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Humans have observed the natural world and how people interact with it for millennia.

Over the past century, synthesis and expansion of that understanding has occurred

under the banner of the “new” discipline of ecology. The mechanisms considered operate

in and between many different scales—from the individual and short time frames, up

through populations, communities, land/seascapes and ecosystems. Whereas, some of

these scales have been more readily studied than others—particularly the population to

regional landscape scales—over the course of the past 20 years new unifying insights

have been possible via the application of ideas from new perspectives, such as the

fields of complexity and network theory. At any sufficiently large gathering (and with

sufficient lubrication) discussions over whether ecologists will ever uncover unifying laws

and what they may look like still persist. Any pessimism expressed tends to grow from

acknowledgment that gaping holes still exist in our understanding of the natural world

and its functioning, especially at the smallest and grandest scales. Conceptualization of

some fundamental ideas, such as evolution, are also undergoing review as global change

presents levels of directional pressure on ecosystems not previously seen in recorded

history. New sensor and monitoring technologies are opening up new data streams at

volumes that can seem overwhelming but also provide an opportunity for a profusion of

new discoveries by marrying data across scales in volumes hitherto infeasible. As with

so many aspects of science and life, now is an exciting time to be an ecologist.

Keywords: ecology, scale, modeling, anthropocene, challenges

ECOLOGICAL MODELS AND GAP FILLING

Models have many roles in ecology—from explanatory (conceptual) exploration of theoretical
hypotheses, to anticipatory predictions to guide short-term tactical decision making, or longer-
term projections to inform strategic direction setting (FAO, 2008; Mouquet et al., 2015). While
predictive capacity is important when models are being used to guide explicit decision making,
models are useful conversation starters to generate interest and discussion around a topic. Indeed, it
is the authors’ experience that more breakthrough learnings about system function have eventuated
when a model has been wrong than when it has been right (as all involved are keen to know why
it was wrong, fewer people ask when a model matches observations or expectations). All of these
roles continue a long tradition of synthesizing knowledge in generalisable and useful forms.

Humanity has been codifying its theories about the function of the world since the earliest story
tellers and religious practices, although the discipline of ecology was not formally recognized until
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TABLE 1 | Summary of the strengths, gaps and drivers for change in empirical and theoretical ecology and modeling as perceived by the authors.

Research domain Strengths Gaps New driver Next steps

Empirical ecological

studies

Direct connection to

the observable

phenomena

• Tactical integrated statistical

models: empirical validation but

minimal mechanistic understanding

• Historical observations may

become irrelevant as climate

change introduces new dynamics;

evolutionary changes; gaps in data

on previously unimportant species,

parasites etc.

Rapid, continuous,

automated data

collection possible

• New methods (e.g.. machine

learning) to make best use of the

new volumes of data available

(extracting patterns that could not

be seen in small datasets).

• Contributing to hybrid approaches

Theoretical and

mathematical ecology

Synthesize and

generalize

understanding

• Theoretical ecological models:

provide basis for general

understanding and testing

mechanisms, often limited testing

• Equilibrium based theoretical

underpinnings increasingly starting

to fail under changing climate and

changing distributions.

• Eco-evolutionary feedbacks

demonstrating need for further

testing.

• Cross-scale contributions of

diversity to functional resilience of

ecosystems not well-understood

Advances in

ecological theory.

Dramatic

improvements in

computing power.

• Focusing on dynamic theoretical

equations rather than equilibrium

formulations

• Building theories on larger scales

• Improved frameworks to compare

terrestrial and marine systems and

understand connections

• Contributing to hybrid approaches

• Expanded retrospective

assessment of existing model

projections

• New (including as yet

unrealised) approaches.

System level hybrid

models

Bring together the

strengths of different

modeling methods,

representing each facet

in the way that best

captures that

component or process.

Can be made explicitly

multi-scale and allows

for more dynamic

representations.

• Tropho-dynamic species and

trait-based models: gaps in both

empirical & theoretical

underpinnings (e.g., density

dependence, biodiversity, evolution)

• Whole of ecosystem models:

modeling gaps confounded by

need to capture broader and more

complex ecological interactions.

• Socio-economic ecosystem

models: gaps due to two-way

feedbacks between ecological,

social & economic systems

Integrating ideas

and models from

different research

fields

• Move beyond fixed

parameterisations, fixed functional

relationships and formulations.

• Adopt dynamic model structures.

• Develop multi-scale hybrid models,

cross validate with empirical

statistical models and test

emergent properties against

general theory and patterns

the late nineteenth century (Egerton, 1977) and is often still seen
as a relatively “young” science. Throughout that long history and
up to the present day ecologists have drawn upon observations
to try to summarize the world around us and the complex
interrelations contained therein (Haeckel in Egerton, 1977), to
elucidate the underlying mechanisms that shape the patterns we
see (Levin, 1992). In some instances, they have combined forces
with mathematicians to provide a more theoretical standpoint
or to create synthesis via model construction, which explicitly
involves abstracting away unnecessary detail and retaining only
the essentials required to produce observed patterns (Costanza
and Sklar, 1985; Levin, 1992; Håkanson, 1997; Fulton et al., 2003a;
Plagányi et al., 2014).

As mechanisms often occur on different scales to the patterns
they shape, this makes scale the key conceptual problem in
ecology (Levin, 1992). Ecological studies began at small scales
(Melbourne-Thomas et al., 2017), but more recently, is grappling
with more data streams, frommore disciplines, new technologies
and across broader scales, particularly as global change has
become such a dominant consideration (Chave, 2013). As
understanding has accumulated there have been numerous

attempts to unify the threads into a common framework (e.g.,
Scheiner and Willig, 2005, 2008). These exercises have had
mixed success and significant gaps remain—particularly at the
largest and smallest scales. This “modelers’ perspective” provides
a summary motivated by the authors’ experience with those
gaps, assessing which have been filled and which loom largest on
the horizon.

Our starting point was to reflect on our experience, its dead
ends asmuch as its successes, the persistent trials along withmore
recently emerging challenges. Our observations are summarized
in Table 1, which captures our collective view of the strengths,
gaps, and drivers of change across the broad research domains
of empirical ecological studies, theoretical and mathematical
ecology, and system-level hybrid models. In pondering how scale
plays into these issues we developed a set of “Stommel diagrams”
(Stommel, 1963) to frame our thinking. This series of schematic
diagrams (Figure 1) reflects the scales and dimensions that
characterize key system components and processes (terrestrial,
marine, and anthropogenic), as well as the reach of observational
methods and models in representing those features. The shading
on the diagrams highlights the extent of understanding drawn
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FIGURE 1 | Set of schematic Stommel diagrams showing: (A) key ecological processes (with the solid arrow indicating the new understanding about the scales of

action of evolution and the dashed line showing the cross scale connection ecology is realizing stems from linking processes at different scales such as parasitism,

ecosystem structure and function and large scale nutrient cycles); (B) marine phenomena (components and processes); (C) terrestrial phenomena (including the scale

of natural disasters such as fire, flood, earthquakes, and volcanoes); (D) human dimensions (including the scale of human settlements and decision making processes

and influences); (E) observational scales from illustrative major sensor platform types (noting that citizen science is significantly extending data collection beyond the

scales of the platforms shown); and (F) the scales most reliably captured by models (the solid dots indicate scales well-captured by traditional approaches, the

shaded area the growing extent of models, the small and large arrows the push for continuing development and the dashed line the push for coupling across scales;

there may be additional model types that already sit outside the shaded domain, but it is largely indicative of the scope of scales covered). Together these diagrams

create a conceptual figure highlighting the scales and disciplinary dimensions that characterize reality. The base figure for the key ecological process and marine

components is redrawn and updated from Vance and Doel (2010). For the other diagrams the scales of the key phenomena and system features also drawn from

Clark (1985b), Marquet et al. (1993), Peterson et al. (1998), Westley et al. (2002), Scholes et al. (2013), Kavanaugh et al. (2016), and Rose et al. (2017). Note for these

other diagrams (C–F), we have chosen to draw them on a flat two dimensional space as the original Stommel diagram’s third dimension may not be as relevant for

these other dimensions (but there was insufficient information to reliably try to replicate this third axis for the other properties).
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from historical ecological and modeling studies, with the arrows
in Figures 1C,F showing the likely directions of expansion for
ecological knowledge and model representations of ecological
processes (some of which has already begun).

Modern ecological modeling (represented by the shaded
area in Figure 1F) has been underpinned by both empirical
studies and mathematical explorations (Table 1). The early
efforts of observational, theoretical and mathematical ecology
were relatively simple and often confined to “local” (small)
scales (the phenomena on scales of <1–100 km and from a few
months to a few years in extent shown in Figure 1). However, the
strong relationship between time and space scales (the diagonal
patterns seen across Figures 1A–C,F) also allowed for some
researchers (e.g., Clements, 1916) to conceptualize processes on
large (landscape) scales over very large time periods (the top right
corner of Figure 1B). Since then there has been a coevolution of
empirical and conceptual/theoretical ecology. Accumulating data
streams, technological improvements (e.g., increased computing
power) and a growing understanding of the interconnected
and nested nature of ecological systems has seen all ecological
fields, but perhaps particularly modeling, which simultaneously
come under pressure to become increasingly complex while
appreciating the extensive list of things they still do not know
(continuously pushing out the shaded areas of understanding
in Figure 1). Our experience of this pressure over the past 2
decades motivates this perspective piece, which briefly explains
the historical trajectory of (theoretical and mathematical)
ecology, then summarizes more recent realizations for the field
(including insights from models and implications for their
ongoing development) and finally concludes with our thoughts
on what the future holds and what may be fruitful pathways of
enquiry.While we have tried to be even handed in our discussion,
much of our experience stems from marine ecosystems and we
acknowledge that bias. We hope that any of our unintentional
omissions are not so grievous as to detract from our intent to
start a conversation about how the scientific community can go
about broadening the cloth of modeling and ecology.

HISTORICAL TRAJECTORY OF ECOLOGY

The broad concepts that underpin ecology have been accepted
for decades—e.g., species have heterogeneous distributions
contingent on interactions with their experienced abiotic and
biotic environments; resources and life spans are finite and
realized ecological properties are shaped by a mix of behavior
and evolution (Scheiner andWillig, 2008). Nevertheless, finding a
“simple” set of rules that can be used predictively to describe those
concepts has proved more challenging. There have been many
contenders—either for a “grand unifying” concept or at least
theories that synthesize significant chunks of ecological thought,
including: island biogeography theory (MacArthur and Wilson,
1967), succession theory (Pickett et al., 1987), metapopulation
theory (Hanski, 1999), food web theory (Pimm, 1982), unified
neutral theory of biodiversity and biogeography (Hubbell, 2001),
metabolic theory of ecology (Brown et al., 2004), biodiversity
via emergent neutrality (Scheffer and van Nes, 2006), theories

of macroecosystem ecology (Rose et al., 2017), and the many
other theories listed in publications such as Marquet et al. (2015).
Indeed, so many unified theories have been proposed that there
are now pushes to unify the unified theories (McGill, 2010).
Of these many ecological concepts, cross-scale macroecological
theories (McGill and Collins, 2003) are one of the few that
explicitly address multi-scale processes—from local interactions
to large scale dynamics.

Drawing on our modeling experience, our sympathies lie
with those who see strength in diversity and see “a monolithic
unified theory of ecology is neither feasible nor desirable”
(Loreau, 2010a,b); preferring instead to deploy the wide range of
competing ideas in addressing applied ecological problems such
as resource management, conservation, or restoration (Palmer
et al., 2008). Much as with the debates over “top-down vs.
bottom-up” control of food webs (Lynam et al., 2017), “density
dependent vs. density independent” control factors (Turchin,
1995), or the relative importance of birth-death vs. movement
related processes (Kondoh et al., 2016), it has been our experience
that reproducing real world dynamics often involves a mix of
most of the concepts, with what is/isn’t important changing with
the system, the dominant conditions and most importantly the
question being asked. Reflecting on experiences from studying
multiple ecosystems has seen us realize that there are some
common features (a common “skeleton” if you will), but that,
unlike physics and chemistry, each ecological system will have
its particular idiosyncrasies (the “flesh” of the detail). General
principles and patterns do of course exist and more remain to
be found, but while we wait for those theoretical principles to be
tested, as scientists servicing applied management needs, we have
chosen to pragmatically combine concepts and tools as needed—
i.e., the hybrid approach that is beginning to gain traction in
the modeling world. This approach, highlighted in Table 1 as
a strong direction of future model development, appears to
be the best means (in terms of practicality of implementation
and level of model skill) of achieving the linking across scales
shown by the dashed arrow in Figure 1F. It has certainly been
the only means we have found of capturing or anticipating the
emergent properties that have posed the greatest challenges to
coastal resource managers. For instance, to correctly capture
the responses of reef-associated fish communities to interacting
environmental and fishing pressures along the northwest coast
of Australia, we needed to tie mean field representations of
advectable larval patches to age structured metapopulatons of
settled juveniles to individual-based representations of the adult
stages of key large fish species (Gray et al., 2006). Similarly,
in producing models of developed coastal margins (for the
purposes of envisaging potential alternative future development
and management pathways) it has been necessary to combine
a multitude of modeling methods to successfully represent the
many ecosystem components and human uses present in these
systems. For example, in a model of Patagonia developed to
assist with planning for sustainable aquaculture (Fulton et al.,
2018), it was necessary to couple time series (for environment
drivers and economic demand) with qualitative networks (of
social and ethnic aspects), statistical models (to represent the
epidemiology of farmed fish), process-based analytical models
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(e.g., age structured metapopulation models for wild fish
stocks), agent-based representations (of large marine mammals),
cellular automata (for land uses such as agriculture, forestry
and urban settlements) and stocks and flow representations
of industrial production (e.g., mining, energy production,
and manufacturing).

As the scope of the models have grown from populations to
communities to ecosystems and finally socioecological systems
(the central arc of points in Figure 1F) it has been necessary
and important to draw upon an expanding range of disciplines—
not just for directly relevant information on the processes to
be considered (expanding from ecology to biology, chemistry,
geology through to human oriented sciences like economics,
sociology, psychology, etc.), but also for the new perspectives
they bring. Without this expansion of perspective, we have found
it impossible to successfully reproduce the history of exploited
ecosystems (e.g., in south eastern Australia; Fulton et al., 2005,
Fulton and Gorton, 2014).

The value of considering the world from new points of
view is something ecology has struggled to achieve (with some
notable exceptions, such as the interchange of ideas around game
theory with economics; e.g., Riechert and Hammerstein, 1983;
Brown, 2016). Ecological observation, particularly before the
invention of modern remote or autonomous monitoring systems
was logistically difficult. Technological advances have also not
negated that observations can also be costly or protracted. These
realities led to an accidental bias in the formative ecological
studies, with the majority of the most influential tending to
come from more accessible locations—i.e., terrestrial forests
and grasslands (Elton, 1924), freshwater lakes (Tilman, 1977;
Carpenter et al., 1987), or the marine intertidal (Paine, 1969);
and were often situated in the northern hemisphere. While the
importance of scale in ecology was appreciated on similar time
scales in the marine (Smith, 1978; Steele, 1978) and terrestrial
realms (Allen and Starr, 1982), the sharing and transference
of ecological concepts between landscapes and seascapes has
often lagged. Metapopulation theory, for example, began its
development on landmore than 30 years before it was considered
in marine systems (Sale et al., 2016). There has also been a
substantial separation in the focus of work done by practically
focused ecologists working on resource management (e.g., for
forestry, fisheries or pest control), who typically began from a
population stand point (e.g., Russell, 1931; Hjort et al., 1933),
and academic ecology which had a much earlier focus on
complexity and community dynamics (e.g., Clements, 1916).
Access bias also means that critical ecological processes that
structure the harder to access marine systems may be under-
appreciated (or unrealized).The hemispherical bias has meant
that our understanding of southern hemisphere ecosystems (e.g.,
in the Southern Ocean) has faced challenges because aspects
of the ecosystem functioning are substantially different (the
northern hemisphere is dominated by continental land masses,
the southern by ocean, this influences large scale current patterns,
climate, temperature patterns, life histories, ecology (Chown
et al., 2004), as well as levels of human occupation, exploitation
and pollution (FAO, 2005; World Health Organization air
pollution database available from https://www.who.int).

There are a few common ecological principles such as
source-sink dynamics (Pulliam, 1988), that hold equally well in
marine and terrestrial realms; whereas other processes are more
obviously prominent in one context than another (e.g., habitat
selection is clearly important in terrestrial forests or coral reefs,
but its role in pelagic systems, while important, is not as well-
appreciated). Given the different properties of the essentially two-
dimensional nature of many terrestrial ecosystems vs. the three-
dimensional reality of open ocean ecosystems, it is likely that
theories developed in one perspective may not easily equate in
the other (Steele, 1985). As highlighted by Webb (2012) some
comparisons are straightforward—the same taxa in different
environments, or the same process (e.g., predation) in different
environments, consideration of community structure in similar
environments (soils and marine sediments)—while others are
less obvious [e.g., when taxa as different as whales and trees
have a similar biogeochemical role, such as carbon storage and
nutrient cycling (Ratnarajah et al., 2016)]. This need for creative
equivalence has delayed appreciation of how some ecological
properties do port between systems—as demonstrated by the
importance of size as a structuring mechanism on land and
sea (Yvon-Durocher et al., 2011) and the related fact that the
biomass equivalence rule popularized by Sheldon et al. (1972) in
the pelagic marine realm holds equally well in the 3D interstitial
realm inhabited by soil communities, something registered by
Ghilarov (1944) but not effectively recognized, even by size
spectra specialists, until recently (Polishchuk and Blanchard,
2019).

THE MODELING TRAJECTORY

Models have played a beneficial role in taking ideas between the
different realms; they have also built off ecological observations
and theory to provide feedback that helps advance all the
disciplines. Early mathematical analyses of ecological systems
established many of the basic concepts that underlie ecology
(Pacala, 1994)—such as competition (Ekschmitt and Breckling,
1994)—even when empirical evidence has been hard to source
(e.g., Allee effects; Courchamp et al., 2008). Anderson and May
(1979), for instance, not only usedmodels to describe phenomena
such as disease outbreaks but to emphasize how these analyses
could function as a test bed for theories of spatial ecology
(Ferguson et al., 1997). Marine (typically fisheries inspired)
modeling has played a significant role in advancing population
(e.g., as summarized in Allen, 1975) and ecosystem modeling
(see review in Fulton, 2010) as well as bio-economic modeling
(e.g., Clark, 1985a). Marine work has also inspired inclusion of
socio-cultural aspects in models (van Putten et al., 2013) and
contributed to some of the earliest work on epidemiological
modeling (e.g., Anderson and May, 1978).

Initial simplistic concepts such as the Lotka-Volterra
representation of interactions (Volterra, 1926; Lotka, 1932)
have been refined—for example via the foraging arena
concept (Ahrens et al., 2012) or the explicit relation of
physiological/metabolic processes to body size. Allometric
approaches, now widely used to explain ecological processes

Frontiers in Ecology and Evolution | www.frontiersin.org 5 November 2019 | Volume 7 | Article 424

https://www.who.int
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Fulton et al. Where Ecological Gaps Remain

on land and sea, grew from early attempts to find simple
relationships using mean body size (Yodzis and Innes, 1992).
Attempts to push ecological models to new scales and embed
them in larger models representing entire socioecological
systems (linking with social, economic and climate components)
has highlighted entirely new gaps in our understanding of
system connections and feedbacks (Levin et al., 2013). Examples
include how human exploitation can influence evolutionary
processes on ecologically relevant timeframes (Audzijonyte
et al., 2013) and how changing social-ecological conditions
need to be accounted for to understand and manage regional
resilience of terrestrial protected areas (Cumming et al., 2015).
This has helped drive the desire to share ideas from other
research fields, to help close some of these gaps—for example
bringing together ecologists, economists and others to capture
iterative interactions between human actions and natural system
responses in fisheries (e.g., Fulton et al., 2014; Weber et al.,
2019), catchments (e.g., Voinov et al., 1999) and agricultural
landscapes (e.g., Münier et al., 2004; Crepin and Lindahl,
2009).

Different Modeling Focus for Land and Sea
Marine modeling has maintained a relatively steady focus on
population modeling (as discussed in 2015 special issue of
ICES Journal of Marine Science), biogeochemical modeling
(e.g., Franks, 2002), multispecies or ecosystem modeling (e.g.,
Plagányi et al., 2014), as well as habitat, species, and community
distributions (e.g., Cheung et al., 2009; Dunstan and Foster,
2011; Pitcher et al., 2018). Terrestrial modelers have similar
interests and some shared methods, but have tended to
have a different methodological focus to their efforts. For
instance, statistical methods appear to have played a much
larger role in some areas of terrestrial ecology, perhaps due
to access to larger data sets than are often available in the
ocean. Structural equation modeling, a multivariate technique
useful for evaluating multivariate causal relationships, has
been used to explore ecosystem responses (e.g., to climate
change or human disturbance) and processes (Fan et al.,
2016). Bayesian hierarchical models have also been used to
great effect, not only to look at species distributions (e.g.,
Diez and Pulliam, 2007; Stewart-Koster et al., 2013), but
also to look at ecological impacts and responses to human
activities (such as to altered environmental flows; de Little
et al., 2013) and to allow for the integration of experimental
ecology and mechanistic (or process-based) modeling (e.g.,
Ogle, 2009). Bayesian Belief Networks (BBNs) have been
used in both marine and terrestrial circumstances, but have
perhaps had more attention in terrestrial systems. These
models graphically represent probabilistic influence networks
and correlative and causal relationships among variables and
have been used to look at the implications of alternative
management approaches (McCann et al., 2006). Some of the
most substantial efforts in terrestrial ecological modeling have
gone into the modeling of terrestrial biosphere (Fisher et al.,
2014), including biogeochemical cycles, soil and vegetation (e.g.,
Rastetter et al., 1991), or landcover and associated properties—
such as state and transition models of rangeland management

(Bestelmeyer et al., 2017) and semi-mechanistic models of
community-level biodiversity and its responses to climate shifts
(Mokany and Ferrier, 2011). More recently there have been a
growing number of efforts to breach the divide and share lessons
between the terrestrial and marine domains (Milner-Gulland
et al., 2010).

Complexity Theory Has Helped Structure
Crossing Scales
Looking across both land and sea over the last 20 years, as the
scope and the number of scales included in ecological studies
and models expanded, two particularly useful additions to
the ecological lexicon were complexity theory and network
theory. Complexity theory is an interdisciplinary approach
that integrates concepts from a broad range of disciplines
(including chaos theory, computer science, mathematics,
fuzzy logic, statistical physics information theory, non-
linear dynamics, evolutionary biology, cognitive psychology,
behavioral economics, anthropology, and general systems
theory) which attempts to explain the behavior and evolution
of common properties of complex systems such as embedding,
the importance of diversity and interconnections, contextual
dependence, emergent properties, and distributed control.
Complexity theory brings together methods to tackle the
behavior of systems (e.g., ecosystems displaying non-linear
and dynamically adaptive responses) that had eluded more
traditional, often equilibrium, approaches (Hastings et al., 2018).
We have found this to be a particularly useful framework for
dealing with the hierarchy of interactions within and across the
14 orders of magnitude in spatial scales (and the similarly large
number of temporal scales) that contribute to ecosystems—
from the bacterial to basin and global scales (Figure 1).
Metapopulation concepts took the first step, recognizing within
and between patch processes (Levin, 1992), but complexity
theory went further and ecosystems are now clearly seen
to be complex adaptive systems characterized by: feedbacks
between processes occurring at different scales, amplification of
responses to minor (noisy) variations, and emergent patterns
(Levin, 1998; Anand et al., 2010). A powerful example of this
is ecosystem patterns that are driven by ecological interactions
that are themselves mediated by metabolically determined
chemical signaling (Chave, 2013). The value of complexity
theory as a means of solving issues of mismatches in scales
of modeling biophysical systems, anthropogenic drivers,
and socio-economic dynamics has been given considerable
attention in the terrestrial modeling literature. For example,
Parker et al. (2008) summarized the complexity of modeling
land-use systems due to direct and indirect interactions and
the mismatch of scales of human actions and their impacts,
specifically dealing with: harmonizing models and data sets
with vastly different resolutions in space and time; using expert
knowledge to constrain modeled transitions; and carefully
considering the level of coupling required of the biophysical
and socioeconomic components—whether it is “one-way” or
“fully coupled” and whether it considers only direct or also
indirect links.
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Network Theory—Finding Patterns and
Connections
Network theory (whereby key system components and their
interactions are represented by a set of “nodes” connected by
“links” of varying strength) has also been particularly useful for
understanding ecology from local to regional scales—allowing
for characterization of trophic and habitat interactions and
key player identification (Jordán et al., 2006; Bascompte, 2009;
Thébault and Fontaine, 2010), as well as to predict management
outcomes for interacting threats (Marzloff et al., 2016b; Baker
et al., 2018; Tulloch et al., 2018), or distributed patches, such
as networks of aquaculture leases (Mardones et al., 2011).
Network theory has also supplied science with a powerful
means of integrating information sources (e.g., by allowing for
explicit connection of observations from different disciplines
and with traditional knowledge) to provide new insights into
system functioning (e.g., Dambacher et al., 2003). Furthermore,
network theory has provided the capacity to deal with multilayer
networks (spanning multiple spatiotemporal scales and other
forms of ecological complexity such as ontogenetic shifts).
This, in turn, has enabled analysis of interactions between
the processes that operate within and between scales and the
evolution of networks through space and time (Pilosof et al.,
2017). Network analysis is also allowing for the identification
of universal properties that govern multi-scale system behavior.
Gao et al. (2016) demonstrate that the resilience of multi-
dimensional complex systems are strongly influenced by the
topological properties of density, heterogeneity and symmetry.
This capacity to highlight common properties of multi-scale
behaviors, integrating ecological and management aspects and
their associated feedbacks, means that network theory is helping
to fill the gaps in the diagonal spine of the diagrams in Figure 1.
We have found network-based representations of systems (using
loop analysis) such a useful means of characterizing conceptual
understanding of ecosystem form and function that it is now
routinely used as the first step in our modeling work.

RECENT ECOLOGICAL REALIZATIONS

The Significance of System Specificity
Whereas, finding universal (cross-scale) properties of structure
and function is a comforting anchor for those trying to
understand, conserve or manage the world around us, the
reality is that contingent dynamics of complex systems is
the recurrent theme and challenge of the new generation of
ecological problems. The first step in tackling this situation has
been to accept the system specificity (contextual dependence) of
the outcome of some processes (e.g., evolution and food web
structure; Eklöf and Stouffer, 2016) and the resulting implications
for human use and management—such as the performance of
ecological indicators (e.g., Dale and Beyeler, 2001; Shin et al.,
2018) or natural vs. artificial marine substrata (Ferrario et al.,
2016). This has also led to the realization that whereas there
are core ecological properties that are universal (and codified in
general modeling frameworks), system idiosyncrasies will often
demand bespoke model modifications if the applied models are

to faithfully capture the observed dynamics of the system in
question (Fulton et al., 2004). Care must be taken to restrict
this to necessary processes and guard against unnecessary over-
fitting, but experience has shown that the extent to which
this is an issue depends on the use of the model (whether
it is for strategic or tactical questions) and the interpretation
of outputs.

Systems Are Moving Beyond the
Immediate Observation Record
Another step in improving the veracity of ecological models in
our rapidly changing world is to understand the limitation of
the observational record. One of the most commonly discussed
reasons for the patchy reliability of projections based on statistical
relationships is that empirical correlations often fail when
moving into conditions outside the observed range (Levin, 1992;
Mokany et al., 2016). Even when using increasingly sophisticated
statistical approaches to ease computation demands there is
still the need to build from assumptions (or preferably robust
mechanistic understanding) of the phenomena being considered
(Mouquet et al., 2015). Taking a theory-based approach can
extend the envelope of reliability, while simultaneously assisting
in the accumulation of knowledge and the reduction of
uncertainty (Thuiller et al., 2013). In principle, ecology could
draw on historical analogs to inform ideas and models of future
change. Unfortunately, such efforts are sparse, particularly in the
marine realm, as they often draw on paleontological time frames
rather than simply observations from recorded history, as the
degree of future environmental change may shift ecosystems into
states that are governed by previously unobserved variables and
interactions. Where available, fossil records have already given
insights into the changing role of functional diversity, species
composition and network structure with shifting pressures on
ancient ecosystems and how a weakening of functional diversity
exacerbated responses to later pressures (e.g., Yasuhara et al.,
2008; Mitchell et al., 2012; Dunne et al., 2014; Roopnarine
and Angielczyk, 2015; Pimiento et al., 2017; Lowery et al.,
2018). Work on paleontological patterns of extinction underline
that areas with high intrinsic risk of extinction (due the
geographic range and taxonomic identity of species found
there) coincide today with areas of rapid climate shifts and
elevated human impacts (Finnegan et al., 2015; Pimiento et al.,
2017). Paleoecological proxies—such as the examination of
pollen patterns or tree ring records (Birks and Birks, 2003),
or diatoms in seabed cores (Mackay et al., 2003)—can allow
for reconstruction of the dynamics of ecosystems beyond the
immediate observational record on to scales of 1000s of years
(in particular over the Holocene), meaning they include a greater
overlap with the species alive today. Models can then be tested
against these proxies to see the veracity of the model’s capacity
to effectively capture dynamics of these species and ecosystems
beyond the modern period. Iglesias et al. (2015), for example,
describe how linking sedimentary charcoal data and ecological
models has been used to reconstruct past fire regimes and the
implications of climate-vegetation-fire linkages and drivers at
different spatial and temporal scales. While such proxy-based
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data sets are typically sparser than modern observations, they are
a lot less sparse than the fossil record.

The field of ecology will be faced with a fast-paced race
to update models and understanding in an attempt to keep
pace with rapid observational corrections to prior predictions.
In attempting to anticipate this modeling arms race, modelers
have begun to look at the inclusion of fine scale processes that
influence species’ responses and adaptation. Unfortunately, this
is where ecological modelers encounter a number of significant
challenges. It is not a simple process to incorporate sub-grid scale
processes, fine-scale behaviors and phenology into ecological
models; particularly those models attempting to capture the
dynamics of entire ecosystems (Griffith and Fulton, 2014). It is
computationally infeasible to explicitly represent the small spatial
and short time scales involved (Hastings et al., 2018). Advances
can be made by clever use of statistical characterizations or
abstractions which influence the mechanistic model dynamics
and modify outcomes on the explicitly modeled scales (Ellis
and Pantus, 2001; Moorcroft et al., 2001) or to use agent-
based approaches which see the “emergence” of the desired
phenomena (DeAngelis and Mooij, 2005). However, even then
ecology can fall short in terms of providing suitable mechanistic
understanding. Environmental data is currently too coarsely
resolved to support fine-grained processes (Mouquet et al.,
2015). Moreover, not all ecological processes have received
equal attention—mutualism, amensalism, and facilitation have
received a tiny fraction of the attention garnered by predator-prey
interactions (Martorell and Freckleton, 2014); and mixotrophy,
which has an important part to play in marine planktonic
systems, has rarely been included in models to date (Berge et al.,
2017).

Both macroecological relationships (Brown et al., 2004;
Cabral et al., 2017) and trait based approaches (McGill et al.,
2006) appear to have strong potential as means of connecting
the arrows along the spines of Figures 1C,F—simultaneously
synthesizing cross scale processes, helping bridge the divide
between models of ecosystem composition and function, and
delivering larger scale patterns without requiring crippling
complexity, or unreasonable computational and data loads
(Blanchard et al., 2017). Even then, caution is required due to
the scale-dependent role of traits (Suárez-Castro et al., 2018),
the significant variation that exists around macroecological
relationships (Gaston and Blackburn, 1999) and knowledge that
the relationships can change dynamically (Supp et al., 2012).
These very factors may help explain phenotypic responses and
range edge effects (Chuang and Peterson, 2016), as well as
species-specific responses to processes such as ocean acidification
(Vargas et al., 2017) and localized variation in adaptation and
adaptive capacity (Bennett et al., 2015). Nonetheless, they are also
likely to have important implications for spatiotemporal patterns
in the diversity and functioning of ecosystems and our capacity
to model those patterns (Mokany et al., 2016).

Gaps in Fundamental Ecological
Understanding
All of these issues act to highlight additional ecological gaps.
There is still limited understanding of how ecosystem structure
changes through time and space—and how the processes concur

or differ between land and sea (e.g., many of the well-studied
features at smaller spatial scales appear to span longer time
periods on land than at sea—compare Figure 1A and Figure 1B).
Nevertheless, recent advances in process-based macroecology
(Cabral et al., 2017; Connolly et al., 2017) and trait-based
approaches (Kiørboe et al., 2018) are making advances in terms
of dynamic prediction of macroecological patterns, including
across scales. Isotopic methods are helping bridge the trophic
gaps at larger spatial and temporal scales (Hobson et al., 2010;
Quillfeldt et al., 2010) and new metagenomic methods are being
used to generate new ecosystem scale maps of active processes
and biodiversity (Raes et al., 2018). As we outline above, nested
network approaches are also helping to link understanding of
interactions and connectivity across processes, space, and time
(Pilosof et al., 2017). As an example, to support management of
the deleterious impacts of crown of thorns starfish on Australia’s
Great Barrier Reef coral communities, ecological models are
being integrated across a range of scales accounting for fine-
scale Allee effects (Rogers et al., 2017) through to embedding
an ecological model in a meta-community reef network model
incorporating large scale processes such as cyclone and terrestrial
runoff from agriculture practices (Condie et al., 2018).

Unfortunately, it remains the case that there is little empirical
understanding of the true natural structure and interactions in
many systems (Griffith and Fulton, 2014). Science often likes
to begin from a “no effects” case and then build incrementally
from there, but in ecology that is proving exceptionally difficult
to do given humanity’s pervasive footprint (Halpern et al., 2015).
Palaeoecological studies (that aim to reconstruct ancient webs
prior to human influence) are making advances (Mitchell et al.,
2012; Yeakel et al., 2013), but few systems have survived a human
signature (Yeakel et al., 2014). This means we are starting from
partial information when trying to decipher what are healthy
system structures, how humans may impact those and what to
expect as we either degrade or endeavor to recover ecosystems.

Socioecology Makes Ecology Look
Straightforward in Comparison
The challenges above are compounded further when we move
from strict ecological to socio-ecological responses. Many key
processes in socioecological systems, such as those driving
institutional change, have gone unrecorded and the footprint
of human activities and settlements push into the combinations
of time and space scales with low predictability (see the area
marking out the scale of settlements in Figure 1D). This creates
new challenges for ecology and modeling. For instance, the
question of how to manage the novel ecosystems arising as a
result of climate associated range shifts now bedevils resource
managers, especially where valuable stocks move from one
country’s jurisdiction to another or where new interaction effects
emerge (Pinksy et al., 2018). Recovering marine mammal stocks
are causing significant issues in a number of marine systems.
This is via predation pressure that may be beyond what the
current human perturbed ecosystem states can support (Estes
et al., 2009; Chasco et al., 2017), or are at least beyond what
human users are used to or (in some cases) willing to accept,
leading to tensions with local fisheries and other users (as
reported in the popular media of Australia, Canada, USA, and
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Chile). Moreover, contextual dependency of complex systems
also means we cannot simply rewind the clock—reintroductions
fail (e.g., Barkai and McQuaid, 1988) or strong hysteresis create
blockages (Marzloff et al., 2016a). Key to addressing these
challenges are quantitative modeling methods that can predict
the consequences for the recipient ecosystem. Fortunately,
significant advances have already been made on these issues in
terrestrial systems (e.g., Baker et al., 2017).

Processes and Interactions—At New
Scales and Cross Scale
Work with more complex and dynamic systems has also allowed
ecologists to appreciate that some of the ideas fundamental
to ecology, such as evolution, need expansion or revision to
correctly connect their expression at the scales now being
observed (see the arrow pushing to smaller scales in Figure 1C).
For example, 20–30 years ago it was standard practice to
teach evolution as a process that was irrelevant on less than
effectively geological scales (disease resistance dynamics being
one of the few exceptions). Ecological modelers were comfortable
ignoring evolutionary drivers (i.e., those developing models
for the bottom left of the diagrams in Figure 1 typically did
not bother with processes in the upper right). Suggestions
that processes on ecological scales could drive observable
change were strongly contested (e.g., the debate around fisheries
induced evolution; Audzijonyte et al., 2013; Eikeset et al., 2016).
Now, as human activity provides strong directional pressure at
multiple scales, variants of Gould and Eldredge’s (1977) idea of
punctuated equilibrium seem to be a dynamically experienced
event and there is frequent discussion of phenotypic variation,
eco-evolutionary processes (Pelletier et al., 2009; Chave, 2013;
Gillman and Wright, 2014; Laland et al., 2015; Watson et al.,
2016;Weiss-Lehman et al., 2016), and epigenetic effects (Danchin
et al., 2011; Bonduriansky, 2012; Ryu et al., 2018). Hence
ecologists are realizing that their models are missing key
processes. Fulton and Gorton (2014) found that to reliably
reproduce recent observed ecosystem shifts in their models of
south east Australia, evolution and acclimation processes (along
with modification of coastlines by human activities) were needed.
When those models were projected forward they led to vastly
different projections of future system state than models that used
only fixed parameters. In trying to validate the rate of expression
of these additional approaches it was soon clear that this is one
of many cases illustrating that our understanding of how the
natural world operates is not as complete as we had thought.
We may have had a credible grasp of the functioning of systems
within certain limits and configurations, but the Anthropocene
is moving our world beyond those limits, which is highlighting
new or underappreciated processes and species roles (Hobbs
et al., 2009). This new reality drives home that ecology lacks
a universally solid foundation from which to extend existing
theories and modeling approaches to easily absorb the many
interacting components and scales. Moreover, for modelers it
is highlighting how many of the abstractions that underpin the
representation of the more complex ecological interactions and
processes are unvalidated, impossible to measure directly and

based on equilibrium concepts that are not compatible with the
dynamically transient nature of changing ecosystems influenced
by both human use and environmental shifts.

A good example of where this realization hits home is in our
capacity to reliably model the changing distribution of species.
There is no denying that the science has come a long way
and can capture large scale observable patterns on land and in
the oceans (Follows et al., 2009; Olsen et al., 2016). This has
been made possible in part because modern tracking technology
means we can now track animal movements to a degree unheard
of only 5 years ago (Kays et al., 2015; Klein et al., 2019; Lowerre-
Barbieri et al., 2019). However, research is still struggling to
link physiological tolerances tomultivariate habitat dependencies
(Bozinovic and Naya, 2015), life-history and ecological traits
(dispersal capability; Bates et al., 2014) and species co-occurrence
(Cazelles et al., 2016) in order to reliably predict range shifts,
habitat contraction or expansion and the role of adaptation in
these processes. For example, while zooplankton assemblages
in the North Atlantic have conserved their thermal niches and
tracked isotherms poleward (e.g., Chust et al., 2013), spatial
distributions of Southern Ocean mesozooplankton communities
have not advanced polewards, despite surface layer warming in
the Atlantic sector over at least the past six decades (Tarling et al.,
2017), contrary to the assumptions of species distribution models
(e.g., Mackey et al., 2012). In addition, global models often do
not perform well for the poles in particular, but can also require
tailoring (in downscaling efforts) to particular regions—where
the system specificity proves particularly strong (e.g., Bryndum-
Buchholz et al., 2018).

Some issues of scale mismatch and interconnection have been
solved within terrestrial environments, with methods developed
that scale-up individual-based models of fine-scale physiological
and ecological processes and dynamics to global ecosystem
scales (Moorcroft et al., 2001), including embedding fine-scale
vegetation demography within Earth SystemsModels (e.g., Fisher
et al., 2018) to account for changing climatic conditions. Integral
projection models (e.g., those developed by Coulson, 2012)
actively try to address the interplay of population ecology and
evolution (quantitative genetics). These models clearly show that
phenotypes and life histories (and thus parameters in ecological
models) will change as adaptation occurs, leading in turn to
changing population dynamics (Coulson et al., 2015) and likely
ecosystem interactions (Forestier et al., in press). The modeling
approach is being extended to cope with novel environmental
conditions by linking it with dynamic energy budget models
(Smallegange et al., 2017).

Advancing ecological modeling means acknowledging the gap
in understanding around cross-scale processes and interactions
(represented by the dashed line in Figure 1C), which are
only beginning to be appreciated (e.g., Donadi et al., 2017).
Traditionally, ecological questions tackled by experimentation
have gained tractability by simplifying the circumstances,
focusing on single taxa or functional roles, or limited spatial
scales. However, recent studies are finding multitrophic richness
and abundance strongly influence ecosystem functioning
(Soliveres et al., 2016; Ushio et al., 2018). This has likely meant
there has been an under-appreciation of the role of diversity
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in ecosystem functioning (Soliveres et al., 2016), slowing
the merging of the composition and functional modeling
communities. Similarly, there has been an under-appreciation
of the functional role of cross-scale contributions of diversity to
functional resilience of ecosystems. For example, there has been
much discussion around algal-coral dynamics and resilience
to disturbance in tropical reefs (e.g., Hughes et al., 2007), but
it wasn’t until 2016 that cross-scale processes were considered
explicitly (Nash et al., 2015). That study provided empirical
support for resilience as a result of the combined effects of
cross-scale and functional redundancy—whereby multiple
species within a functional group perform a functional role at
different spatial scales (cross-scale redundancy) and respond to
disturbance in different ways (i.e., functional redundancy via
response diversity). Appreciating this involves understanding the
contributions of trait diversity (e.g., in dispersal at different life
history stages), the implications for the species scale of operation,
and how that affects ecosystem properties (Massol et al.,
2016). Furthermore, when trying to understand the outcomes
of perturbations and predict ecosystem responses there is
the simultaneous need to consider the spatial and temporal
dimensions of disturbances (i.e., what scales they cross) and how
that interacts with these multifaceted forms of redundancy—
e.g., can dispersal act as a rescue mechanism or does patch
fragmentation or even a regime shift occur (Zelnik et al.,
2018)? Bartlett et al. (2016), for example, found that ecosystem
responses (both in terms of abundance and compositional
structure) were mediated by synergistic interactions between
habitat loss and fragmentation; the relative sensitivity of fauna
(e.g., large-sized animals) to fragmentation (as this influenced
top-down processes within the trophic webs) also played in an
important role.

If the contributions of such cross-scale process are to be
understood, however, there is the need to be collecting data
at the appropriate scales to understand what is going on (and
at scales appropriate for addressing the management needs).
Unfortunately, as highlighted by a number of recent meta-
analyses, many ecological studies have not included a wide
enough range of scales to accurately estimate the true scales
of effect for particular processes and the resulting inferred
ecological-environmental relationships (Jackson and Fahrig,
2015; Martin, 2018). Coming to terms with all of this complexity
and avoiding mis-steps due to misplaced focus would likely
benefit from a healthier marriage of experimental, theoretical,
applied and model-based studies (Essington et al., 2017; see also
Table 1). This is particularly important as ecology is not so much
about identifying “one true scale” of operation, but recognizing
dynamic change is occurring simultaneously across multiple
scales due to multiple interacting phenomena (Levin, 1992), thus
requiring multiple approaches to elucidate the true dynamics.
While integration of multiple lines of evidence (e.g., field
studies and ecosystem modeling) is becoming more common
there is still a tendency (often due to logistical constraints)
for one or the other to feel an unequal partner—ultimately
short changing the effective value that can be gained from an
even handed combination of the constituent players; such as
where field data could provide models with information on

how the relationship between predators and prey varies with
environmental conditions through space and time (Griffith and
Fulton, 2014).

Having worked on a number of large multi-faceted projects
over the last 20 years, it is a common pattern in our experience
that models are seen as an integrating factor, but that time
to develop and deliver that work is concertinaed in terms
of time and available resources due to delays in delivery of
data or logistical hiccups. This is not about laying blame, but
recognizing the plans/intent vs. reality of execution. In areas
with greater funding streams, later projects can alleviate this
outcome by allowing time to be made up in subsequent rounds
of research. This is not the case in economically constrained
nations (including Australia in terms of being able to service its
entire marine estate given its relatively small human population).
This means modelers have to rely on rapid and easily deployable
“starting steps” (e.g., loop analysis) so that they can make the
most of data as it comes along and have much of the preparatory
work done ahead of polishing the final product during later stages
of the project work. It also means that integration of input from
multiple disciplines must be a very intentional action or “later
steps” will be lost. This is often the case if human dimensions
are addressed sequentially after biophysical aspects have been
addressed and a model includes very simplistic representations
that fall short of the dynamic richness seen in the other facets of
themodel. If these pitfalls can be avoided via intentional efforts to
integrate “early and often” then model potential is maximized (as
has been the experience in oceanographic models or earth system
models, e.g., Medlyn et al., 2016), and it becomes more of an issue
of sharing learnings back out to the broader group interested
in that system. It is often the case that a modeler more than
any other ends up with the completest view of system content,
structure and function.

IMPLICATIONS AND CHALLENGES FOR
ECOLOGICAL MODELING

While recognizing these shortfalls is important for going forward
from an informed position, to target future steps to reduce
uncertainty and improve reliability of predictions, we are not
advocating a blanket increase in model complexity. There
are many circumstances where building complex models is
simply infeasible. Moreover, there is a significant body of work
indicating that increasingly complex models are not immediately
more reliable (and can often degrade in performance; Ludwig
and Walters, 1985; Fulton et al., 2003a; Evans et al., 2013; Collie
et al., 2016). Overly simplistic models are error prone (due to the
omission of key dynamics), but highly complex models typically
lead to poorer decision making—due to accumulated biases,
errors and difficulty in interpreting outputs (Ludwig andWalters,
1985; Fulton et al., 2003a). A lot of intuitive insight is sacrificed
when models become too complicated. Model performance is
often greatest when using a minimum realistic (Butterworth
and Harwood, 1991), intermediate level of complexity (Plagányi
et al., 2014) that captures the essence of the main interactions
(this philosophy holds even when building system models, and
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including or excluding components with care). In practice this
means it is important to think about how we might go about
capturing the essence of the cross scale connections without
adding undue complexity; how to modify existing approaches
or take entirely new model development directions to address
the identified shortcomings of existing modeling platforms and
successfully tackle cross-scale issues (Table 1).

Creating Credible Operational Scale
Models
Operational (tactical) scale models face some of the steepest
hurdles when it comes to cross-scale considerations. These
models need to be tractably and transparently executed on short
time scales and often with limited data sets consistent with what is
available to management bodies. Yet they are being increasingly
asked to address ecosystem considerations (Plagányi et al., 2014,
2018), such as the implications of the exploitation of prey
species for predators or competitors (e.g., Punt et al., 2016). In
terrestrial systems there have been some successes in automated
near real time process-based models, but the experience in the
marine realm (which typically deals with substantially more
trophic levels and processes) has been quite different. Growing
from the concept of including only the key interactions and
processes needed to reproduce the dynamics of the phenomena
of interest (Levin, 1992), “Models of Intermediate Complexity
for Ecosystem assessments” (MICE) have tackled this marine
systems operational challenge by employing simple formulations
that are statistically fit to available data, but applied across
ecological-environmental-anthropogenic dimensions, to explain
the dynamics of small groups of interconnected species (Plagányi
et al., 2014). This approach advances tactical management
efforts to incorporate and address considerations such as climate
effects (Tulloch et al., 2019), moving the modeling more and
more into the scales most relevant to resource management
interests (Figure 1F). However, hurdles remain around how to
provide guidance on ecosystem structural concerns rather than
stock status. The ecological and spatiotemporal coverage of
these kinds of models is also being expanded by new ways of
approaching ecological modeling—such as moving away from
population oriented representations to size and trait based
models (Blanchard et al., 2017) or equation-free mechanistic
empirical dynamic models (Sugihara et al., 2012; Yea et al., 2015;
Ye and Sugihara, 2016; Ushio et al., 2018).

Model Fitting and Model Performance
(Skill)
As ecological models mature there has been a greater focus
on the inter-related topics of parameter fitting (Kramer-Schadt
et al., 2007), sensitivity analysis and model uncertainty (Pantus,
2006), model-data fusion (Kuppel et al., 2014), model skill
reporting (Olsen et al., 2016), and statistical ensemble modeling
(Spence et al., 2018). It is now routinely expected that at least
some, if not all, of these will be provided or discussed when
documenting model content and outcomes. This is however
raising the issue of having sufficient data available to follow
through on all aspects of the model. More typically the model

is fit to the limited number of available time series (usually
only available for exploited or conservation species and often
patchy spatially), meaning that model reliability varies across
components; which may become problematic if the relative role
of the more uncertain components increases under the kinds
of disturbance of interest. One underutilized means of checking
ecological model skill is retrospective assessment of performance,
where model projections are revisited and checked against how
the system actually evolved. Given the hundreds of published
and applied models it is surprising how rarely this is done (often
due to the dictates of shifting funding and focus which does
not provide for revisiting old sites and topics). If more is to be
made of this potential reservoir of model learning—whether it is
used directly to improve mechanistic models or simply to help
train machine learning-based emulators—then more needs to
be done in terms of having standardized protocols and making
models publicly available in repositories (Melbourne-Thomas
et al., 2017), much like the push for large publicly available data
stores for observational data (Mouquet et al., 2015).

A closer evaluation of model skill will no doubt highlight
some model shortcomings. However, when addressing cross-
scale issues modelers have already identified and begun to act
on some pressing issues. One long-standing aspect of multi-
scale effects that has been of prime concern to modelers
is the issue of appropriately capturing lags and inertia in
ecological and ecosystem models (Fulton et al., 2003a). This
has become even more challenging as models have grown
to couple physical and socioecological processes (Österblom
et al., 2013; Plagányi et al., 2014; Fulton et al., 2015). Even
when just constraining the focus to lags in the ecological
components, success requires considerable effort. This is because
the many interacting processes within ecosystems that dictate
biodiversity and ecosystem function operate on and feedback
across different scales; necessitating frameworks that explicitly
allow for elucidation of the mechanisms and circumstances
contributing to cumulative lagged responses (Essl et al., 2015).
The need for clear conceptual frameworks to support clear
thinking around cumulative, non-linear and interacting effects
grows larger once the dimensions (and scales) of the cumulative
effects are expanded. This is evident in the growing interest in
a pragmatic means of assessing cumulative impacts of human
activities and other stressors on ecosystems (Giakoumi et al.,
2015; Holsman et al., 2017; Jones et al., 2018; Stelzenmüller
et al., 2018). Despite these limitations, the importance of linking
human and ecological processes to predict future dynamics has
been recognized for some time—e.g., in urban and agricultural
systems (Alberti, 2008)—with advances achieved using agent-
based models that couple socio-demographic, ecological, and
biophysical models (e.g., Filatova et al., 2013; Fulton et al., 2015).

Non-static Model Representations
Another aspect of models that is getting much more explicit
consideration is dynamic change and variability. In the
past the available data and ambient conditions most often
meant simplification to single parameterizations were sufficient
rather than recognizing individual-level variability (such as the
pioneering work by Clark et al., 2003). The directed pressures
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that characterize our world and expanded available observational
data sets mean we now appreciate that heterogeneity is often
important and can no longer be safely abstracted away. The
resulting move to represent variability and dynamic change
in models has come in multiple forms—from recognition of
intraspecific variation within existing modeling frameworks
(Moran et al., 2006; Melbourne-Thomas et al., 2011; Fulton
et al., 2019), to the explicit representation of functional influences
of biodiversity, acclimation, adaptation, and eco-evolutionary
feedbacks (Table 1). In their simplest forms these processes
may be included via allowing for dynamic parameterisations
(Jørgensen et al., 2016). In contrast, in terrestrial dynamic
global vegetation models fundamental adaptive processes (e.g.,
acclimation, plasticity, migration, selection, and evolution),
are now being accounted for to allow for an exploration of
their potential to mitigate effects of climate extremes (Scheiter
et al., 2013). Some modeling frameworks are also beginning to
explicitly represent evolution and its implications for ecological
processes (Grimm and Berger, 2016), such as predation pressure
and trait expression (Forestier et al., in press; Romero-Mujalli
et al., 2019). This can create new tensions in modeling—
what is the effective benefit of replacing one set of fixed
parameters (e.g., around growth) with others (e.g., around rates
of evolution). Modelers will, most likely, need to ponder this
on a case by case basis, at least until alternative means of
dealing with the representation of dynamic ecological processes
are more mainstream (e.g., potentially leveraging off the model
morphing approaches of Gray andWotherspoon, 2015 discussed
more below).

New Approaches to Modeling Ecosystem
Structure and Function
There have also been calls to find a new form of ecosystem
modeling that explicitly combines species/functional
composition properties with ecosystem process representation
(Griffith and Fulton, 2014; Mokany et al., 2016). The intent is to
better capture how simultaneous alterations to environmental
drivers and compositional diversity (e.g., via exploitation) could
interact with significant consequences for ecosystem function
(Loreau, 2010a; Durance et al., 2016). Existing composition- and
function-based modeling approaches are individually inadequate
for a number of reasons (as outlined in Mokany et al., 2016):
(i) correlative compositional (biodiversity) models fail to reflect
the dynamic outcome of key ecological processes; (ii) trait-based
methods are hampered by insufficient information; and (iii)
hybrid models that are functionally oriented (i.e., that combine
models of key individual species with coarser functional groups)
are incapable of tractably representing the high biodiversity
present in the majority of systems (Mokany et al., 2016). How
to tractably address all of these shortfalls is not yet clear as it
will involve developing methods that allow for emergence of
the desired phenomena, not all of which are well-understood.
Some steps down this road may well have been taken—witness
the number of ecological properties related to size (metabolic
rate, clearance rate, swimming speed, sensory range, trophic
strategy, sensory mode, body shape, and reproductive strategy),

feeding mode and “jellyness” (Andersen et al., 2016). Avoiding
hardwiring desired behaviors is important however. This is
a hard learnt lesson by many marine trophic modelers and
is why current food web models allow for the expression of
shifts in dominant pathways (Shin et al., 2010). Successfully
representing the interactions between system function, fine scale
species composition and the implications of different forms
of biodiversity within dynamic frameworks will likely involve
a fresh take on ecosystem modeling and the development of
customized models that integrate processes and scales relevant
to both ecosystem composition and function (Mokany et al.,
2016; Grimm et al., 2017). In turn, this is likely to require cross
fertilization from across many modeling lineages and scientific
disciplines. The value of such cross discipline inspiration is being
realized in many complex system relevant domains currently,
witness the burgeoning of interdisciplinary science (Nature’s
2015 special volume, 525, on interdisciplinarity; McDonald et al.,
2018).

WHERE TO FROM HERE

Dealing With New Sources of Data
As we have discussed above some of the key challenges facing
modeling and ecology are embracing new modeling approaches,
spanning more dimensions (covering more and more of the grid
in Figure 1E) and allowing for dynamic and evolving model
parameterizations and structures. Multiple nagging concerns
are associated with all of these, specifically: (a) how to
achieve valuable improvements without being overwhelmed with
additional complexity and (b) having sufficient data at multiple
scales to usefully inform and constrain the models (Mouquet
et al., 2015), with the handling of uncertainty a part of this
conundrum. This latter concern, of insufficient data, is not new
when looking at barriers to advancing ecology—being expressed
for instance by the early ecosystem modelers in the 1970s
(Gurney et al., 1994; Pacala, 1994; Scheffer and Beets, 1994). In
the first instance the use of cross scale models themselves will
help ease the data burden.Where data are unavailable at one scale
(e.g., the individual or regional scale), data can be used to assess
model performance at another scale (e.g., global). This approach
is being exploited in global models (e.g., see Harfoot et al., 2014
or Fisher et al., 2018).

New data sources will also help, though they will come
with their own challenges. Technological advances—in terms
of automation, sensor capacity, and new monitoring methods
(from biochemical tracers, genomics and environmental DNA
through to high resolution remote sensing)—are providing data
in quantities that can overwhelm traditional methods, driving
searches for new approaches that maximize utilization of these
valuable resources. Learning to use this data wealth well is a
key step (Durden et al., 2017), continuing the demand for the
development of new methods. The ecological value of taking the
time to do this cannot be overemphasized, as evidenced by the
blossoming of discoveries derived from having sufficient volumes
of data to deconstruct complex patterns and by marrying data
across scales (Chave, 2013; Mouquet et al., 2015). Examples
such as the development of close-kin mark recapture methods
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(Bravington et al., 2016) showcase how new data streams can
revolutionize ecological data collection on large scales and
provide precision far beyond what was possible for earlier
generations of ecologists. The complementary use of multiple
data sources—gut contents, biochemical and isotopic tracers, and
DNA—are also revolutionizing our understanding of foodweb
connections (Pethybridge et al., 2018; McCormack et al., 2019)
and changes through time (Young et al., 2015). This kind of
utilization is important, as models (conceptual or mathematical)
play a key role in bringing many data streams together; the
emergence of frameworks to facilitate access and synthesis (e.g.,
statistical methods, data portals etc.) is beneficial to ecology
more broadly.

Expanding the Scope of Models
The broader range of available datasets is also expanding the
scales and processes modelers can consider (pushing out the
boundary of the area marked in Figure 1F). Due to data
constraints models have typically been constructed and tested at
levels where the most detailed information exists—an approach
known as the “middle-out” (Noble, 2003) or rhomboid approach
(deYoung et al., 2004). Whereas this modeling approach can
be an intentional developmental decision it is also often an
accident of available information—meaning models have focused
on the more well-understood scales and processes and missed
components at the extremes (see the location of the solid
dots in Figure 1F). In the last few years, there has been a
growing appreciation of the true influence of pathogens and
parasites on ecosystems (e.g., Weitz et al., 2015; Guerrero and
Berlanga, 2016; Jephcott et al., 2016; Mischler et al., 2016;
Preston et al., 2016; Médoc et al., 2017; Trivedi et al., 2017).
It is now understood that predation and parasitism have non-
additive effects within food webs (Banerji et al., 2015) and that
the collective actions of metabolic processes within aggregate
biofilms can have a profound influence on individual, community
and ecosystem properties (Guerrero and Berlanga, 2016). Fungal
and microbial communities (e.g., in soils) can interactively shape
ecosystems at regional to continental scales and mediate energy
and material flows at multiple temporal scales (Dighton, 2016;
Trivedi et al., 2017). This means that (along with other flora
and fauna) microbes play essential roles within biogeochemical
cycles of water, carbon, nutrients (Schmitz et al., 2010, 2018),
and trace elements (Weitz et al., 2015; Preston et al., 2016);
and influence fluxes of both biomass and energy (Mischler
et al., 2016), ultimately influencing temporal ecosystem dynamics
and disturbance, succession, and stability relevant processes
(Preston et al., 2016). Appropriately recognizing the role of
the smallest denizens of ecosystems, which also have the most
rapid expression of adaptive capacity, will likely be extremely
important as we consider the implications of global change
for ecosystems.

Bringing together the disparate fields necessary to realize
these and other mechanisms behind ecological feedbacks in the
earth system is likely to be a key focus of the activities of
Earth system groups over the next few years and of the coming
UN Decade of Ocean Science. The effort to link changes in
energy flow through food webs to carbon uptake and climate

regulation will likely involve giving more consideration to
mechanisms previously accorded marginal attention—such as
the role of consumers, including top predators, in mediating
productivity (Estes et al., 2011), either directly via contributions
to nutrient cycles (Pastor et al., 2006; Nicol et al., 2010) and
physical mixing in the ocean (Katija and Dabiri, 2009), or
indirectly via the “ecology of fear” (where signs of predators
in an area can modify prey behavior even in the absence
of direct attacks; Wirsing and Ripple, 2011). It may even
involve the exploration of small scale interactions between
seemingly unconnected processes—such as the potential for
fisheries (which can have cascading effects down to the plankton,
Reid et al., 2000) to influence local atmospheric processes
via plankton-mediated processes. Examples include dimethyl
sulfide production and the influence on cloud formation
(Malin et al., 1992), or the carbon cycle (Monroe et al.,
2018). Model coupling—interactively joining models of different
types and scales (physical, biogeochemical, trophic, habitat,
human use)—will likely also be a strong feature of the
coordinated work across disciplines, as already seen in some
terrestrial modeling (e.g., Alberti, 2008) and in earth system
modeling efforts to date (Prinn, 2012; Fisher et al., 2014,
2018).The evolution of ecosystem modeling has already been
marked with a shift from one-way coupled drivers influencing
small groups of species to more systematic representations of
interaction networks characterized by multiple pathways and
processes (Shin et al., 2010), allowing for significant growth in
modeling capacity.

Handling Uncertainty
This increase in capacity has seen models used in an increasing
number of roles—not just academic, but as decision support
(Condie et al., 2005; Plagányi et al., 2014) and as a means of
inputting advice to international initiatives, such as the IPCC
(e.g., Hartmann et al., 2013). This has put the effective handling
of uncertainty front and center. A full review of how that
field is developing is beyond the scope of this paper, but it
is worth noting that recognition of structural uncertainty (i.e.,
uncertainty pertaining to the model assumptions, formulation,
and internal connections) has been a key part of these modeling
efforts. The use of Bayesian approaches and model ensembles
to provide ranges of possible outcomes across model types is
now becoming more common (e.g., Gharbia et al., 2016). The
first use of model ensembles was in economics (Bates and
Granger, 1969) but has now become a staple of many fields—
economics, systematics, meteorology, and climatology—and is
often now used when considering shifting species distributions
(e.g., Araújo and New, 2007) or terrestrial ecosystem impacts
(Baker et al., 2019). Model intercomparison projects (MIPs; e.g.,
Warszawski et al., 2014; Lotze et al., 2019) are also bringing
together the world’s modeling community to share outcomes,
lessons and understanding, accelerating model improvements
and rigor. This kind of multi-model approach has been relatively
easily accepted, as it is a logical outgrowth of the even more
familiar parameter variation form of sensitivity testing and
uncertainty analysis.
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New Dynamic and Hybrid Modeling
Approaches
By comparison, the future development of multi-scale and hybrid
approaches (Table 1) will require ecology to move well beyond its
current “comfort zone.” Most disciplines begin with simplifying
assumptions as a foundation to build from and ecology has
been no exception—note the simplicity of the Lotka-Volterra
assumptions for predators and prey. Indeed, the vast majority
of extant ecological and ecosystem models still assume fixed
parameterisations and even for those that don’t (e.g., Jørgensen,
2012) they most often assume fixed functional relationships
and formulations. This means, as touched on above, that more
remains to be done in terms of representing appropriate levels of
variability and dynamic change. Under perturbation, ecological
systems can exhibit significant structural reorganization and
shifts in the dominance of species and processes. Modeling
techniques attempting to appropriately represent this magnitude
of response may well require not just changing parameters
but dynamically changing structural components (the network
connections) and process expression (e.g., functional forms),
and potentially even shifting model scales as the simulated
systems evolve.

In terms of the approaches that can facilitate the
representation of fully dynamic structural properties of models
and ecosystems, both allometric food web models (Curtsdotter
et al., 2017; Reum et al., 2019) and network approaches show
promise. Experimentation with dynamic network approaches
is allowing for the representation of dynamic restructuring
behavior (Bryden et al., 2012), reflecting changes in the
properties of system components (e.g., individuals or species)
and the effect that has on interactions. These approaches (and
other model types that allow for shifting food web links) have the
potential to capture some of the ecological surprises that arise
in changing ecosystems; such as context-dependent reversal of
predator-prey roles, as has occurred between sprat and cod in
the Baltic (Köster and Möllmann, 2000) as well as lobsters and
whelks on Marcus Island in South Africa (Barkai and McQuaid,
1988).

One approach to spanning ecological scales is to explicitly
link models that resolve processes and function at different
resolutions (Walpole et al., 2013). A number of ecosystem
models already do this to differing degrees and the approach has
significant potential—at least up to a point. While it is possible
to follow a common formulation regime to resolve neighboring
scales, it becomes more difficult as the number of scales grows.
The kinds of challenges to continuing those approaches as we
move to the smallest and largest scales have already been touched
on in previous sections. A promising alternative approach for
tackling multiple scales and dynamic ecological phenomena is
the hybrid modeling approach (Table 1). This modeling method
sees modelers create ecological systems models by combining
multiple modeling approaches from multiple disciplines (e.g.,
system models, process-based representations, Markov chains,
Bayesian networks, cellular automata or other agent/individual
based approaches, statistical models (including multivariate
and Bayesian methods discussed previously), partial differential
equation based physical or biogeochemical models, geographic

information systems and approaches from artificial intelligence,
or machine learning algorithms). This approach has been a
very useful step toward grappling with multi-scale complexity
of ecosystems or broader socioecological systems (McDonald
et al., 2008; Parrott, 2011). Use of suchmixedmodel formulations
has matured over the past 20 years, where it started from the
humble beginnings of using empirically derived functional forms
or correlative statistical approaches to represent more poorly
known system components or ecological processes (Fulton et al.,
2003a). This combined approach is being advocated strongly
as additional scales and processes are embraced in ecological
models—for example in implementing integrated models of
ecosystem composition and function (Mokany et al., 2016) or
considering socioecological systems (Melbourne-Thomas et al.,
2017). Taking a hybrid approach allows for the synthesis of many
kinds of data from many different sources (Cressie et al., 2009),
thereby fostering greater understanding (Mouquet et al., 2015)
by providing an interface across disparate scales, phenomena and
disciplines (Levin, 1992).

This flexible hybrid approach allows for the selective
representation of each component of a system in the “currency”
(spatiotemporal scales, units, complexity of detail) that best
captures that component and maximizes the overall model
utility (Gray and Wotherspoon, 2015). New mathematical
breakthroughs have shown that it is possible to go still
further, to allow for truly dynamic model structures that
shift in representational form as the dominant components
and processes operating in the system change (Gray and
Wotherspoon, 2015). These new approaches allow sub-models to
change their form (e.g., from differential equations to individual
based) conditional on their own state and the states of the
other system components that they are directly or indirectly
interacting with. For example, moving from a population
level representation to an individual-based model and back as
migrating animals encounter a contaminant plume (Gray and
Wotherspoon, 2012), or any other event where heterogeneity
in a process may be important for the system level outcome.
The results of these early efforts indicate that allowing for
such switching forms is not only feasible but beneficial in
terms of fidelity to observed real world dynamics and the
computational efficiency. Fine scale detail is only retained
when it is needed, when fine scale phenomena dominate,
with the statistical summaries saving that detail in a useful
state during periods when coarser representations are sufficient
as dominant processes are occurring at higher scales. While
the tree-based mathematics and coding languages required
to develop such models are still under active development,
the potential seems vast for addressing more scales while
keeping model complexity tractable. In addition, marrying such
methods with the growing fields of artificial intelligence and
neurocomputing could see fluidly self-mutating model structures
that allow ecologists to delve seamlessly into and across all
the spatiotemporal scales. This push for new methods is not
to say simpler models should be universally abandoned, but
that new approaches should be added to the suite of tools
available to expand our capacity to look at questions from all
relevant angles.
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CONCLUSIONS

All of the roles that models have traditionally had in ecology—
explanatory and predictive—will be just as important going
forward. The utility of models as thinking tools will be needed
for interpreting new and novel situations, where the magnitude
of disturbance potentially highlights how strong the links
between scales can really be. In addition, it is already clear
that models will be central aids for navigating adaptation and
equitable, sustainable societal outcomes. In our experience, the
changing tenor of the questions being asked of (socio)ecological
models over the course of the last 20–30 years clearly shows
that global change is already presenting decision makers with
increasingly complex and fraught decisions. The volume of the
safe operating space is being squeezed (Steffen et al., 2015)
and models are needed to help understand how to navigate
a world where transient dynamics rather than equilibrium
assumptions are most relevant. Hence, we posit that some of the
key challenges facing modeling and ecology involve embracing
new modeling approaches and data streams, spanning more
dimensions, filling the gaps at the smallest and grandest scales,
and allowing for dynamic and evolving model parameterizations
and structures (Table 1).

Ecology has been built by generations of scientists concerned
with the dynamics of ecosystems and the mechanisms shaping
the spatial and temporal patterns that characterize them (Levin,
1992). Now the scales considered are expanding, complementing
traditional foci with an interest in new scales (large and small),
new processes, and new analytical and modeling methods, may
also require rethinking the goalposts of progress in ecological
science (Currie, 2019). We’ve come a long way, but as we
outline in the sub-sections above, there is still a long way
to go, especially given growing anthropogenic pressures and
the resultant rates of change in socioecological systems. We

summarize gaps in fundamental ecological understanding that
widen further when considering socio-ecological responses as
well as emerging needs to handle uncertainty. Moreover, large
gaps are evident in ecological understanding of entire fields of
research, such as the influence of pathogens and parasites on
ecosystems. Most of the competing extant model formulations
overlap and equally explain the bulk of conditions, but the devil
has been in the detail at the extremes (Fulton et al., 2003b).
Unfortunately, we are increasingly living in a world where
we are pushing toward extremes. Closing the gaps in future
ecological work will necessitate understanding mechanisms
behind ecological feedbacks in the earth system. Consequently,
in the coming decades, ecology will be spending a lot of time
weaving those new scales and new lessons into its lexicon
of understanding.
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