial order of regime shifts, screening
results can be used to prioritize locations in proximity to
those exhibiting persistent and non-stationary transition signals
for preventative management that builds resilience against the
impending regime shift (Holling and Meffe, 1996; Chapin et al.,
2010). Such locations have not yet experienced regime shifts, but
are likely to in the future, and can therefore serve as areas for
anchoring conservation efforts and building resilience against
approaching regime shifts. Other locations in close proximity to
regime shift signals may be prioritized for intensive management
aimed at halting regime shift advance, while still other locations
where regime shifts are already occurring at broad scales may
be slated for adaptation-based management under the new
regime (Chaffin et al., 2016; Garmestani et al., 2019). Local
and expert sources of knowledge, as well as perspectives from
social and political science, are essential for effective diagnosis
and treatment of regime shifts, in order to better inform
how screening results can be used to support decision-making
and management.

Screening is widely applied to the early detection of
undesirable change, and despite its utility in other fields (e.g.,
medicine) screening has not yet been introduced to ecological
management. Meanwhile, under the increasing pressures of
global change, ecological systems continue to experience shifts
to alternative and often undesirable regimes (i.e., states). We
developed a workflow for regime shift screening (Figure 3),
which we used to screen for three of the most concerning
transitions in rangelands: (1) erosion and desertification; (2)

woody encroachment; and (3) annual exotic grass invasion. We
screened for these transitions in an array of rangeland-dominated

landscapes of the western United States—from theMojave Desert
to the Great Plains. Screening returned no evidence of regional-
scale erosion/desertification in the Nebraska Sandhills following
wildfire but did detect erosion in the vicinity of irrigated
rowcrop fields in the Mojave. Screening also indicated local-
to-regional-scale woody plant encroachment in several Great
Plains landscapes and annual grass invasion in southeastern
Oregon. While the screening approach outlined in this study is
relatively new and unknown, it is well-grounded in the theories
of ecology, complex systems, and spatial resilience, and as such,
holds promise for the early detection of ecological regime shifts,
particularly when effectively linked with strategies for regime
shift diagnosis and treatment.
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