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Unsustainable harvest is driving population declines in tropical forest species across the

globe. Despite maintaining the second highest percent forest cover in the world (85%),

concern is increasing in Guyana that unmanaged commercial and subsistence hunting

activities could result in defaunation, and the cascading ecological effects of “empty

forests.” The Rupununi region of southwestern Guyana, home to the Kanuku Mountains

Protected Area (KMPA), hosts one of the world’s lowest human population densities

(0.42 people/km2), as well as large, intact tracts of both Neotropical savanna and forest

habitats, making it one of the country’s most biodiverse regions. Indigenous Makushi

and Wapichan communities that reside there have maintained subsistence lifestyles

mediated by traditional beliefs and management practices for millennia. However, as

human populations and access to markets increase, there is a corresponding increase

in the harvest of natural resources. Protected areas have long been recognized for their

role in biodiversity conservation, while also serving as a reserve for subsistence hunters.

The KMPA, one of Guyana’s newest protected areas, allows for the continued sustainable

use of its resources by indigenous communities. It is critical to understand the patterns,

impacts, and levels of hunting that are sustainable in and around the protected area

so that biodiversity can be managed and conserved effectively. Our study shows that

the impact of current hunting intensity in and around the KMPA remains relatively low

and supports the hypothesis that Neotropical forests can support hunting pressure of

<1 person/km2. While our results show that current levels of hunting in the region can

be considered sustainable, small shifts in activity patterns and distribution of preferred

game species were observed in sites subject to higher hunting intensity, which in turn

appears to have had cascading effects on non-hunted species. Our results serve as a

caution for the KanukuMountains region and an indication of the truly low levels of harvest

that some species can sustain before populations begin to show declines. Further, we
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suggest a system-level approach to monitoring that incorporates both preferred game

and non-hunted species, as well as indigenous knowledge of patterns of use and trends

in populations of game species. This approach to monitoring would serve as an effective

early warning system, allowing communities, managers, and policy makers to intervene

before animal populations are significantly impacted by overhunting.

Keywords: bushmeat, hunting intensity, protected areas, indigenous lands, Kanuku Mountains, Guyana, large

mammals, Rupununi

INTRODUCTION

Hunting intensity has reached unsustainable levels across much
of the tropics, representing the most pressing threat to game
mammal and bird populations after habitat loss (Redford, 1992;
Fa and Peres, 2001; Nasi et al., 2011; Wilkie et al., 2011; Maxwell
et al., 2016; Ripple et al., 2016; Young et al., 2016). Studies
from across the global tropics assessing game mammal and
bird species abundances under moderate and heavy hunting
intensities have shown declines by an average of 83 and 58%,
respectively (Wilkie et al., 2011). Hunting of long-lived, large-
bodied species is only considered sustainable under low intensity
harvest regimes—when exploitation is ≤ 20% of production (Fa
et al., 2002). For tropical forest species, establishing sustainable
harvest regimes has become increasingly important to ensure
the long-term survival of hunted species, while at the same time
maintaining a reliable, low-cost source of protein for subsistence-
based communities. Determining the levels of harvest that
are sustainable for tropical forest species is also particularly
important for policy makers who are responsible for setting rules
and regulations related to hunting, as well as for managers of
conservation areas that allow for the continued use of resources
by indigenous communities, which is typically the case in
the Neotropics.

Large-bodied species tend to carry a higher risk of local
extinction from overhunting when compared to smaller-bodied
animals, due to a combination of particular biological traits
(i.e., low reproductive rates, and naturally low population
densities), behavioral traits (i.e., diurnally active, high visibility,
slow moving, repeated use of den/resting sites), and external
environmental factors (i.e., limited geographic range) (Cardillo
et al., 2005; Fa and Brown, 2009). Studies have shown an
overall preference for large-bodied frugivorous and herbivorous
mammals among hunters in the Neotropics (Redford and
Robinson, 1987; Jerozolimski and Peres, 2003), which has
resulted in documented local population declines of lowland
tapir (Tapirus terrestris), red brocket (Mazama americana) and
white-tailed deer (Odocoileus virginianus), white-lipped peccary
(Tayassu pecari), and giant armadillo (Priodontes maximus)
(Cullen Jr. et al., 2000; Peres, 2001; Weber and Gonzalez, 2003;
Di Bitetti et al., 2008; Superina et al., 2014).

Little of the substantial plant biomass present in tropical
forests is readily available as food for the large, terrestrial
frugivores and herbivores (DeWalt and Chave, 2004) that are
preferred by hunters (Peres, 2001; Ripple et al., 2016), as it tends
to be either out of reach in the upper canopy or indigestible
(Waterman and McKey, 1989; Fa and Peres, 2001; Fa and

Brown, 2009). Large, tropical forest mammals, therefore, exist
naturally at relatively low densities (Arita et al., 1990), making
them particularly vulnerable to overhunting even at moderate
or low levels of hunting intensity (Wilkie et al., 2011). Further,
omnivorous species (i.e., peccaries) achieve higher reproductive
rates and crude and metabolic biomass than their purely
herbivorous counterparts (Bodmer, 1989), putting herbivorous
species like lowland tapir, red brocket and white-tailed deer at
a higher risk of overhunting. Declines in the populations of
these key species can have significant negative effects on tropical
forest ecosystems through decreased seed dispersal and seedling
survival, changes in vegetation cover and composition, and
functional compensation (Peres and Dolman, 2000; Terborgh
et al., 2001; Peres and van Roosmalen, 2002; Stoner et al.,
2007; Wright et al., 2007; Beck et al., 2013). It is estimated
that for communities dependent exclusively on wildlife for
protein, tropical forests can support ∼1 person/km2 (Robinson
and Bennett, 2000), and therefore, a negative impact on the
populations of preferred game species can still occur even if only
a few animals are hunted per square kilometer per year (Mena
et al., 2000).

In Guyana, the demand for wild meat is steadily increasing
in the country’s growing urban centers. An estimated 625 tons
of wild meat per year (0.2 tons/km2/year) are consumed in
Guyana’s capital (Puran et al., 2017)—a rate of consumption
comparable to the Amazon Basin (0.23 tons/km2/year) (Rushton
et al., 2005; Nasi et al., 2011), but much lower than the Congo
Basin (1.98 tons/km2/year) (Fa and Purvis, 1997; Fa et al.,
2002; Nasi et al., 2011). Lack of employment opportunities,
coupled with increasing access to markets (Wilkie et al., 2000;
Laurance et al., 2006; Puran et al., 2017), means that many
indigenous hunters in Guyana’s interior have shifted from
hunting as a predominately subsistence activity to hunting
that yields enough to both meet subsistence needs and
supplement incomes.

Protected areas have long been recognized as important
refuges for biodiversity. They can serve as a key buffer against
local extinctions driven by overhunting (Le Saout et al., 2013),
but are also recognized for their ability to function as a reserve
that can meet the continued needs of subsistence hunters
(Robinson and Bennett, 2000). The KanukuMountains Protected
Area (KMPA) is one of Guyana’s richest protected areas in
terms of biodiversity (Montambault and Massa, 2002), and,
like all of Guyana’s protected areas, the KMPA is categorized
as an IUCN category VI protected area, which allows for
the continued sustainable use of resources by surrounding
indigenous communities. The KMPA is bordered by 11 titled
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villages and 10 satellite communities, located in the adjacent
Rupununi savannas. These largely indigenous Makushi and
Wapichan communities are dependent on the KMPA’s forest
resources for subsistence. Approximately 20 and 55% of
Rupununi households reported that wild meat and wild-caught
fish are their primary source of protein, respectively (Luzar
et al., 2012). More recently, a 2016 survey showed that all 21
communities have at least some residents that hunt within the
KMPA and adjacent indigenous titled lands, albeit to varying
extents, intensities, and for different purposes (Protected Areas
Commission, unpublished data).

The extent to which the Kanuku Mountains region is
supplying the growing demand for wild meat in Guyana’s urban
centers is unknown; however, the local trade in wild meat
currently fetches the highest return on investment for any food
product in the region (FAO, 2015). Although this area supports
one of the lowest human population densities in the world (0.42
people/km2), the indigenous population of the region has been
increasing steadily (Bureau of Statistics (Guyana), 2016), while
also transforming from primarily subsistence to increasingly
commercial livelihoods. Demand for economic development,
the opportunity presented by growing markets for wild meat,
continued erosion of traditional beliefs and practices (Iwamura
et al., 2016), and climate change models that predict this region
will likely trend toward progressively hotter and drier conditions
(Bovolo et al., 2012), creates the potential for significant negative
effects on wild animal populations. The shift in hunting patterns
raises particular concern among conservation managers and
community leaders alike, with several communities already
identifying overhunting as a driver of observed population
declines, and even local extinctions, of some preferred game
species (Protected Areas Commission, unpublished data).

Using a combination of household surveys, focus group
discussions, community workshops, and camera-trap data, this
study examines the type, level, and perceived and quantifiable
impacts of low-intensity hunting on the occupancy, relative
abundance, and activity patterns of important game species in the
KMPA and surrounding indigenous titled lands.

MATERIALS AND METHODS

Study Area
The Kanuku Mountains Protected Area (KMPA) encompasses
611,000 hectares of largely intact tropical forest in south-western
Guyana (Figure 1). The mountains are divided into eastern and
western ranges by the north-south course of the Rupununi
River, a tributary of Guyana’s largest river, the Essequibo. The
protected area is largely composed of gallery, lowland, and
montane, deciduous and evergreen tropical forest, with 1%
comprising the surrounding Rupununi savannas. The Kanuku
Mountains highest peak reaches 1,067m asl, with a number
of minor peaks in its western range above 900m asl. The
surrounding Rupununi savannas lie between 120 and 150m
asl, are ecologically connected to Brazil’s Rio Branco savanna
system (Montambault and Massa, 2002), and are analogous to
the cerrado savannas of eastern Brazil (Eden and McGregor,

1992). The region experiences two rainy seasons, one long (May-
August) and one short (December), and a long dry season
(September–April), with an average annual rainfall of 1,500–
2,000 mm.

The Kanuku Mountains and associated savannas are
extremely rich in biological diversity, hosting approximately
70% of mammal, 53% of bird (including 17 of the 25 bird
species endemic to the Guiana Shield), and 26% of plant species
recorded in Guyana (Montambault and Massa, 2002). The
KMPA also harbors healthy populations of many species that
are listed on the IUCN Red List of Threatened Species, such as
the harpy eagle (Harpia harpyja), giant river turtle (Podocnemis
expansa), arapaima (Arapaima arapaima), and giant river otter
(Pteronura brasiliensis).

The 21 communities adjacent to the KMPA are composed
primarily of indigenous Makushi and Wapichan people who
maintain traditional livelihoods, including subsistence fishing,
farming, and hunting. The Kanuku Mountains region supports
populations of game species preferred by hunters, including
lowland tapir, white-lipped peccary, red brocket deer, lowland
paca (Cuniculus paca), and black curassow (Crax alector).

Assessing Hunting Patterns and Intensity
In 2015 and 2016 individual household surveys were carried out
in all 21 communities surrounding the KMPA. A minimum of
50% of households were surveyed in each community, however
in communities where the total number of households totaled
<50, 100% of households were surveyed. In total, 815 households
participated across the 11 villages (21 communities). The survey
was designed to obtain a baseline of the Knowledge, Attitudes,
and Practices (KAP) of participating communities as they relate
to resource use in and around the protected area. Specific to this
study, we calculated the percentage of households that engage
in hunting activities in each community, as well as the species
hunted. For each species identified as hunted, we also determined
how frequently they were hunted and whether respondents
perceived the abundance of each of the species as less, more,
or the same as 10 years ago. Respondents were also asked their
primary purpose for hunting (i.e., home use, selling, sharing, or
multiple purposes).

Following these KAP surveys, in 2017, we carried out
resource use mapping exercises in each of the 21 communities.
Using participatory mapping and focus group discussions, each
community worked with facilitators to create a sketch map of
their resource use areas, and to identify hunting areas, hunting
methods, the purpose of hunting, and hunting patterns using
a seasonal calendar. Lists of hunted species developed from
the KAP surveys were presented to focus groups and were
verified or amended as necessary. Following the KAP surveys,
communities were re-visited, and, at open village meetings,
were asked similar questions to those in the KAP surveys, such
as which species are hunted the most, which are getting less
abundant, and which species villagers are most concerned about.
A participatory voting approach was used in these meetings to
verify trends in the individual responses from the KAP surveys.
Once confirmed, maps of hunting areas were developed for
each community.
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FIGURE 1 | Map of the Kanuku Mountains region, showing camera-trap locations (circles), hunting sites (polygons), and villages (pentagons), as well as the

boundaries of the KMPA (solid line) and indigenous community titled lands (dotted line) (Arino et al., 2012; Environmental Systems Research Institute (ESRI), 2015).

Camera-Trap Surveys
Camera-trap photos were obtained as part of multi-species
camera-trap studies of the Rupununi Region, following
well-established methods for camera-trap research (Karanth
and Nichols, 1998; Silver, 2004). Camera-traps (Bushnell
Trophy Cam #119447C, #119734C, #119736C, and #119837C;
Bushnell R©, KS, USA) were set 2–3 km apart, with a single camera
at each trap location, set 30–40 cm from the ground in proximity
to observed animal sign. Cameras were active 24 h per day, with
a 1 second delay between captures, recording the date and time
with each 3-image sequence. Images of the species of interest
that occurred at the same trap site within a period of 30min
were excluded to ensure that photo occasions were independent
(Silver, 2004). In an effort to reduce wariness around cameras
and avoid biased capture rates, no scents or lures were used, and
all cameras employed were equipped with infrared flash.

Camera-trap sites were selected for inclusion in this study
based on their proximity to hunting areas documented by KAP

surveys and resource use mapping exercises. This included
areas surveyed within the KMPA, as well as the adjacent titled
lands of 14 indigenous communities. Camera-traps were set
in clusters of 20–30 cameras and left in the field for 40–365
trap nights between May 2012 and October 2016. In order
maximize the number of sampling locations across the study area,
we integrated data from two different projects that employed
identical methodologies, with the exception of the number of trap
nights at each camera location. To standardize sampling effort
and trap spacing, we selected the data from the first 40 trap nights
at each camera location and removed overlapping trap locations
with spacing <2 km.

In total, our sample includes 221 camera-trap locations
(Figure 1) and 8,840 trap nights, which resulted in 51,036
photographs and 17,012 occasions. We detected a total of 102
species (46 mammals, 48 birds, 7 reptiles, 1 amphibian), of
which 17 species were selected for inclusion in our analysis
based on their status as either a game species targeted by local
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hunters, a terrestrial predator, or as a species of ecological
importance/conservation interest.

Hunting Intensity Analysis
The boundaries of each site (Figure 1) were determined by the
combination of (a) the locations of hunting areas identified by
community members, (b) the number of people and number
of villages using each hunting area, (c) the habitat type
associated with hunting areas identified, and (d) the availability of
overlapping camera trap data. Of 21 communities surveyed, data
from 14 communities (7 of the 11 titled villages) were selected for
inclusion in this study based on their overlap with camera-trap
surveys. In cases of overlapping hunting sites between multiple
communities, each combination of communities using a given
area was recorded. Hunting intensity for each site, defined as the
number of households hunting in a particular area (HH/km2),
was determined by calculating the number of households from
each community hunting in a given site, divided by the total area
of that polygon.

We calculated the number of households by taking the
percentage of respondents from the KAP surveys that hunted
and extrapolating it to the total number of households known
to occur in that village. For example, if the KAP surveys
showed 10% of respondents said they hunted, and there was a
total of 80 households in that village, we would calculate that
eight households hunted. In this manner, the sum of all the
households hunting would be combined to give an estimate of
the total number of households hunting in a given site. Although
we recognize that these are not an accurate reflection of the
actual intensities for each site, calculating in a consistent and
standardized manner across sites allows us to make inferences
about their intensities relative to one another. Sites with the
highest intensity value (HH/km2) were considered as the most
intensely hunted sites.

GPS locations of hunting areas were used in determining
the boundaries of each site, but intellectual property agreements
with partner communities prohibits specific locations from being
shown here. Variation in the overall size of each polygon (due to
some communities hunting across larger areas than others) was
standardized by considering camera trap density (traps/km2) at
each site (Table 1). After excluding sites with insufficient camera-
trap survey effort (<20 trap locations—Sites 3 and 5), seven
sample sites were identified (Figure 1)—four in mixed lowland
and upland tropical forest (largely within the protected area),
and three within the savanna-forest mosaic (largely outside the
protected area).

Camera-Trap Data Analysis
Occupancy, relative abundance, and activity patterns were
calculated for each species of interest at each camera location
to account for the influence of hunting intensity (as calculated
above) on spatial and temporal distribution. To account for
additional variation in detection probability on occupancy, we
implemented season (rainy or dry) and trail type (anthropogenic
or natural) as covariates in our model. Forest cover was
determined by placing a 1-km buffer around each camera-trap

and calculating the percent forest cover (Hansen et al., 2013)
within each buffer using the Tabulate Area function. Distance
to village was determined by calculating the Euclidean distance
(in meters) from each camera-trap to the nearest village. Season
was determined by the date range during which each camera
was active and trail type was determined visually at each camera
location. Cameras were placed into 15 spatial groups using the
Grouping Analysis tool to control for spatial autocorrelation.
We chose the K-nearest neighbors method and used trial and
error to determine the optimum number of nearest neighbors
(K = 20). All spatial analyses were conducted in ArcMap 10.3.1
(Environmental Systems Research Institute (ESRI), 2015).

We used a Bayesian multi-species hierarchical occupancy
modeling approach (Dorazio and Royle, 2005) to assess the
relationship between occupancy and hunting pressure, distance
to the closest village, and percent forest cover. This approach
enabled us to estimate species-specific and aggregate community
occupancy while accounting for imperfect detection (MacKenzie
et al., 2002; Dorazio et al., 2011). We recorded a binary measure
of detection (1 = observed, 0 = not observed) for each species
at each camera location for each 24 h period from when the
cameras were deployed (n = 40). The number of trap nights
available for each camera site varied, but subsetting the data
to include the first 40 trap nights from each site allowed
us to maximize the number of camera-trap sites included in
our sample, while managing reasonable computation time. We
investigated variables that we believed a priori would influence
species-specific occurrence or detection using a generalized linear
mixed modeling (GLMM) approach (Dorazio and Royle, 2005;
Russell et al., 2009). We modeled the relationship of season (0 =
rainy, 1 = dry) and trail type (0 = anthropogenic, 1 = natural)
with species-specific and community detection probability. We
modeled the relationship of hunting pressure, expressed as our
hunting intensity index ranging from 0 to 1, distance to the
closest village, and the percent of forest cover within a 1 km
buffer around each camera, with species-specific and community
occurrence probability.We standardized variables accounting for
variability in detection and occurrence using a z-transformation
and modeled them as random effects with species-level variation
drawn from a common distribution inclusive of an estimated
mean and variance (i.e., hyperparameters). Additionally, we
modeled discrete spatial clusters of cameras as a random effect to
account for spatial autocorrelation. We fitted a single full model
inclusive of all a priori variables (Zipkin et al., 2010).

We estimated the posterior distributions of each parameter
using Markov chain Monte Carlo (MCMC) implemented in
JAGS (version 4.2.0) using the R2Jags R package (Plummer,
2011). We used uniform (uninformative) priors (Gelman et al.,
1995; Gilks et al., 1996) and generated 3 chains of 50,000
iterations with a burn-in of 10,000 iterations and a thinning rate
of 50, yielding 3,000 samples. We then assessed convergence of
MCMC chains with trace plots and the Gelman-Rubin diagnostic
(Rhat), where values <1.1 indicated convergence (Gelman and
Hill, 2007). We considered model covariates with 95% Bayesian
credibility intervals (CRI) not inclusive of zero to be relevant
predictors of occurrence or detection.
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TABLE 1 | Habitat type, area, hunting intensity, season, and camera-trap survey effort at each site.

Site Habitat type Site Area

(km2)

Hunting intensity

(households hunting/km2)

Trap season Trap

sites

Trap

nights

Trap density

(traps/km2)

Site 1 Mixed lowland and upland tropical forest 631.58 0.29 (med) May–June (rainy) 38 1,520 0.06

Site 2 Mixed lowland & upland tropical forest 520 <0.01 (very low) Aug–Sept (rainy) 52 2,080 0.10

Site 4 Mixed lowland & upland tropical forest 378.97 0.43 (high) June–July (rainy) 27 1,080 0.07

Site 6 Savanna-forest mosaic 374.02 0.27 (med) Feb–March (dry) 29 1,160 0.08

Site 7 Savanna-forest mosaic 289.92 0.38 (high) Jan–Feb (dry) 23 920 0.08

Site 8 Mixed lowland tropical forest 265.46 0.14 (low) Nov–Dec (peak fruiting/rainy) 21 840 0.08

Site 9 Savanna-forest mosaic 519.15 0.22 (med) April-May (dry/rainy) 31 1,240 0.06

We used the package “overlap” in R to estimate the percent
overlap in the activity patterns of species of interest across
all sites, as well as within pair-wise comparisons between
sites with the highest and lowest hunting intensities (Ridout
and Linkie, 2009). Package “overlap” observes capture times
as random samples from a continuous distribution, and the
“coefficient of overlap” as a non-parametric measurement of the
overlap between the probability distribution functions of these
underlying distributions estimated by bootstrapping (Ridout
and Linkie, 2009). Avoidance of heat stress is a known factor
influencing circadian rhythms of mammals in open habitats
(Terrien et al., 2011), thus we excluded sites with <90% canopy
cover (all savanna forest sites) from analysis of activity patterns
to isolate effects related to hunting activity. Lastly, we calculated
relative abundance indices (RAI’s) of each species by dividing the
number of occurrences of each species by the number of nights
at each camera and standardizing for 100 trap nights (O’Brien,
2011). R code for each analysis can be found in Appendix 1.

RESULTS

Communities’ Hunting Activity and
Patterns
All communities surveyed, but not all households in each
community, indicated that they hunt. On average, 25% (range =
0.02–0.61) of households across all communities surveyed hunt.
Of the 21 communities, all hunt on their village lands and 18
out the 21 also hunt inside the KMPA. Typically, hunting occurs
throughout the year, with small groups of hunters going out for
a few days at a time. Hunting activities increase in frequency
and intensity, and hunting parties increase in size, around key
celebrations, such as Amerindian heritage month (September),
Easter, and Christmas. During these celebrations, certain large-
bodied species, such as lowland tapir, are highly sought after for
holiday meals.

Outside annual celebrations, two key hunting seasons were
commonly identified across communities. The first is during the
peak fruiting seasons (August and December), when animals are
more accessible as they feed on fruits that drop to the forest
floor. The second is during the peak dry season between January
and March, when normally elusive animals gather around
drying ponds, creeks, and springs, making them easier prey for
hunters. Village residents mainly hunt for home or celebration

(subsistence) purposes, but on average 62% of respondents across
the 21 communities reported hunting for both home use and to
generate income. Although hunting methods are highly variable
depending on species and season, the most common method for
hunting year-round across all villages was pursuit with dogs, bow
and arrow, and/or firearms, with the level of offtake generally
being consistent across hunters and villages.

Both KAP surveys and focus group discussions showed similar
results in species hunted. The most commonly and frequently
hunted species across all communities surveyed were (from
most common to least) lowland paca, red brocket deer, red-
rumped agouti (Dasyprocta leporina), collared peccary (Pecari
tajacu), black curassow, lowland tapir, white-tailed deer, great
long-nosed armadillo (Dasypus kappleri), nine-banded armadillo
(Dasypus novemcinctus), yellow-footed tortoise (Chelonoidis
denticulatus), red-footed tortoise (Chelonoidis carbonarius),
capybara (Hydrochoerus hydrochoeris), and spectacled caiman
(Caiman crocodilus). Lowland paca, red-rumped agouti, collared
peccary, red brocket deer, and lowland tapir were the top five
preferred mammal species across our survey sites (Table 2).
Correlation analysis showed a very strong positive relationship
between speciesmost frequently hunted and those perceived to be
less abundant than they were 10 years ago (r2 = 0.89; Figure 2).

Hunting Intensity
Hunting intensity varied across sites, ranging from very low and
low hunting intensity (Site 2 and Site 8) to higher intensity (Site
4 and Site 7) (Table 1). We found no correlation in any of the
21 communities surveyed between the proportion of households
hunting in a village and the distance to the nearest market
town, the nearest road, the protected area, or the number of
shops available in their community. However, hunting intensities
tended to be slightly higher in savanna forest habitats, with all
sites experiencing medium and high hunting intensity compared
to forested habitats where hunting intensity ranged from very low
to high (Table 1).

Occurrence and Detection Probability
Our Bayesian multi-species hierarchical occupancy model
indicated that although cumulative community detection
probability was positively associated with dry season (β 0.07; CRI
−0.17 to 0.33; Rhat 1.00) and natural (game) trails (β 0.05; CRI
−0.08 to 0.18; Rhat 1.00), neither were a statistically significant

Frontiers in Ecology and Evolution | www.frontiersin.org 6 November 2019 | Volume 7 | Article 412

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Hallett et al. Impacts of Hunting in Guyana

TABLE 2 | The top three most hunted species at each site.

Rank Site 1 Site 2 Site 4 Site 8 Site 6 Site 7 Site 9

1 Lowland Paca (26%) n/a Red brocket deer;

lowland paca;

collared peccary

(16%)

Lowland paca (20%) Lowland paca (19%) Collared peccary (18%) Lowland paca (26%)

2 Red-rumped agouti;

red brocket (16%)

n/a Collared peccary (19%) Collared peccary (15%) Lowland paca (16%) Red brocket deer (20%)

3 n/a Lowland tapir (12%) Red brocket deer (13%) Collared peccary (18%)

FIGURE 2 | Correlation between species hunted most often and those perceived to be less available than 10 years ago, expressed as the percentage of respondents

who identified each species during KAP surveys.

predictor of detection. Similarly, we also found that cumulative
community occurrence was positively (but not significantly)
associated (did not exhibit a clear directional association) with
hunting intensity (β 0.05; CRI −0.30 to 0.41; Rhat 1.00), and
distance to nearest village (β 0.06; CRI −0.35 to 0.47; Rhat 1.00).
Percent forest cover was found to be a significant predictor of
community occurrence (β 0.56; CRI 0.18 to 0.95; Rhat 1.00), as
occupancy increased with forest cover for most species included
in our analyses.

Gelman-Ruben diagnostic (Rhat) results showed that all
individual species models converged (Rhat < 1), implying
confidence in our estimates (Table 3). Trail type was not a good
predictor of detection for any of the 17 species included in our
analyses. Conversely, season proved a significant predictor of
detection for several species, with lowland tapir (β 0.59; CRI
0.33–0.86), jaguar (Panthera onca) (β 0.90; CRI 0.40 to 1.44), and
ocelot (Leopardus pardalis) (β 0.48; CRI 0.13 to 0.86) showing
a positive correlation with detection in the dry season, while
collared peccary (β −0.41; CRI−0.78 to−0.04), lowland paca (β
−0.30; CRI −0.48 to −0.11), red acouchi (Myoprocta acouchy)
(β −0.33; CRI −0.50 to −0.18), and gray-winged trumpeter
(Psophia crepitans) (β −0.36; CRI−0.53 to−0.19) all had higher
detection probability in the rainy season.

Forest cover had the most significant relationship with species
occurrence, with 11 out of the 17 species showing a significant
relationship with this variable (Appendix II). Increased forest
cover was positively associated with occurrence of the red acouchi
(β 2.16; CRI 1.30 to 3.21), black curassow (β 0.68; CRI 0.28 to
1.10), collared peccary (β 1.02; CRI 0.46 to 1.63), Amazonian
brown brocket deer (Mazama nemorivaga) (β 1.70; CRI 0.82
to 2.75), gray-winged trumpeter (β 2.10; CRI 1.36 to 2.97),
lowland paca (β 0.50; CRI 0.14 to 0.89), red brocket deer (β
0.72; CRI 0.31 to 1.16), and red-rumped agouti (β 0.71; CRI
0.33 to 1.09), and a significant negative association with the
occurrence of crab-eating fox (Cerdocyon thous) (β −1.12; CRI
−1.56 to −0.69), giant anteater (Myrmecophaga tridactlya) (β
−0.77; CRI −1.65 to −0.21), and white-tailed deer (β −0.61;
CRI −1.34 to −0.04). Lowland tapir (β 0.52; CRI 0.10–0.95)
and both species of long-nosed armadillos (β 0.44; CRI 0.04
to 0.87) demonstrated a significant positive correlation with
increased distance from the nearest village, while white-tailed
deer (β−1.13; CRI−2.23 to−0.15) and crab-eating fox (β−1.15;
CRI −2.17 to −0.17) exhibited significant negative relationships
(Appendix II). Hunting intensity did not appear to have a
significant impact on species occurrence for any of our 17 species
(Appendix II), with the exception of the crab-eating fox (β 0.82;

Frontiers in Ecology and Evolution | www.frontiersin.org 7 November 2019 | Volume 7 | Article 412

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Hallett et al. Impacts of Hunting in Guyana

TABLE 3 | Species-specific summaries of covariate effects on occupancy (psi) and detection (p) for 18 species of interest.

Species Common name Covariate β SD 95% CRI Rhat

Tapirus terrestris Lowland tapir Psi(HuntingIndex) −0.03 0.17 −0.37 to 0.32 1.00

Psi(DistanceToVillage) 0.52 0.22 0.10 to 0.95 1.00

Psi(ForestCover) 0.30 0.21 −0.09 to 0.72 1.00

P(Season) 0.59 0.14 0.33 to 0.86 1.00

P(TrailType) 0.17 0.15 −0.08 to 0.49 1.00

Mazama americana Red brocket deer Psi(HuntingIndex) 0.08 0.18 −0.28 to 0.43 1.00

Psi(DistanceToVillage) 0.05 0.22 −0.37 to 0.47 1.00

Psi(ForestCover) 0.72 0.22 0.31 to 1.16 1.00

P(Season) −0.17 0.11 −0.39 to 0.04 1.00

P(TrailType) 0.20 0.14 −0.04 to 0.52 1.00

Mazama nemorivaga Amazonian brown brocket deer Psi(HuntingIndex) −0.10 0.20 −0.49 to 0.29 1.00

Psi(DistanceToVillage) 0.26 0.27 −0.21 to 0.80 1.00

Psi(ForestCover) 1.70 0.49 0.82 to 2.75 1.00

P(Season) 0.08 0.21 −0.33 to 0.50 1.00

P(TrailType) 0.13 0.16 −0.14 to 0.49 1.00

Odocoileus virginianus White-tailed deer Psi(HuntingIndex) 0.14 0.36 −0.54 to 0.84 1.00

Psi(DistanceToVillage) −1.13 0.54 −2.23 to −0.15 1.00

Psi(ForestCover) −0.61 0.32 −1.34 to −0.04 1.00

P(Season) 0.46 0.42 −0.35 to 1.33 1.00

P(TrailType) 0.01 0.17 −0.35 to 0.36 1.00

Pecari tajacu Collared peccary Psi(HuntingIndex) −0.12 0.20 −0.53 to 0.25 1.00

Psi(DistanceToVillage) −0.01 0.25 −0.49 to 0.48 1.00

Psi(ForestCover) 1.02 0.30 0.46 to 1.63 1.00

P(Season) −0.41 0.19 −0.78 to −0.04 1.00

P(TrailType) 0.10 0.14 −0.17 to 0.40 1.00

Cuniculus paca Lowland paca Psi(HuntingIndex) −0.36 0.20 −0.75 to 0.04 1.00

Psi(DistanceToVillage) 0.22 0.24 −0.21 to 0.71 1.00

Psi(ForestCover) 0.50 0.19 0.14 to 0.89 1.00

P(Season) −0.30 0.09 −0.48 to −0.11 1.00

P(TrailType) 0.08 0.10 −0.11 to 0.27 1.00

Dasyprocta leporina Red-rumped agouti Psi(HuntingIndex) 0.01 0.26 −0.50 to 0.52 1.00

Psi(DistanceToVillage) −0.08 0.24 −0.53 to 0.42 1.00

Psi(ForestCover) 0.71 0.20 0.33 to 1.09 1.00

P(Season) −0.02 0.05 −0.13 to 0.09 1.00

P(TrailType) −0.05 0.07 −0.18 to 0.07 1.00

Myoprocta acouchy Red acouchi Psi(HuntingIndex) −0.03 0.17 −0.37 to 0.30 1.00

Psi(DistanceToVillage) 0.33 0.22 −0.11 to 0.77 1.00

Psi(ForestCover) 2.16 0.49 1.30 to 3.21 1.00

P(Season) −0.33 0.08 −0.50 to −0.18 1.00

P(TrailType) −0.04 0.09 −0.22 to 0.12 1.00

Dasypus novemcinctus;

Dasypus kappleri

Nine-banded armadillo; Great

long-nosed armadillo

Psi(HuntingIndex) 0.19 0.17 −0.12 to 0.52 1.00

Psi(DistanceToVillage) 0.44 0.22 0.04 to 0.87 1.00

Psi(ForestCover) 0.14 0.18 −0.22 to 0.49 1.00

P(Season) −0.34 0.10 −0.54 to −0.15 1.00

P(TrailType) −0.14 0.11 −0.37 to 0.07 1.00

Myrmecophaga tridactyla Giant anteater Psi(HuntingIndex) 0.06 0.25 −0.45 to 0.58 1.00

Psi(DistanceToVillage) −0.23 0.33 −0.88 to 0.40 1.00

Psi(ForestCover) −0.77 0.37 −1.65 to −0.21 1.00

P(Season) −0.02 0.27 −0.53 to 0.51 1.00

P(TrailType) 0.03 0.17 −0.30 to 0.37 1.00

(Continued)
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TABLE 3 | Continued

Species Common name Covariate β SD 95% CRI Rhat

Priodontes maximus Giant armadillo Psi(HuntingIndex) −0.11 0.41 −1.03 to 0.62 1.00

Psi(DistanceToVillage) 0.76 0.44 −0.01 to 1.73 1.00

Psi(ForestCover) 0.89 0.54 −0.10 to 2.00 1.00

P(Season) 0.03 0.36 −0.68 to 0.75 1.00

P(TrailType) 0.06 0.19 −0.31 to 0.46 1.00

Psophia crepitans Gray-winged trumpeter Psi(HuntingIndex) −0.25 0.19 −0.62 to 0.11 1.00

Psi(DistanceToVillage) 0.09 0.22 −0.34 to 0.52 1.00

Psi(ForestCover) 2.10 0.43 1.36 to 2.97 1.00

P(Season) −0.36 0.09 −0.53 to −0.19 1.00

P(TrailType) 0.07 0.09 −0.10 to 0.25 1.00

Crax alector Black curassow Psi(HuntingIndex) 0.11 0.20 −0.27 to 0.51 1.00

Psi(DistanceToVillage) 0.36 0.24 −0.09 to 0.84 1.00

Psi(ForestCover) 0.68 0.21 0.28 to 1.10 1.00

P(Season) 0.15 0.10 −0.06 to 0.35 1.00

P(TrailType) 0.20 0.13 −0.03 to 0.49 1.00

Panthera onca Jaguar Psi(HuntingIndex) 0.22 0.53 −0.86 to 1.25 1.00

Psi(DistanceToVillage) −0.17 0.38 −0.90 to 0.66 1.00

Psi(ForestCover) 0.15 0.40 −0.66 to 0.91 1.00

P(Season) 0.90 0.26 0.40 to 1.44 1.00

P(TrailType) 0.01 0.16 −0.33 to 0.33 1.00

Puma concolor Puma Psi(HuntingIndex) −0.15 0.30 −0.82 to 0.37 1.00

Psi(DistanceToVillage) 0.21 0.29 −0.35 to 0.78 1.00

Psi(ForestCover) 0.59 0.34 −0.03 to 1.31 1.00

P(Season) 0.26 0.25 −0.24 to 0.74 1.00

P(TrailType) 0.02 0.16 −0.32 to 0.35 1.00

Leopardus pardalis Ocelot Psi(HuntingIndex) 0.29 0.24 −0.16 to 0.81 1.00

Psi(DistanceToVillage) 0.14 0.26 −0.33 to 0.67 1.00

Psi(ForestCover) 0.35 0.25 −0.12 to 0.84 1.00

P(Season) 0.48 0.19 0.13 to 0.86 1.00

P(TrailType) 0.02 0.14 −0.26 to 0.30 1.00

Cerdocyon thous Crab-eating fox Psi(HuntingIndex) 0.82 0.33 0.19 to 1.48 1.00

Psi(DistanceToVillage) −1.15 0.50 −2.17 to −0.17 1.00

Psi(ForestCover) −1.12 0.23 −1.56 to −0.69 1.00

P(Season) 0.29 0.19 −0.08 to 0.67 1.00

P(TrailType) 0.01 0.14 −0.26 to 0.28 1.00

β, standard deviation (SD), and Bayesian credibility interval (CRI) are based on the model averaged posterior distribution. We considered model covariates to be relevant predictors of

species occurrence or detection when 95% CRI’s did not cross zero and assumed Rhat values of <1.1 indicated convergence.

CRI 0.19 to 1.48) which showed a significant positive relationship
with hunting intensity (Table 3).

Relative Abundance Index
Given the influence of forest cover and season in predicting
species occurrence, we compared the RAI of species between
lower and higher hunting intensity sites post analysis, when
habitat type and season were similar. In this manner, we
compared Site 2 (very low intensity) with Site 4 (high intensity),
both in tropical forest habitat sampled during the rainy season,
as well as Site 6 (medium intensity) and Site 7 (high intensity),
which represented savanna-forest mosaic habitat sampled in
the dry season (Table 1). In forested habitats in the rainy
season, and in savanna-forest mosaic in the dry season, nearly

all species showed differences in their RAI’s between low and
high intensity sites (Table 4), however none of these differences
proved statistically significant (Wilcoxon’s test: forest: z =−0.37,
n = 15, p = 0.71; savanna: z = −1.48, n = 15, p = 0.14).
Lowland tapir, all three species of deer, red-rumped agouti, puma
(Puma concolor), and ocelot consistently showed higher RAI’s in
sites that had lower hunting intensity levels regardless of habitat
type, while lowland paca, black curassow, gray-winged trumpeter,
and jaguar showed the same trend within forested habitats
only. Conversely, collared peccary and red acouchi consistently
showed higher RAI’s in both higher hunting intensity sites,
while lowland paca, black curassow, gray-winged trumpeter,
crab-eating fox, and jaguar showed this trend in savanna-forest
habitat only.
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TABLE 4 | Comparison of relative abundance indices (RAI) of species of interest between sites with “low” and “high” hunting intensity, keeping habitat type and season

constant.

Forest rainy season Savanna-forest mosaic dry season

Species (*hunted species) Site 2-Low intensity

(<0.01)

Site 4-High intensity

(0.43)

% difference Site 6-Med intensity

(0.27)

Site 7-High intensity

(0.38)

% difference

Lowland tapir** 5.79 3.15 46 7.03 2.52 64

Red brocket deer** 9.38 5.52 41 3.72 3.17 15

Amazonian brown brocket deer* 3.54 2.30 35 na na

White-tailed deer** na na 2.10 1.83 13

Collared peccary** 12.13 17.52 −44 2.62 3.17 −21

Lowland paca** 15.19 11.44 25 0.90 5.83 −550

Red-rumped agouti** 48.88 35.93 27 28.62 26.87 6

Red acouchi 20.54 32.44 −58 na na

Giant armadillo* 0.44 0.11 75 0 0.13

Long-nosed armadillos** 9.27 13.19 −42 0 6.30

Giant anteater 0.46 0.52 −12 2.10 0.78 63

Black curassow** 23.10 11.07 52 5.45 5.96 −9

Gray-winged trumpeter* 98.87 45.48 54 1.24 6.87 −453

Jaguar 1 0.33 67 1.86 1.96 −5

Puma 2.02 0.74 63 1.21 0.13 89

Ocelot 2.31 2.11 9 2.52 1.74 31

Crab-eating fox na na 8.10 28.65 −254

**, species preferred by hunters, *, species hunted, but not preferred, no asterisks, species not targeted by hunters.

Activity Patterns
Although we plotted the activity patterns of 13 of the species
included in the analyses above (Appendix III), we applied more
detailed analyses to the top five hunted species as indicated
by our KAP surveys, as well as two non-hunted species—red
acouchi and ocelot. Plots of general activity patterns showed
that red-rumped agouti and collared peccary were primarily

diurnal, lowland paca and both long-nosed armadillos exclusively

nocturnal, lowland tapir were mostly nocturnal with some

activity during the day, and red brocket deer were active both
day and night (Figure 3). In non-hunted species, the red acouchi
were crepuscular and ocelots were active both day and night with
peak activities occurring at dawn, dusk, and midday.

In pair-wise comparisons of activity patterns between the
lowest (Site 2) and highest intensity hunting sites (Site 4) where
both habitat and season were constant, we observed shifts in
activity patterns consistent with temporal avoidance of human
(hunting) activity. Large-bodied game species that are targeted
by hunters showed a decrease in diurnal activity at the more
intensively hunted site (Figure 3), with activity patterns of
lowland tapir, red brocket deer, and collared peccary shifting
by 18.1, 19.8, and 20% respectively (Table 5). Medium-sized
game animals showed more subtle shifts in activity patterns
(Figure 3), with lowland paca (10.9%), red-rumped agouti (10%),
and the long-nosed armadillos (10.1%) each shifting away from
peak hunting times early in the morning (Table 5). Pair-wise
comparisons of the overlap of activity patterns of medium-sized
non-hunted species showed much larger shifts in activity, with
red acouchi and ocelot shifting toward increased activity in the
morning by 29 and 27%, respectively.

TABLE 5 | Percent overlap and overall trends in activity patterns of species of

interest between Site 2 (very low hunting intensity) and Site 4 (high hunting

intensity).

Species Overlap Lower

CI

Upper

CI

Observed shift

Lowland tapir 0.82 0.70 0.91 More nocturnal activity

Red brocket deer 0.80 0.71 0.88 More nocturnal activity

Collared peccary 0.80 0.72 0.87 Increased activity at dusk

Lowland paca 0.89 0.82 0.95 Increased activity at dusk

Red-rumped agouti 0.90 0.85 0.94 Increase during morning

hours

Red acouchi 0.71 0.65 0.77 More diurnal activity

Ocelot 0.73 0.62 0.95 Increase during morning

hours

DISCUSSION

As the demand for wild animal meat continues to increase,
maintaining healthy populations of game mammals and
birds represents a significant challenge facing conservation
managers around the world. Understanding shifts in hunting
preferences, patterns, and intensities, as well as the potential
negative impacts of hunting, is critical for policy makers who
are responsible for setting rules and regulations related to
hunting. This is particularly true in regions that allow for
the continued use of resources within conservation areas
by indigenous communities, as is typically the case in the
Neotropics. Boasting one of the world’s lowest deforestation
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FIGURE 3 | Overlap in the activity patterns of species of interest at Site 2 (very low hunting intensity) and Site 4 (high intensity sites), keeping habitat (tropical forested)

and season (rainy) constant.

rates and human population densities, Guyana’s interior still
hosts healthy populations of many globally and locally important
species. However, indigenous communities surrounding the
Kanuku Mountains Protected Area, one of the country’s most
biodiversity rich protected areas with a human population
density in adjacent communities of only 0.42/km2, are
reporting declines, and even local extinctions, of some preferred
game species.

Hunting is typically considered sustainable when the number
of individuals removed from the population is the same as
the number added through normal population growth (Clark,
1990; Milner-Gulland et al., 2009). Our results indicate that
current levels of hunting in and around the KMPAmay currently
be sustainable, however small shifts detected in the behavior
and distribution of species preferred by hunters match the
perceived changes observed by KMPA’s indigenous communities,
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suggesting that species under elevated hunting pressure may be
changing their behavior to evade predation by humans.

Species Occurrence
Our results showed that hunting intensity, distance to village,
forest cover, and season all serve as significant predictors of
species occurrence and detectability, depending on the species.
Interestingly, trail type did not have a significant relationship
with detection for any of the species included in our model,
despite previous research indicating that this was an important
predictor for some species (Harmsen et al., 2010).We believe that
this contradictory result can be attributed to the fact that none of
the camera-traps in our sample were set along roads, and that the
human-made trails that were utilized for camera-trapping were
only lightly used.

Of the variables examined, forest cover was the best predictor
of occurrence across species, showing a significant relationship
with 11 out of the 17 species examined. Red and Amazonian
brown brocket deer, collared peccary, lowland paca, red-rumped
agouti, red acouchi, black curassow, and gray-winged trumpeter
(includes four out of the top five species preferred by indigenous
communities surrounding the KMPA), all showed a significant
positive association with increased forest cover. On the other
hand, white-tailed deer, giant anteater, and crab-eating fox
showed a significant negative association with percent forest
cover. These results are not surprising and reflect the general
habitat preference typical for each species. White-tailed deer,
giant anteater, and crab-eating fox are considered savanna-
dwelling species (with giant anteater also inhabiting tropical
forest but in lower densities), while the remaining species listed
above are typically associated with dense tropical forests.

Forest cover was not a significant predictor of occurrence for
lowland tapir and the long-nosed armadillos, however, suggesting
that these speciesmay use the savanna-forest mosaicmore readily
than other “forest-dwelling” game species. This result is not
unexpected, as both species are known inhabitants of savanna,
grassland, and shrubland habitats of the Cerrado, Chaco, Llanos,
and Pantanal regions of South America (Loughry et al., 2014;
Varela et al., 2019). Similarly, forest cover was not a good
predictor of occurrence for jaguars, pumas, or ocelots, perhaps
unsurprisingly as the savanna-forest mosaic hosts sufficient prey
(including domestic animals) and the distribution andmovement
of these species is well-documented to be a function of prey
availability (Weckel et al., 2006). Season was also a key variable
in detection probability for many species, with lowland tapir and
jaguar more detectable in the dry season, while probability of
detection for collared peccary, lowland paca, red acouchi, and the
long-nosed armadillos was higher in the rainy season. As with
our interpretation of species relationships with forest cover, we
suggest that these findings are more likely attributed to behavior
and responses to the availability of water and prey/food, than for
any other reason.

While not associated with forest cover, occurrence of both
lowland tapir and the long-nosed armadillos showed a significant
positive correlation with increased distance to villages. Studies
show that distance to village is an important predictor for other
elusive species, particularly in areas where hunting pressure is

high (Phan et al., 2019). Lowland tapirs, in particular, are known
to prefer less disturbed areas further away from human presence
(Tobler, 2002; Licona et al., 2011). Generally, hunters use areas
close to settlements more frequently than more distant areas (De
Souza-Mazurek et al., 2000) and the communities in our study
are no exception, with all 21 villages hunting more frequently
in the savanna-forest mosaic close to villages (Protected Areas
Commission unpublished data). KAP surveys and mapping
exercises also showed that hunting intensities were higher in
savanna-forest mosaic habitat near to villages, compared to
forested habitats which are typically further from villages and
closer to or within the KMPA (Table 2). So, while tapir and
armadillos more readily utilize savanna forest habitats than other
“forest-dwelling” species, distance from human settlement seems
to be a more influential factor in determining the distribution
of these species. Interestingly, lowland tapir and the long-nosed
armadillos were ranked as the fifth and sixthmost preferred forest
game mammal species across the 21 communities surveyed. Both
were also frequently cited as a species that communities were
most worried about with regard to their availability in the future
(Protected Areas Commission unpublished data), indicating that
even relatively low hunting pressure may affect the distribution
of species that are particularly sensitive to human activity.

Our study generally supports Robinson and Bennett (2000)
hypothesis that hunting intensity <1 hunter/km2 is sustainable.
Though a number of hunted species showed a negative
association, hunting intensity was not a significant predictor
of occurrence for any of the species that we examined, with
the exception of the crab-eating fox which showed a significant
positive relationship with hunting intensity. The crab-eating fox
is not hunted within our study area, and we suggest that this
relationship is likely the result of its preference for scavenging, as
well as the reduction in niche occupancy of competing species.
Although omnivorous, studies have shown that fruit is the
most prevalent item in the crab-eating fox’s diet (Rocha et al.,
2008), and thus there is likely significant dietary overlap with a
number of the species that were identified as hunted by the KAP
surveys. Occurrence of crab-eating fox also showed a significant
negative relationship with increased distance to villages, which
is not surprising as crab-eating fox frequently occur in human-
dominated areas where they are known to scavenge (Rocha et al.,
2008) and likely feed on fruits from cultivated trees often found
in association with homesteads (mango, cashew, citrus).

Relative Abundance
Although not statistically significant, our results show that the
RAI’s of nearly all hunted species were higher in sites with low
hunting intensity when compared to those with higher hunting
intensity, with habitat (tropical forest) and season (rainy) kept
constant. These trends are synonymous with what would be
expected if hunting is having an impact on species, in so far
as there are higher RAI’s in the low hunting intensity site for
species targeted by hunters, with the largest differences in those
species that have a greater predisposition to overhunting—i.e.,
lowland tapir and deer (>40% increase in RAI in low hunting
intensity sites) (Bodmer, 1989; Cardillo et al., 2005; Fa and
Brown, 2009; De Thoisy et al., 2010). Smaller-bodied, more
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prolific breeding species such as lowland paca and red-rumped
agouti, species known to be somewhat resistant to the effects of
harvesting (Mayor et al., 2007), showed much smaller differences
(∼25% increase in RAI in low hunting intensity sites) in RAI
between sites.

For species whose movements and distribution are largely
determined by prey availability, such as jaguar and puma (Weckel
et al., 2006), trends in RAI mirrored those for most potential
prey species. Conversely, we found that collared peccary and
red acouchi showed higher RAI’s in more intensely hunted
sites. We suggest that this may be a result of these species
occupying niches that have become available as competition
for resources is reduced (Brown and Davidson, 1977). Previous
studies (Fragoso et al., 2016) and anecdotal reports indicate that
white-lipped peccaries were once relatively abundant across our
study area. The lack of white-lipped peccary occurrences in our
data suggests that the rapid, unexplained population declines that
have transpired across the range of this species (Altrichter et al.,
2012) may have also occurred in and around the KMPA. The
disappearance of a superior competitor with which there is a high
degree of niche overlap (Desbiez et al., 2009), in combination
with their generalist nature and high reproductive rates, may
explain increased RAI observed in collared peccaries. In rodents,
this effect tends to be more prevalent in specialized species
(Brown and Davidson, 1977). Red acouchi diets overlap with
lowland paca and red-rumped agouti but comprises only about
50% of the diversity of their superior competitors filling the same
niche (Dubost and Henry, 2006). As expected, in species such as
ocelot, which is not hunted nor has much dietary overlap with
other species included in our analysis, we saw little difference in
RAI’s between low and high intensity hunting sites.

In savanna-forest habitat in the dry season, while we see
similar patterns in lowland tapir and jaguar, the potential
impacts of hunting on RAI’s are less pronounced. We suggest
therefore, that additional confounding variables are likely at play.
Firstly, the difference in hunting intensity between the two sites
compared is relatively small (0.11 compared to >0.42 in forest
habitats). Secondly, the site with the highest hunting intensity in
our study, Site 7, is in close proximity to a major river, while Site
6, a site with medium hunting intensity, is located far from any
major water source (Figure 1). We suspect that, particularly in
the dry season, the presence of a permanent water source may
have a greater influence in species’ RAI’s than the impacts of
hunting. This hypothesis is further supported by the fact that we
see a >500% increase in the RAI of lowland paca in Site 7—a
species that is known to remain close to permanent water sources
(Hutchins et al., 2003).

Activity Patterns
As with RAI’s, we compared the activity patterns of a variety
of hunted and non-hunted species at sites with high and low
hunting intensity, keeping habitat and season constant. We
predicted that hunted species would shift their activity away
from peak hunting times while unhunted species, such as the red
acouchi, would shift its activities to avoid superior competitors
(red-rumped agouti and lowland paca), and that ocelot would
show no change in activity patterns. Ocelot are not hunted, there

is little dietary overlap with large carnivores, and they have shown
not to shift activity patterns even in areas of very high human
disturbance (Kolowski and Alonso, 2010).

Activity patterns generally reflected those observed in
other studies for large game species, as well as ocelot.
Collared peccary were typically diurnal, lowland tapir primarily
nocturnal, and red brocket deer (Tobler et al., 2009) and
ocelot (Kolowski and Alonso, 2010) active day or night.
Among medium-sized hunted species, red-rumped agouti
were largely diurnal, following similar activity patterns to
those found in previous studies (Dubost, 1988). However,
we observed variation in the activity patterns of lowland
paca and red acouchi when compared to those previously
documented in the literature. Typically, lowland paca are
largely crepuscular (Hutchins et al., 2003) and red acouchi
predominantly diurnal (Dubost, 1988). However, our data
showed lowland paca as exclusively nocturnal, a pattern
typically observed in this species in heavily hunted areas
(Hutchins et al., 2003). Additionally, our data showed that red
acouchi were predominantly crepuscular, suggesting temporal
avoidance of the diurnal red-rumped agouti and nocturnal
lowland paca.

Shifts in circadian rhythms are considered important for
species targeted by hunters, as they may alter reproductive
success and survival (Gaynor et al., 2018). Activity pattern
overlap analysis showed that large-bodied game species, like
lowland tapir, red brocket deer, and collared peccary showed
∼20% shifts in activity patterns in the more intensely hunted
site, with tapir and deer shifting toward increasingly nocturnal
and collared peccary toward increasingly crepuscular activity.
Although relatively small, these shifts away from peak hunting
times are synonymous with temporal avoidance of human
(hunting) activity (Kilgo et al., 1998). Red-rumped agouti
and lowland paca also showed minor shifts away from peak
hunting times (∼10%), with red-rumped agouti showing
greater activity around dawn and lowland paca after dusk in
hunted sites.

The red acouchi demonstrated a large shift in activity
patterns (29%), with increased activity during the day in
our most intensively hunted site. We infer that this result
demonstrates a cascading shift in activity, with red acouchi
shifting toward peak hunting times to avoid peak red-
rumped agouti activity around dawn. In this case, hunting
activity may have reduced competition with red-rumped
agouti and lowland paca, thus opening a temporal niche to
this smaller-bodied, inferior competitor. Surprisingly, ocelots
also showed a large shift in activity (30%) and appeared
to reduce their activity in the middle of the day—similar
to the shifts in activity observed in tapir and deer. Shift
in ocelot activity may be a response to increased human
activity, which would contradict previous studies that suggest
ocelots are not impacted by human disturbance (Kolowski and
Alonso, 2010). However, competition is also known to be an
important influence over the structure of Neotropical carnivore
communities (de Oliveira et al., 2010; de Oliveira and Pereira,
2014)—one that cannot be ruled out here and needs to be
examined further.
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Perceptions vs. Camera-Trap Data
Data from the KAP surveys showed a strong positive correlation
between the species most frequently hunted and those perceived
by hunters to be less abundant than they were 10 years ago
(Figure 2). Our camera-trap data supports these perceptions,
with observed shifts in the behavior and distribution of species
preferred by hunters that are consistent with what would be
expected if species were demonstrating avoidance behavior in
hunted areas. Indigenous knowledge (IK) is accumulated over
a lifetime of traditional use of species (Gilchrist et al., 2005),
and has long been recognized as an important and reliable
source of information when used in modeling the abundance
and distribution of species (Walters and Holling, 1990; Zabel
et al., 2002; Anadón et al., 2009). We suggest, therefore, that
a combination of indigenous knowledge and participation, as
well as quantifiable data should be applied to informed decision-
making on species management and the identification of levels of
sustainable hunting for species of interest.

CONCLUSION

Most previous studies on hunting in the tropics have focused
on areas where levels of hunting are already unsustainable
(Wilkie et al., 2011), therefore limiting our understanding of the
level of harvest that is sustainable for a number of species of
conservation concern. In lowland tapirs, it is well-documented
that hunting is generally unsustainable even at very low levels
as a result of their low population growth rate and density
(Tobler et al., 2014). Although our study showed that current
hunting levels are not having a statistically significant impact on
the occurrence of species preferred by hunters, and this result
supports previous studies that conclude that hunting intensity
of <1 person/km2 is sustainable, we treat this conclusion with
caution. Our models did detect negative relationships with
hunting intensity in a number of the preferred game species
(lowland paca, collared peccary, lowland tapir, giant armadillo)
in our study area. We view this result as an early warning for
the Kanuku Mountains region and, considering the low overall
hunting intensity at our site when compared to much of the rest
of the Neotropics, an indication of the truly low levels of harvest
that some species can sustain before populations begin to show
declines. Once a significant relationship is found between species
occurrence and hunting intensity, its likely hunting has already
exceeded sustainable levels, and thus provides little insight for
managers and policy makers tasked with preventing or reversing
population decline.

Fa et al. (2002) suggests that harvest is no longer sustainable
when species exploitation is ≥20% of its productivity.
Sustainability therefore is largely attributed to balancing
individual removal with population recovery (Clark, 1990) and
only accounts for impacts on the populations of hunted species.
Our study shows that even with relatively low intensity hunting,
shifts in the distribution and behavior of hunted species can
trigger cascading effects on non-hunted species, which in turn
could have an impact on ecosystems as a whole. Our results
support the notion, therefore, that levels of sustainable hunting
should not only consider population trends in hunted species but

should also include the structure and function of the community
as a whole (Milner-Gulland et al., 2009).

We suggest that determining occupancy, relative abundance,
and activity patterns of hunted and non-hunted species, as well
as incorporating indigenous knowledge of trends in use and
populations over time, would be a more effective early alarm
system than monitoring the occurrence of hunted species alone.
Further, as the human population in the Rupununi region and
market demand for wild meat outside of the region grows, and
infrastructure developments make the region more accessible to
outsiders, our data can serve as a baseline that can be monitored
over time. Monitoring can be done alongside surveys of changes
in hunting practices, thus allowing for preventative measures to
be adopted by managers and indigenous communities to ensure
that the level of hunting in the region remains sustainable into
the future.
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