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We investigate a class of information criteria based on the informational complexity

criterion (ICC), which penalizes model fit based on the degree of dependency among

parameters. In addition to existing forms of ICC, we develop a new complexity measure

that uses the coefficient of variation matrix, a measure of parameter estimability,

and a novel compound criterion that accounts for both the number of parameters

and their informational complexity. We compared the performance of ICC and these

variants to more traditionally used information criteria (i.e., AIC, AICc, BIC) in three

different simulation experiments: simple linear models, nonlinear population abundance

growth models, and nonlinear plant biomass growth models. Criterion performance

was evaluated using the frequency of selecting the generating model, the frequency

of selecting the model with the best predictive ability, and the frequency of selecting

the model with the minimum Kullback-Leibler divergence. We found that the relative

performance of each criterion depended on the model set, process variance, and sample

size used. However, one of the compound criteria performed best on average across all

conditions at identifying both the model used to generate the data and at identifying the

best predictive model. This result is an important step forward in developing information

criterion that select parsimonious models with interpretable and tranferrable parameters.

Keywords: informational complexity, ICOMP, AIC, BIC, variable selection, covariance, coefficient of variation,

prediction

1. INTRODUCTION

It is through models that scientists continually refine their descriptions of nature (Giere, 2004;
Taper, 2004; Pickett et al., 2010; Taper and Lele, 2011). Scientists interpret models as descriptions of
observations, as representations of causal processes, or as predictions of future observations. Often
scientists test a set of probabilistic models representing alternative hypotheses. A critical scientific
goal is identifying reliable methods to determine the best predictive model, or set of models, among
the candidates. Prediction has emerged as a primary goal for many ecological applications (Dietze
et al., 2018) but commonly used information criterion have been shown to be inadequate in many
ecological applications (Link and Sauer, 2016; Link et al., 2017).

To most profitably select among set of models we should be able to measure the evidence of
each model relative to others (Lele, 2004; Taper and Lele, 2011). Model selection criteria do this by
ranking a set of models based on their relative ability to achieve a specific goal. Two common goals
of model selection are the minimization of the approximation error and the minimization of the
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prediction error (Taper, 2004), corresponding to two principal
functions of modeling, explanation, and prediction (Cox, 1990;
Lele and Taper, 2012).

Most commonly used model selection criteria apply
asymptotic theory developed under the assumption of large
sample sizes (Bozdogan, 1987; Cavanaugh, 1997; Burnham and
Anderson, 2002). This has led to criteria that are easily calculated
from standard regression output; however, the criterion’s
effectiveness may be limited when applied to sets of complex
models with low sample sizes, such as those often encountered
in ecological inference. Relatively few studies have tested how
well selection criterion can deal with such scenarios, but work
by Hooten (1995) and Ward (2008) have tested the ability of
criteria to answer questions about nonlinear animal population
dynamics, while Murtaugh (2009) looked at how different model
selection techniques affected predictability across nine different
ecological datasets.

The discrepancy between an estimated probability
distribution and the true underlying distribution can be
partitioned into two terms. The first, termed the model
discrepancy, is due to limitations in model formulation while
the second, termed the estimation discrepancy, arises due
to difficulties in estimation (Bozdogan, 1987). The model
discrepancy arises from how close the approximating model is to
the data generatingmechanism, given the best possible parameter
values. The second quantity, called the estimation discrepancy,
arises from the poor estimation of model parameters. An extreme
example of poor estimability is parameter non-identifiability
(e.g., when parameters only occur in fixed combinations, such as
sums or products) leading to complete correlation or collinearity.
Although this is an extreme example and not likely to appear in
a well-considered model, there are various degrees of collinearity
in models and not all strong collinearities are obvious (e.g.,
Polansky et al., 2009; Ponciano et al., 2012).

Collinear parameters will be unstable to small changes in
the data (Schielzeth, 2010; Freckleton, 2011), thus affecting the
interpretability of estimates. Collinearity also impacts to the
generality of a model by affecting the ability to make reliable
out-of-sample predictions (Brun et al., 2001; Dormann et al.,
2013), the interpretability of model-averaged coefficents (Cade,
2015), and the ability to transferrable parameters estimated from
one context to another (Yates et al., 2018). This final property is
especially desirable for generating estimates that will be useful for
fields that rely on parameterizing complex model using estimates
pulled from the literature [e.g., food web ecology (Ferguson et al.,
2012) and epidimiology (Ruktanonchai et al., 2016)]. Bozdogan
and Haughton (1998) showed that the performance standard
information criterion can significantly decline in the presence
of collinearity.

We argue that when dealing with complex models, estimation
accuracy should be considered in measures of model quality
because accuracy is necessary to correctly interpret parameter
estimates, make reliable predictions, and to use estimated
parameters in new scientific settings—three common goals
of scientific practice. Below, we discuss previous work that
incorporates measures of parameter interdependency into
model selection criterion. We use this to motivate a new

class of information criteria that incorporates measures of
interdependency into traditional forms of information criterion.
We test the ability of new and existing information criteria over
three model sets of increasing complexity, looking at selection
behavior in each model set over different levels of process
variability and sample size.

1.1. Introduction to Information Criterion
In ecology, primarily due to the influential work of Burnham
and Anderson (2002), attention has focused on estimating the
Kullback-Leibler divergence as a measure of model discrepancy.
Akaike (1974) measured this discrepancy by minimizing the
cross-entropy between the model distribution, m(x), and the
true distribution, t(x). The difference between the entropy of a
distribution and the cross-entropy is called the Kullback-Leibler
(KL) divergence. This measures the amount of information lost
about t(x) when using m(x) to approximate. The KL divergence
is given by DKL(t, m) = Et(x)

[

ln(t(x))
]

− Et(x)
[

ln(m(x))
]

.
Increasing values of DKL are interpreted as poorer

approximations of the model m(x) to t(x) (Burnham and
Anderson, 2002). In a typical application we don’t know the true
underlying distribution, t(x). However, when making relative
comparisons between two or more approximating models we
do not need to consider the first term of the KL divergence, the
entropy of the true distribution, as this is the same for all models
in the comparison and is eliminated in the contrast between
models. Differences between models therefore only depend only
on the second term, the cross-entropy. Akaike (1974) showed
that if the model is sufficiently close to the generating process,
twice this cross-entropy term could be estimated in what has
become called Akaike’s Information Criterion:

AIC = −2 ln(L(θ̂))+ 2k. (1)

Here, L(θ) is the likelihood function of the pdf m(x), evaluated
at the maximum likelihood parameter values, θ̂ , and k is the
number of parameters in the model (including estimates of
variance parameters).

Given a set of AIC values, we declare the parameterized
model with the lowest value to have the minimum estimated
KL divergence from the generating process and therefore to be
most similar to it. Because AIC values all lack the unknown self-
entropy term in the KL divergence, they are often presented as a
contrast between a givenmodel and the bestmodel in the set. This
measure is often denoted as the1AIC value. Values of1AIC > 2
indicate there is some evidence for themodel with the lower value
relative to the other model, while models with of 1AIC < 2 are
considered to be indistinguishable (Taper, 2004) (see Jerde et al.
in this issue for a more fine-grained discussion on the strength
of evidence).

While the use of the AIC has flourished in ecological
modeling, there are several important properties of the AIC that
are not well known to ecologists. For example, Nishii (1984)
and Dennis, Ponciano, Taper and Lele (submitted this issue)
showed that in linear models the AIC has a finite probability
of overfitting even when the sample size is large. Thus the AIC
is not statistically consistent. However, the AIC does minimize
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the mean squared prediction error in linear models as sample
size increases, making it asymptotically efficient for prediction
(Shibata, 1981), a property that does not require the generating
model to be in the set.

Many other criteria have been developed which are similar in
form to the AIC. These criteria are composed of a goodness of fit
term, based on the log-likelihood, and a penalty term, based on
some measure of the model complexity. For the AIC in Equation
(1) this penalty is the number of parameters. The AICc is a small
sample bias correction to the AIC derived under the assumption
of a standard regression model with the sampling distribution of
the estimated parameters normally distributed around the true
parameter values (Hurvich and Tsai, 1989). The AICc is given by

AICc = −2 ln(L(θ̂)) + 2k + 2k(k+1)
n−k−1

. Here, n, is the sample size
and k is the number of estimated parameters. Like the AIC, this
criterion is not consistent but it is asymptotically efficient with
linear models (Shibata, 1981; Hurvich and Tsai, 1989).

The Schwarz information criterion or BIC (Schwarz, 1978)
(also sometimes called the SIC), is used to estimate the marginal
likelihood of the generating model, a quantity often used in
Bayesianmodel selection. Originally derived under a general class
of priors the BIC is given by BIC = −2 ln(L(θ̂)) + k ln(n). The
BIC is consistent, in that it will asymptotically choose the model
closest to truth (in the Kullback-Leibler sense). However, the BIC
is not asymptotically efficient, an important difference between
it and the AIC and AICc (Aho et al., 2014). Finally, the BIC*
(also sometimes called HBIC or the HIC) (Haughton, 1988) is
an alternative derivation of the BIC and a slightly weaker penalty
that may serve as a useful compromise between the AIC and
BIC, BIC∗ = −2 ln(L(θ̂))+ k ln(n/2π). This criterion is thought
to have greater efficiency than the BIC at higher sample sizes
while still being consistent. This allows the criterion to balance
underfitting and overfitting errors.

The informational complexity criterion, or ICC, developed by
Bozdogan (2000) examines a different kind of complexity than
the previously described methods. In the ICC the number of
parameters, k, is not considered to be a full characterization of
a models complexity. Instead, ICC seeks to capture dependencies
among model parameters. The approach applies an information-
based covariance complexity term (van Emden, 1969), in
addition to the cross-entropy term used in the AIC. The ICC
constructs its penalty term from the trace and the determinant
of the parameter covariance matrix 6, characterizing complexity
through measures of parameter redundancy and estimation
instability. ICC is given by

ICC(6) = −2 ln(L(θ̂))+ 2C(6), (2)

where C(6) has replaced k, the number of parameters, in the
AIC. The complexity penalty, C(6), takes into account not just
the number of parameters but also the degree of interdependence
among parameters, measured using the covariance matrix of the
estimated parameters, 6.

1.2. Deeper Into C(6)
According to Bozdogan (2000), the “complexity of a system
(of any type) is a measure of the degree of interdependency

between the whole system and a simple enumerative composition
of its subsystems or parts.” Intuitively, this means that the
more complex a system is, the more information is needed
to reconstruct the whole from the constituent components.
A mathematical realization of this definition can be realized
by measuring the mutual information between the joint
sampling distribution (s(θ1 θ2, . . . , θk)) and the product of
marginal sampling distributions (s(θ1)s(θ2) · · · s(θk)). The mutual
information is

I(θ1 θ2, · · · , θk) = E

[

ln

(

s(θ1 θ2, . . . , θk)

s(θ1)s(θ2) · · · s(θk)

)]

, (3)

where the expectation is taken over the joint distribution.
Equation (3) is a measure of the information shared

between the estimated parameters. It is zero, corresponding
to no complexity penalty, when parameter estimates are
all independently distributed and increases with increased
covariation between parameters. Assuming the estimated
parameters follow a multivariate normal distribution leads to a
form of this mutual information that can be readily calculated.
Because normality is an asymptotic property of maximum
likelihood estimation, the assumption is valid in many settings.
Equation (3) then simplifies to the van Emden complexity, given

by CvE(6) = 1
2

∑k
i ln(σ

2
i ) −

1
2 ln(|6|). Here, σi denotes the

standard error of the ith parameter estimate. diagonal elements
of the estimated parameters covariance matrix, 6, for each of
the k parameters. The determinant of this matrix is noted as |6|.
This quantity measures the amount of information lost when
parameter estimates are assumed to be independent.

The van Emden complexity is not invariant to rotations
of the parameter space; therefore Bozdogan maximized
this quantity over all possible orthonormal parameter
transformations (Bozdogan, 2000). The maximal complexity is

Cmax(6) = k
2 ln

(

tr(6)
k

)

− 1
2 ln(|6|). In this study we examined

penalties based on both CvE(6) and Cmax(6) complexity terms
as they behave differently and previous work has suggested that
both may be useful (Clark and Troskie, 2008). We differentiate
the ICC (Equation 2) that use these different complexity
measures using the notation ICCvE(6) and ICCmax(6).

An illustration of the complexity measures in Figure 1

for a two-dimensional covariance matrix gives the qualitative
behavior of both complexity terms. Both terms increase as the
magnitude of the correlation increases, however, the increase
in the van Emden complexity is independent of the variance
while the maximal complexity is a non-monotonic function
of the variance. The maximal complexity is minimized when
the relative variance terms are equal, and increases when one
variance term diverges from the other. Thus, the maximal
complexity can actually increase with increases in precision of
parameter estimates, a property that may not be desirable.

In order to apply the penalties CvE(6) and Cmax(6) to real

data we use the estimated covariance matrix, 6̂. The parameter
covariance matrix is extractable from the output of virtually
all estimation packages. If parameters are estimated through
direct optimization, optimization routines typically report an
approximate Hessian. The inverse of the Hessian matrix is an
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FIGURE 1 | The van Emden complexity, CvE(6), and maximal complexity, Cmax(6), where 6 =

(

σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

)

and σ2 = 1.

TABLE 1 | Invariance of complexity forms to different linear transformations of the

covariates.

Additive

transforms

Multiplicative

transforms

Rotational

transforms

CvE(6) X X

Cmax(6) X X

CvE(9) X

Cmax(9) X X

approximation of the covariance matrix. Thus, CvE(6̂) and
Cmax(6̂) can be easily calculated from output given by standard
statistical packages such as R (R Core Team, 2015), which
typically will report an approximate Hessian matrix that can be
used to estimate the approximate covariance matrix by solving
for the inverse of the matrix. For the small variance covariance
matrices explored here solving for the inverse matrix is fast (less
than 1 s) and the matrix would have to get quite large for the
calculation time to be noticible, on the order of thousands of
parameters. Other methods to estimate the covariance matrix
such as using the least squares estimators or by bootstrapping
estimates of the covariance matrix could also be applied.

ICC is not a scale-invariant penalty and transformations of the
data may yield different model selections. Another form of ICC
calculates the complexity penalty as a function of the correlation
matrix, denoted as R, rather than of the covariance matrix
(Bozdogan and Haughton, 1998). However, this quantity does
not incorporate information about the precision of parameters
estimates, as the variance terms are not present.

To overcome the limitations of the current form of scale-
invariant ICC, we introduce a new variant based on a complexity
measure that uses the coefficient of variation matrix (Boik and
Shirvani, 2009). This matrix is independent of scale, but it retains
information on the relative precision of the parameter estimates.
The coefficient of variation matrix is defined as the covariance
matrix scaled by the vector of parameter estimates in such a way

that the diagonals are the squared coefficients of variation. This

is a matrix with entries defined as 9i,j = Cov(θ1 , θ2)
θ1θ2

. Applying
penalties of the form CvE(9) may be desirable because the
matrix 9 is invariant to multiplicatively rescaling the covariates
but is still sensitive to the relative magnitude of coefficient
uncertainty. Scale invariance means that going from one unit
to another for a specific covariate, e.g., meters to kilometers,
does not affect the inference. CvE(9) and Cmax(9) are sensitive
to additive transformations, thus, shifting all measurement
units by a constant factor will lead to different inferences.
A table summarizing the properties of the different forms of
informational complexity is given in Table 1.

2. METHODS

2.1. Incorporating Parameter Estimability
Into Information Criterion
The standard ICC does not penalize increasing complexity in a
manner that leads to asymptotically consistent model selections
(Nishii, 1988). Bozdogan and Haughton (1998) proposed a
consistent form of the ICC that scaled the complexity parameter,
Cmax(6) by the log of the sample size, however this criterion did
not perform well in their simulation experiments. Therefore, we
propose a new compound selection criterion that is the sum of
two divergences in order to develop a consistent form of criteria.
The first divergence is a model parsimony measure. The second
divergence, C−(·), gives a measure of parameter estimability, a
useful property for model interpretability and prediction. This
criterion is defined as IC + C−(·) ≡ −2 ln(L(θ̂)) + kf (n) +
2C−(·). The first piece of this criterion measures the goodness
of fit through the maximum log-likelihood, the second piece
measures model complexity, where f (n, k) is a function of the
sample size and possibly of the number of parameters. The final
piece, C−(·), measures the parameter estimability. The exact form
of this compound criterion depends on both the choice of the
model parsimony criterion as well as the choice of the parameter
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complexity measure which regulates the strength of the penalty
based on the complexity of the parameter.

Our motivation for using two divergences in this compound
criterion is that we believe accounting for both goodness of fit
and parameter estimability when using finite datasets will better
reflect the underlying complexity and usefulness of the model.
These compound criteria also deal with a critical issue in the
ICC that yield a penalty of zero when parameters are orthogonal.
Given that there are a number of measures of both goodness of
fit and parameter complexity, we tested several different forms of
the compound criterion. The forms we tested were AIC+2C−(·),
AICc + 2C−(·), BIC + 2C−(·), and BIC∗ + 2C−(·) where C−(·)
can be CvE(6̂), CvE(9̂), Cmax(6̂), or Cmax(9̂).

2.2. Performance Comparisons With
Simulation Studies
We conducted simulation studies that tested the capabilities of
all 25 of the simple and compound information criteria discussed
above under different conditions. We compared the behavior of
model selection criteria using three attributes:

1. Selection: how frequently the criterion identifies the
generating model.

2. Prediction: how well models selected by a criterion can predict
new observations.

3. KL approximation: how well criterion values estimated KL
divergence between model and truth.

The first two attributes reiterate the primary goals of model
selection described in the introduction. The third attribute
addresses the ability of a model to determine the relative KL
divergence, a question of only collateral interest to practitioners
interested in the application of model selection techniques to
scientific problems. However, the estimated KL divergence may
be a useful proxy for similarity to the generating model. In
addition, much of the development and discussion of model
identification criteria in ecology is framed around the estimation
of the KL divergence as a metric between model and truth (for a
review on other possible metrics see discussion in Lele, 2004).

We quantified attribute 1, the ability of a criterion to
determine the generating model by counting the percentage of
time that each criterion selected the generating model in our
simulations. We measured attribute 2, a criterion’s predictive
ability, by its prediction sum of squares (PRESS) given by

PRESS =

n
∑

i=1

(

yi − ŷ−i

)2
. Here ŷ−i is the predicted value at the

ith data point, which is omitted when fitting themodel to the data,
and yi is the true, unobserved i

th value (Allen, 1974). A low PRESS
value indicates that the criterion chooses a model that gives low
prediction errors for in-sample prediction.

To calculate attribute 3, the frequency that criteria selected
the minimum KL divergence between the jth model and the
generating distribution, we used the formula for the divergence
between normal distributions (Bozdogan, 1987). We determined
the agreement of each criterion with the true minimum KL
divergence by calculating the frequency that the criterion selected
the model with the minimum KL divergence.

To better understand the properties of these model selection
criterion under a broad range of conditions we performed
our simulation experiments with a set of linear models and
two sets of nonlinear models of ecological interest. The linear
model simulations varied the strength of correlation present in
the design matrix as well as sample size and process variance.
The first nonlinear model set examined time series models
of population dynamics, while the second examined highly
nonlinear models of barley yield. In both nonlinear model sets
sample size and process variance were varied as well as the
generating model. Using these different model sets, we sought to
define criterion performance over the range of model complexity
found in the ecological literature.

2.3. Linear Models
Our linear regression simulation experiment follows a design
based on previous simulation studies by Bozdogan andHaughton
(1998), Clark and Troskie (2006), and Yang and Bozdogan (2011).
These studies explored the application of the ICC criterion
under differing levels of correlation among explanatory variables.
Correlation in explanatory variables is likely to be common in
ecological covariates, causing the performance of the AIC to
suffer (Bozdogan and Haughton, 1998).

We generated a 7 parameter design matrix by transforming
8 randomly drawn standard normal random variables, Z ∼

N(0, 1), using the relationships:

Xi,j =







√

1− α2
1Zi,j + α1Zi,8 for j = 1, 2, 3 i = 1, 2, . . . , n

√

1− α2
2Zi,j + α2Zi,8 for j = 4, 5, 6, 7 i = 1, 2, . . . , n.

Where Xi,j is the ith entry of the jth covariate. The α1 and
α2 values control the degree of correlation present among the
elements of the design matrix. The covariates generated by using
this procedure have a covariance between row j and row k
given by,

Cov(Xj, Xk) =











α2
1 for j = 1, 2, 3, k = 1, 2, 3

α2
2 for j = 4, 5, 6, 7, k = 4, 5, 6, 7

α1α2 for j = 1, 2, 3, k = 4, 5, 6, 7.

The covariate parameters, β , were generated from the
maximum eigenvector of the matrix X′X following
Bozdogan and Haughton (1998).

We generated data at three different levels of collinearity, low
(α1 = 0.3, α2 = 0.7), medium (α1 = 0.9, α2 = 0.9), and
high (α1 = 0.99, α2 = 0.99); three levels of sample size, low
(n = 20), medium (n = 50), and high (n = 100); and three
levels of variability, low (σ 2 = 0.25), medium (σ 2 = 1), and high
(σ 2 = 2.5). We simulated 100 datasets from the rank 5 model
at each level of collinearity, sample size, and variance. We then
repeated each set of 100 simulations 10 times to estimate a mean
and standard error of each selection attribute.

We then fit all models of ranks (1–7) to the generated data
using the BFGS algorithm in the optim routine in the R statistical
language. Hessian matrices were calculated using the Hessian
function in the numDeriv package (Gilbert and Varadhan, 2016).
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We checked convergence of the optimization by checking that
all eigenvalues of the Hessian matrix were positive. For each
simulated dataset we calculate the information criteria of each
fitted model and determined how well the criteria performed in
our three selection attributes.

We determined performance at each level of collinearity,
sample size, and variance by averaging the statistic of interest
(e.g., the number of correct generating model selections) over all
of the simulation study parameters except the level of interest. For
example, to determine performance at the low collinearity level
we averaged the performance statistic of interest over all sample
sizes and variances that had designmatrices with low collinearity.

2.4. Population Dynamics Models
Dynamical time series models are a common applied modeling
technique for forecasting future ecological conditions, a major
goal of ecological modeling (Clark et al., 2001). Applications of
time series models include forecasting fisheries stocks (Lindegren
et al., 2010) and assessing extinction risk (Ferguson and
Ponciano, 2014). Measuring the strength of evidence among
a set of forecast models is critical for generating reliable
predictions, but it’s known that many nonlinear dynamical
models yield correlated parameter estimates (Polansky et al.,
2009). These correlations may impact the performance of
traditional information criterion (Bozdogan, 1990). Here, we
study the properties of information criterion in a set of nonlinear
dynamical models.

The population dynamics simulation experiment used time
series models to describe the projected population abundance in
the next year given the abundance in the current year. In order to
ensure that population dynamics were realistic, we generated data
based on parameter estimates made from the Global Population
Dynamics Database (GPDD) to simulate data (NERC, 2010).
The GPDD contains approximately 5000 time series related to
plant and animal index measurements. We used a subset of these
studies, chosen for their length and the indicated data quality
following the methods described in more detail in Ferguson and
Ponciano (2015) and Ferguson et al. (2016). We only used time
series with a length of at least 15 samples and a GPDD reliability
rating of 3–5. The reliability rating is a qualitative measure of data
quality made by the database authors. These quality standards left
us with 391 time series to generate data from.

We examined six density-dependent models encompassing a
wide range of functional forms. All models were of the form,
Nt+1 = rNtf (Nt) where f (Nt) can take one of the commonly
used functional forms of density dependence given in Table 2.
These functional forms represent different hypotheses about the
strength of density dependence. As in the linear model design, we
examined a range of sample sizes (n = 25, n = 50, n = 100) and
low, medium, and high process variances (see below for how we
calculated these variances).

In order to determine realistic levels of variance to use
in our simulations, we fit an additive, normally distributed
environmental variance model to the population growth rate

(pgr), where pgr = ln
(

Nt+1
Nt

)

. To determine realistic levels

of environmental variation, we fit the pgr to a linear model

TABLE 2 | Forms of density dependence used in the population dynamics study.

Model Functional form (f(Nt ))

Exponential rNt

Ricker rNte
bNt

Theta-Ricker rNte
bNθ

t

Gompertz rNte
b ln(Nt )

Beverton-Holt rNt
1+bNt

Hassell rNt
(1+bNt )θ

The intrinsic population growth rate is given by the parameter r, while b is the strength of

density dependence. The degree of compensation in the Theta-Ricker and Hassell models

is controlled by θ .

(corresponding to Gompertz density dependence in Table 2) for
all 391 time series. Optimization and convergence checks were
performed on the pgr using the same methods described in the
linear model section. We then used the 10, 50, and 90% quartiles
of the estimated environmental variance over all time series to
determine the low, medium, and high variance levels used in
the simulations.

To simulate data, we first fit each of the density dependence
model to each of the 391 GPDD datasets. We then simulated
a new dataset from each fitted model at each level of sample
size and variance, repeating this process for all of the density
dependence models in Table 2. We repeated this process for
every possible generating model, sample size, and variance
combination, repeating the whole procedure 10 times to obtain
a standard error for the model selection attributes. We averaged
criteria performance over sample size, variance level, and
generating model to examine the average selection rate for a
given factor of interest. We did not need to vary the correlations
between parameters in this experiment as in the linear models
because the nonlinear model structure induces correlations
between parameters.

2.5. Barley Yield Models
Bioeconomic modeling is an increasingly important application
of ecological modeling (Grafton et al., 2017). Here, we examined
the selection properties information criterion applied to a set
of crop-weed competition models. These models explain crop
yield (Y) as a function of crop (Dc) and weed (Dw) density, as
well as the relative difference in time to emergence (T) between
crop and weed. Here we examined our ability to accurately select
the correct barley yield model from a set of candidate models.
The nine models considered for this simulation experiment
are a subset from a previous study (Jasieniuk et al., 2008)
that used the ICC. These models have more complex forms
than the population dynamics models used above, as well as
more parameters and more covariates. Thus, this model set is
a step up in complexity from the population dynamics models
explored in the previous section. The nine models used in this
simulation study are defined in Table 3. We refer readers to the
original study by Jasieniuk et al. (2008) for further motivation for
these models.
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TABLE 3 | Functional forms of the models used for the barley yield simulations.

Functional form Fitted parameters Observed variables

Y = RcDc

(

1− RwDw
e−cT+awDw

)

Rc, Rw, aw, c, σ 2 Dc, Dw, T

Y = RcDc
1+acDc

(

1− RwDw
1+awDw

)

Rc, Rw, ac, aw, σ 2 Dc, Dw

Y = RcDc

(

1− RwDw
1+awDw

)

Rc, Rw, aw, σ 2 Dc, Dw

Y = RcDc Rc, σ 2 Dc

Y = RcDc
1+acDc+awDw

Rc, ac, aw, σ 2 Dc, Dw

Y = RcDc
1+awDw

Rc, aw, σ 2 Dc, Dw

Y = RcDc
1+awDwe−cT

Rc, aw, c, σ 2 Dc, Dw, T

Y = RcDc

1+ awDwe−cT

1+bDw

Rc, aw, c, b, σ 2 Dc, Dw, T

Y = RcDce
−iDwe

−cT
Rc, i, c, σ 2 Dc, Dw, T

Y is the crop yield response. The covariates are, Rc, the observed crop density, Rw ,

the observed weed density, and T, the observed relative emergence time between the

crop and weeds. Estimated parameters are, Dc, the slope of the increase in crop yield

with increasing crop density below the asymptote, Dw, the slope of the proportional

yield loss as weed density approaches 0, ac, the maximum expected crop yield, aw, the

asymptotic maximum proportional yield loss at high weed densities, and c, the relative

time of emergence between crop and weed is scaled.

We generated datasets by first fitting each of the models to the
dataset from the Bozeman 1994 dataset reported in Jasieniuk et al.
(2008). We simulated new datasets by adding a normal random
noise term to the log of the empirically predicted response using
data from Jasieniuk et al. (2008). We examined three sample
size levels (n = 25, n = 50, n = 125) and three variance
levels (σ 2 = 0.5σ̂ 2, σ 2 = σ̂ 2, σ 2 = 4σ̂ 2), where σ̂ 2 was the
empirically estimated variance of the observed data under the
given generating model. We generated 100 simulated datasets for
each model in Table 3 at each sample size and variance level.
As before, we averaged over sample size, variance level, and
generatingmodel to examine the average selection rate for a given
factor of interest. We repeated each set of simulations 10 times to
order to estimate the mean and standard error of the selection
statistics. We only performed the PRESS calculation on one set of
simulations due to the length of time it took to do this calculation.
Therefore, there is no standard error associated with prediction
for these models.

Due to these models presenting a more difficult optimization
problem than the other model sets, we modified our fitting
procedure. From an initial set of parameters, we applied
the Nelder-Mead optimization algorithm (also known as the
downhill simplex method) followed by the BFGS method to
maximize the log-likelihood function. The simplex method was
run first because it is robust, although it converges slowly. This
two-step process provided the initial parameter estimates for
the quasi-Newton method, which converges relatively quickly
near a maximum. We repeated this procedure for 100 random
initial points and chose the parameters associated with the
maximum likelihood value, and convergence was determined as
previously described.

3. RESULTS

Here, we will focus on presenting the criteria that performed best
under one or more of our experimental conditions. Figures of

performance for all criterion under all experimental conditions
are presented in the Supplementary Material.

3.1. Linear Models
We present the overall criterion performance averaged over
all conditions, along with standard errors for the linear model
simulations in Figure 2. The best criterion at selecting the
generating model on average was the AICc (Table 4), the best at
prediction was also the AICc (Table 5), and the best at selecting
the minimumKL divergence was AICc+2Cmax(6) (Table 6). The
ICC tended to be the worst performers at all selection goals
(Figure 2), however the ICCmax(9) tended to behave similarly
to the AIC and the BIC*. We also see in Figure 2 that the
average performance of the criterion for all selection goals was
strongly correlated but the PRESS and KL minimum selection
was nearly completely correlated. Several of the compound
criteria performed well with AICc+2Cmax(6), AICc+2CvE(6),
and AICc+2CvE(9) performing nearly as well as AICc for all
performance attributes.

In general, criteria performed better as sample
size increased and variance decreased as expected
(Supplementary Figures S1–S6). In most trials some form
of the compound criterion performed better than traditional
criterion (Figure 2). However, performance differences among
most of the criteria differed only by a few percentage points and
the difference in top performers was within the range of the
performance uncertainty (Figure 2).

3.2. Population Dynamics Models
We present the overall criterion performance for the population
dynamics simulation experiments averaged over all conditions,
along with standard errors, in Figure 3. While the class of
ICC criteria performed poorly in the linear model selections,
here they tended to perform as well as or better than the
traditional criteria. While the performance of all selection
goals in the linear models simulations were strongly correlated,
here they differed. The variation in the performance of the
ability to select the generating model was much greater than
for the other selection goals, though the compound criteria
did tend to perform better than both traditional criteria and
the ICC.

Out of the ICC the ICCmax(9) tended to perform as good
as, or better than the other forms. The best criterion at selecting
the generating model overall was the BIC+2Cmax(6) (Table 4),
the best at prediction was the BIC+2Cmax(6) (Table 5), and
the best at selecting the minimum KL divergence was the
AICc (Table 6).

In general, criteria performed better at selecting the generating
model and the KL minimum as sample size increased and
variance decreased, as expected, however, the ability to select
the minimum PRESS model actually declined in the traditional
criteria with sample size (Supplementary Figures S7–S12).
Additionally, we found that some form of the compound
criterion tended to perform better than the traditional criterion
for all selection goals with BIC+2Cmax(6) performing best
at selecting the generating model the best predictive model.
However, the AIC and AICc tended to dominate the performance
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FIGURE 2 | Performance of the criterion for all selection goals for the linear model simulation experiment. Points are the average performance-level, bars give

standard errors. The dashed horizontal line gives the performance of AICc for reference. The top panel gives the frequency that each criterion selects the model used

to generate the data, the middle pannel gives the frequency of selecting the model that minimizes the predicted residual error sum of squares (PRESS), while the

bottom panel gives the frequency of selection by the criterion of the model corresponding to the minimum Kullback-Leibler divergence (KL).

Frontiers in Ecology and Evolution | www.frontiersin.org 8 November 2019 | Volume 7 | Article 427

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Ferguson et al. Parameter Estimability and Model Selection

TABLE 4 | Best performing information criteria at selecting the generating model from the candidate set.

Linear models Population models Barley yield models Overall

Sample size

Low AICc BIC+2Cmax(9) AIC+2Cmax(9) AICc

Medium AICc+2CvE(6) BIC+2Cmax(6) BIC AICc+2CvE(6)

High AICc+2CvE(6) BIC+2Cmax(6) AIC+2Cmax(6) BIC*

Variance

Low AICc+2Cmax(6) BIC*+2Cmax(6) BIC* BIC

Medium AIC+2CvE(6) BIC+2Cmax(6) AICc+2CvE(6) AICc

High AIC BIC+2Cmax(6) AICc+2CvE(6) AICc+2CvE(6)

Collinearity

Low AICc+2CvE(6) NA NA AICc+2CvE(6)

Medium AIC+2Cmax(6) NA NA AICc+2Cmax(6)

High AIC+2CvE(6) NA NA AICc+2CvE(6)

Overall AICc BIC+2Cmax(6) AICc+2CvE(6) AICc+2CvE(6)

TABLE 5 | Best performing information criteria at selecting the optimal predictive model from the candidate set.

Linear models Population models Barley yield models Overall

Sample size

Low AICc+2CvE(6) BIC AICc+2Cmax(9) AICc+2CvE(6)

Medium AICc+2Cmax(6) BIC+2Cmax(6) BIC* BIC

High BIC* BIC+2Cmax(6) AIC + 2CvE(6) BIC*

Variance

Low BIC+2Cmax(6) BIC BIC* BIC

Medium AICc BIC*+2Cmax(6) AICc+2CvE(6) AICc

High AICc+2Cmax(6) BIC*+2Cmax(6) BIC+2CvE(6) AICc+2CvE(6)

Collinearity

Low BIC+2Cmax(6) NA NA BIC+2Cmax(6)

Medium AICc+2CvE(6) NA NA AICc+2CvE(6)

High AICc NA NA AICc

Overall AICc BIC+2Cmax(6) BIC AICc+2CvE(6)

TABLE 6 | Best performing information criteria at selecting the minimum KL divergence from the candidate set.

Linear models Population models Barley yield models Overall

Sample size

Low AICc+2Cmax(6) AICc AICc+2Cmax(9) AICc+2Cmax(6)

Medium BIC+2Cmax(6) AIC BIC AICc+2Cmax(9)

High BIC* AIC AIC BIC

Variance

Low BIC+2Cmax(6) AIC BIC BIC

Medium AICc AIC AICc+2CvE(6) AICc

High AICc+2Cmax(6) ICCmax(6) BIC+2CvE(6) AICc+2CvE(6)

Collinearity

Low BIC+2Cmax(6) NA NA BIC+2Cmax(6)

Medium AICc+2Cmax(6) NA NA AICc+2Cmax(6)

High AICc+2Cmax(6) NA NA AICc+2Cmax(6)

Overall AICc +2Cmax(6) AICc BIC BIC

of the KL divergence selection. Performance differences among
most of the criteria differed only by a few percentage points and
the difference between top performers was within the range of the
performance uncertainty (Figure 3).

3.3. Barley Yield Models
We present the overall criterion performance for the barley
yield model simulation experiments, along with standard errors,
in Figure 4. While the performance of criteria was strongly
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FIGURE 3 | Performance of the criterion for all selection goals for the nonlinear population dynamics model simulation experiment. Points are the average

performance-level, bars give standard errors. The top panel gives the frequency that each criterion selects the model used to generate the data, the middle pannel

gives the frequency of selecting the model that minimizes the predicted residual error sum of squares (PRESS), while the bottom panel gives the frequency of selection

by the criterion of the model corresponding to the minimum Kullback-Leibler divergence (KL).
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FIGURE 4 | Performance of the criterion for all selection goals for the nonlinear barley yield simulation experiment. Points are the average performance-level, bars give

standard errors. The top panel gives the frequency that each criterion selects the model used to generate the data, the middle pannel gives the frequency of selecting

the model that minimizes the predicted residual error sum of squares (PRESS), while the bottom panel gives the frequency of selection by the criterion of the model

corresponding to the minimum Kullback-Leibler divergence (KL). No error bars are present in the PRESS results becauase we did not repeat these experiments.
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correlated across all selection goals in the linear models, here
performance was not correlated. While the selection of the
minimum KL divergence was highly variable, similar to the
population dynamics models, the PRESS performance was very
consistent between criterion. Here, the class of ICC criteria
tended to perform poorly though ICCmax(9) again tended to
be consistent with the standard criterion and to perform better
than the other forms of ICC (Figure 3). The compound criterion
tended to perform better than the standard criterion but tended
to perform worse at selecting the generating model.

Overall, the best criterion at selecting the generating model on
average was the AICc+2CvE(6), while the best at prediction and
at selecting the minimum KL divergence was the BIC (Table 6).
In general, criteria performed better as sample size increased and
variance decreased for selecting the generating model and the
KL minimum, as expected (Supplementary Figures S13–S18).
Performance differences among most of the criteria differed only
by a few percentage points and the difference in top performers
was within the range of performance uncertainty (Figure 4).

Finally, we found that overall performance across all
simulations varied by the selection goals. The best at selecting
both the generating model and the best predictive model overall
was AICc+2CvE(6) (Tables 4, 5). The criterion that performed
best at selecting the KL minimum was BIC (Table 6).

4. DISCUSSION

The compound criterion AICc+2CvE(6) performed best on
average at selecting both the generating model and the best
predictive model, two important goals of ecological modeling.
Surprisingly, the BIC performed best at selecting the model
corresponding to the minimum KL divergence even though it is
not meant to be an estimate of this quantity. Although the KL
divergence is not a quantity that is itself of interest to scientists,
it may be useful as a measure of the distance to truth. Despite the
strong overall performance of the compound criteria, differences
in performance between the top criteria were small. For example,
while AICc+2CvE(6) performed best and selected the generating
model 33.1% of the time across all experimental conditions, AICc
selected the generating model 32.1% of the time and BIC selected
the generating model 31.0% of the time.

Previous studies have looked at the performance of the ICC
on linear regression models (Bozdogan, 1990; Bozdogan and
Haughton, 1998; Clark and Troskie, 2006; Yang and Bozdogan,
2011), mixture models (Windham and Cutler, 1992; Bozdogan,
1993; Miloslavsky and Laan, 2003) and time series models
(Bozdogan, 2000; Clark and Troskie, 2008). This past work has
generally found much better performance of the ICC’s than
our study. For example, linear regression simulations suggest
that the criteria may often outperform AIC and BIC, though
limitations in study design are likely responsible for the different
results. Two of these studies on linear regression (Bozdogan
and Haughton, 1998; Clark and Troskie, 2006) did not allow
for overfitting the generating model. While a third study (Yang
and Bozdogan, 2011) did include the potential for overfitting,
the variation in the extra model covariates were two orders of

magnitude larger than the covariates of the generating model.
This may not provide a realistic assessment of performance,
as practitioners are often interested in distinguishing between
effects that vary on the same scale. The results of the time
series model application of ICC appeared more promising as
ICC tended to do better than AIC or BIC most of the time
when selecting among autoregressive moving average models
(Clark and Troskie, 2008). Our population dynamics simulations
also suggest that the ICC criteria perform better at selecting
the generating model in nonlinear time series analysis than in
linear regression, however we found that performance of the ICC
criterion was rarely a significant improvement over AICc.

While many of the ICC performed poorly in our simulation
experiments, the newly developed ICCmax(9) was comparable to
the traditional criterion for all selection goals. ICCmax(9) uses
the coefficient of variation matrix, accounting for uncertainty
in parameter estimation. The compound criteria tended to
provide superior performance over the other ICC measures.
Even though the ICCmax(9) performed well as a criterion on
its own, when incorporated as a compound criterion it tended
to slightly underperform the best compound criteria. This is
likely because the penalty term of the compound criteria ended
up being too severe. Further work designed to optimize the
weighting of the components might improve the performance of
the compound criteria.

In the linear model simulation experiment, the AICc tended
to do better than the BIC at selecting the generating model
(Figure S1). In contrast, our population dynamics and barley
yield simulation experiments found that BIC outperformed the
AICc at selecting the generating model (Figures S7, S13). These
results are broadly consistent with guidelines developed by
Burnham and Anderson (2004) who outline how the BIC can be
expected to outperform AIC when there are a few large effects.
In systems with many small effects, such as the one used in our
linear model experiments, the AIC will be expected to perform
best. Further work by Brewer et al. (2016) has highlighted that the
presence ofmulticollinearity can reverse these recommendations,
with BIC generally selecting select better predictive models than
the AIC. A previous study on population models by Corani
and Gatto (2007) found that AICc outperformed BIC; however,
this study was on nested models so the scenario more closely
resembled our linear model simulation experiment. In a study
design similar to our own, Hooten (1995) found that the BIC did
better than either the AIC or the AICc at selecting the form of
the generating model when selecting among density dependence
forms, consistent with our results.

Averaging over all experimental factors provides a useful
metric for assessing the general performance in complex
ecological models. However, performance was highly variable on
specific simulation experiments and even among experimental
factors. We ascribe the differences between our results, which
found only modest differences among criteria, and previous work
to the broad array of simulation conditions. Averaging across
these conditions provides a better guide to how criterion perform
under a range of scenarios, though at the cost of providing
less guidance for specific modeling scenarios. As Forster (2000)
points out the performance of any criterion is context dependent
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and criteria will have a domain where they may be superior and
where they may be inferior.

Designers and consumers of simulation validation studies
need to carefully consider if performance is being assessed in
a domain relevant to their modeling objectives. One potential
approach to deal with the variability in performance is to
conduct simulation experiments for every particular study to
determine the optimal criterion. We would caution against this,
besides performance being conditional on the particular model
set, we expect this would lead to an anthology of idiosyncratic
selection methodologies. Instead, we advise practitioners to rely
on a criterion that has been shown to be consistent with their
modeling goals and effective in a wide range of scenarios.
Finally, there is no automated model selection approach that will
substitute the clear-headed thinking that necessary to develop
distinct, testable hypotheses that will answer the scientific
question at hand. When this clarity is not possible, it may be
preferable to develop a single, comprehensive model rather than
performing model selection.

Our compound criteria are the sum of two estimated
divergences. The first divergence attempts to measure the
discrepancy between the model and truth. This model
discrepancy can be estimated by AIC, AICc, BIC, BIC*, or
one of the many other existing criteria. The second divergence
estimates the distance between the joint sampling distribution
of the parameters and the product of the marginal sampling
distributions of the parameters. The motivation behind including
this second divergence is to assess the estimability of parameters,
a model quality that is often overlooked but has important
implications when interpreting estimates, making out-of-sample
predictions, and transferring parameters and models for use in
other contexts. Thus, this divergence is a measure of a models
usefulness. Our results suggest compound criterion that balance
traditional measures of fit and complexity with an additional
measure of usefulness can improve ecological inference. We
found the AICc+2CvE(6) to be the best combination of these
terms out of those considered here for both selecting the
generating model and for prediction. AICc likely performed
well because even the largest sample sizes explored here were
relatively low, a common issue in many ecological datasets.

For the informational complexity we used a measure
developed in past work based on the KL divergence between
the joint and marginal sampling distributions of parameter
estimates (van Emden, 1969; Bozdogan, 2000) (Equation 3).
While the KL divergence has taken a primary role in ecological
model selection, it is a divergence not a true distance. This
means that the KL divergence between the distributions f and
g is not necessarily equal to the KL divergence between g and
f . In contrast, the Hellinger and Bhattacharyya distances are
both true distance measures and have this symmetry property.
Using an alternative measure may improve interpretability of
the informational complexity, however it is not clear that these
quantities have the same informational interpretation as the KL
divergence, therefore it is not clear how to best combine these
distance measures with information criterion.

Bozdogan and Haughton (1998) developed a consistent form
of ICC by scaling the complexity measure, Cmax(6) by ln(n).
While this does yield a consistent criterion, the performance of
this ad-hoc approach was poor in their simulation studies. Our
own preference is to use a compound criterion with a consistent
form such as BIC. This study shows that BIC+2CvE(9) achieves
all measures of quality well under a broad range of modeling
frameworks and it has the theoretical advantage of being scale
invariant and consistent. Furthermore, the BIC is consistent at
large sample size. At small sample size the BIC tends to choose
compact model where all of the model components are well
supported. Leading, we think, to a greater ease of interpretation
(e.g., Arnold, 2010; Leroux, 2019).

While our analysis only considers a single best model, there
are often likely to be several models that perform nearly as
well due to the flexibility of the models in our simulation
designs. Bayesian model averaging, and the complementary
model averaging approach developed using AIC (Burnham
and Anderson, 2002), is one common approach to account
for uncertainty in model selection (but see Ponciano and
Taper, submitted this issue). Model averaging can provide more
precise parameter estimates (e.g., Vardanyan et al., 2011) and
ensemble predictions can be more accurate than a single model
(e.g., Martre et al., 2015). Given that our compound criterion
performed slightly better than the standard information criterion
for in-sample prediction and provides a measure of parameter
dependence we expect that the compound criteria are suitable for
model averaging and may directly address one major criticism
of model averaging, the necessity of covariate independence
(Cade, 2015).

We have assumed an equal weighting of the divergence
between model and truth and the divergence measuring
parameter complexity, though we could also choose to weight
these contributions differently. One approach would be to
calculate the optimal weights using simulation methods,
while another approach is to allow the researcher to apply
a priori weights based on the value a researcher places
on model parsimony and estimability. It is these epistemic
considerations that served as inspiration for developing these
compound criteria so such a weighting would be consistent our
original motivation.

This study provides evidence that developing information
criterion based on measures other than the divergence
between model and truth can yield improved model selection
performance. However, we found that differences in performance
between the best compound criterion and standard criteria were
often small. This result aligns with previous work (Murtaugh,
2009) suggesting that standard methods tend to consistently
produce models that are statistically and scientifically useful,
though not necessarily optimal. Given that standard criteria
are typically easy to calculate from regression output they
provide useful and reliable tools for practicing ecologists. The
compound criteria here can also be calculated from standard
output suggesting that they could also be widely applied.
Computational procedures such as regression trees (Murtaugh,
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2009) or statistical learning methods (Corani and Gatto, 2006a,b,
2007) may also be useful tools under a wide variety of conditions,
however these methods can be time demanding. The compound
criteria examined here yield improved performance of model
selection without dramatically increasing the amount of work
needed to do inference.
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