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3D printing has made it possible to recreate, actuate, and modify replicas of ancient

life in transformative ways—revolutionizing studies of ancient life. While 3D printing

has previously been emphasized as an educational tool in paleontology, it has also

created a wide array of experimental opportunities previously unavailable to investigators.

Although 3D printing has been used extensively for experimental studies in many

STEM fields, the biases of the fossil record and constraints of the fossilization process

create unique challenges for paleontological studies. Here, we outline a guide for

using this technology for experimental paleontology: from designing a virtual model to

choosing the most effective printing material—highlighting successful employment of

these methods by previous investigators. As it can be challenging to adopt new methods

in a meaningful way, we hope that this paper will serve as a useful tool for current and

future paleontologists who seek to apply these techniques.
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INTRODUCTION

The fossilization process renders once dynamic, living taxa into static, geologic forms.
Paleontologists are challenged to work within these limitations to reconstruct complex organisms
and investigate related questions of functional morphology, paleoecology, and macroevolutionary
processes. 3D printing, which has been widely used in related fields for years (e.g., Weber, 2001; Igic
et al., 2015; Fiorenza et al., 2018) recently began to make a concerted appearance in experimental
paleontology. This time lag, and lack of paleontological literature using this approach, likely
reflects the unique limitations of historical sciences and the fossilization process. As a result,
much of the literature on 3D printing in paleontology is still limited to conference abstracts (see
topical session: Applications of 3D Printing and Other 3D Methods to Experimental Paleontology,
Geological Society of America 2018). Although we, the authors of this paper, study fundamentally
different taxa we found common challenges adopting 3D printing techniques to study functional
morphology. In its limited scope, this mini-review provides a broad introduction to many potential
uses of 3D printing in experimental paleontology.We outline a generalized approach to guide those
new to using 3D printing.

3D Replicas in Paleontology
Three-dimensional representations of fossil organisms have classically been integral to
paleontological research. Early researchers used molds and casts to share fossil replicas with
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other investigators and the public (Vernon, 1957; Waters and
Savage, 1971). Later, digital replicas generated by surface and
Computed-tomography (CT) scanning were used for visualizing
fossils in three dimensions (see Cunningham et al., 2014
for review). These virtual techniques allowed investigators to
examine minute details of biological structures and provided
insights to fossil interiors, previously unseen barring destructive
sampling (see Rivera and Sumner, 2014; Schemm-Gregory,
2014). Today, researchers can render virtual files tangible once
again, by converting scans to formats that allow modification
and 3D printing for education and further study (Teshima
et al., 2010; Rahman et al., 2012; Cunningham et al., 2014;
Hasiuk, 2014). Furthermore, the falling costs of printers has
made 3D printing a viable option for explicit experimental
paleontological study.

3D printing is advantageous for paleontologists who wish
to replicate and modify fossils. Specifically, printing enables
investigators to remove and reform fossils from their matrix
and permits the manipulation of taphonomically distorted
specimens. Additionally, the ability to alter existing taxa or
create new, hypothetical forms allows the study of non-existent
morphologies, optimization, and evolutionary constraint (see
Porter et al., 2015). Paleontologists have 3D printed numerous
vertebrate morphologies including dinosaurs, fishes, marine
reptiles, and mammals (Balanoff and Rowe, 2002; Bristowe
et al., 2004; Schilling et al., 2013; Mitsopoulou et al., 2015;
Das et al., 2017; Muscutt et al., 2017; White et al., 2017;
Clark, 2018; Grant et al., 2018; Voegele et al., 2018) as
well as invertebrates like mollusks, trilobites, brachiopods, and
echinoderms (Huynh et al., 2013; Pearson, 2017; Anderson
et al., 2018; DiMarco et al., 2018; Garcia et al., 2018; Johnson
et al., 2018; Morse et al., 2018; Peterman and Ciampaglio, 2018;
Dievert et al., 2019). Designing meaningful physical models
for experimentation requires thoughtful printing choices to
isolate variables. Here we describe a generalized workflow for
3D printing in experimental paleontology, including creating
a printable model of the taxa of interest, choosing materials,
pre-processing prints, and finally printing and post-processing
physical models.

A GENERALIZED WORKFLOW FOR 3D
PRINTING IN EXPERIMENTAL
PALEONTOLOGY

Model Creation
There are many different approaches to using 3D printing to test
paleontological hypotheses. However, typically, the first step is to
create a virtual model that accurately captures the morphology
of interest (Figure 1). Subsequent decisions regarding printing
material and methods rely heavily on the parameters of this
virtual model. Such models are mainly derived from surface
scans, internal scans, computer-generated models, or some
combination of these methods (Figures 2A–D). Each model type
has benefits that may be useful for various experiments.

Surface scans render exterior geometry by two main means:
laser projection or a series of photographs taken at different

angles (Sutton et al., 2014). Therefore, surface scans are
incredibly useful tools to record and replicate fossils that cannot
be moved from their current location. For example, Grant et al.
(2018) used surface scanning to create prints of dinosaur tracks
that could be widely distributed for educational purposes (see
also Grant et al., 2016). Moreover, scans of external morphology
are tremendously useful for kinematic studies of geometry,
where the investigator is concerned only with the boundaries
defined by shape (Clark, 2018; Garcia et al., 2018; Grant et al.,
2018). Clark (2018) laser-scanned and 3D printed Allosaurus
teeth to study relationships between tooth shape and ability
to puncture prey by relating tooth morphology to puncture
depth. In this case, a surface scan was sufficient; however, studies
seeking to isolate internal morphology cannot be captured with a
laser scanner.

Internal scans (e.g., Computed-tomography, Magnetic
Resonance Imaging, Synchrotron) in general use magnetic
energy (MRI) or X-rays (CT and Synchrotron) to generate
images of sub-surface structures. CT scans and related methods
are useful primarily for developing models of internal structures
which may not be readily visible and cases in which the fossil
is embedded in a matrix that must be differentiated from the
specimen (Crofts and Summers, 2014; Kolmann et al., 2015;
Pearson, 2017; Anderson et al., 2018; DiMarco et al., 2018;
Morse et al., 2018). Internal scans produce images slices that
are later used to outline and excise morphologies of interest
from unneeded morphologies or sediment (i.e., segmentation).
This is done using visualization software, some of which are
open source.

Internal scans have permitted studies of the form and function
of previously inaccessible morphologies. DiMarco et al. (2018)
CT scanned and printed baculite septa to study the capability
of complex septa to resist crushing by a predator. CT scans
allowed the investigators to isolate the chamber walls of shelled
cephalopods and artificially create simple alternative walls for
comparison. Ishida and Kishimoto (2015) instead used x-rays
to print and study models of radiolarians to examine miniscule
morphologies (Figure 2H). Morse et al. (2018) combined data
from microCT scans and serial grinding of concavo-convex
brachiopods to study the relationship between hinge morphology
and life position.

Internal scans are useful for creating 3D printed replicas of
specimens that cannot be studied otherwise due to their hidden
nature. For example, Schilling et al. (2013) demonstrated the
utility of CT scanning by segmenting a dinosaur vertebra out of
surrounding matrix and 3D printing it. Likewise, Lak et al. (2008)
used phase-contrast X-ray synchrotron imaging to identify fossils
preserved in opaque amber, which could later be 3D printed for
examination. Rather than scanning some investigators elect to
create their models entirely in 3D modeling programs.

3D printing provides is the ability to physically test questions
motivated by idealized and hypothetical morphologies; which
may be later compared to realized forms in the fossil record or
modern taxa. This can be achieved using mathematical models
(Germann et al., 2014; Johnson et al., 2018) and designs based on
morphological measurements (Muscutt et al., 2017) (Figure 2C).
Such models can be constructed in many 3D programs, some of
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FIGURE 1 | A general workflow for 3D printing for experimental paleontology. Critical decisions are outlined next to each step.

which are open access (e.g., Meshmixer1, Blender2, and Fusion
3603. Johnson et al. (2018) andGermann et al. (2014) (Figure 2A)
used different mathematical models to design mollusk shells for
studies of functional morphology. Johnson et al. (2018) employed
equations that described gastropod shells as a surface rotating
around an axis in a logarithmic spiral following the mathematical
model of Raup (1966) (see also Raup and Michelson, 1965). The
strength of these shell geometries was then physically tested in a
compression apparatus to evaluate their adaptive value against
shell-crushing predators. To study the functional morphology
of burrowing bivalves, Germann et al. (2014) created shells
with varying shapes and ornamentations. These shells were
3D printed to test the burrowing capabilities of different shell
morphologies. Models for 3D printing have also been created

1Meshmixer (Latest Update April 2018: v. 3.5) http://www.meshmixer.com
2Blender (Latest Update July 2019: v. 2.80) https://www.blender.org
3Fusion-360 (Latest Update September 2019: v. 2.0.6503) https://www.autodesk.

com/products/fusion-360/overview#banner).

based on metrics from vertebrate fossil specimens. For example,
Muscutt et al. (2017) used profile and planform geometries of
plesiosaur flippers to generate and print rigid plastic flippers.
They then used these flippers for hydrodynamic tests to study
the efficiency and effectiveness of propulsion using these shapes
(Figure 2C). Additionally, it can be useful to combine multiple
model creation methods. For example, White et al. (2017) used
CT data to create a model Theropod foot in Rhinoceros 5.0
(Figure 2D). They 3D printed this foot to create a mold that was
later filled with silicon to test its footprint in a simulated paleo-
sediment. 3D modeling programs can also be used to modify
shapes or add taphonomically-lost features.

Garcia et al. (2018) combined surface scanning and 3D
program editing to replace missing brachiopod spines, which
are fragile and often not preserved, and study stability and
scour (Figure 2B). The final printed brachiopod was created by
mirroring the valve that was well enough preserved for use.While
neontological studies are have different constraints, we highly
recommend exploring this literature for applications relevant to
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FIGURE 2 | (A–D) Examples of models derived fully or in part using 3D software and (E–H) examples of different 3D printing materials. (A) Mathematically rendered

bivalves, (B) scanned brachiopod with spines added in 3D program, (C) plesiosaur flipper reconstructed from bone measurements, (D) Theropod foot created with

scan and Rhinoceros 5.0 [A from Germann et al. (2014) (used with permission via CC BY license, Palaeontological Association), B from Garcia et al. (2018) (used with

permission from Elsevier), C from (Muscutt et al., 2017) (used with permission from the Royal Society), D from (White et al., 2017) (used with permission from

permission via CC BY license, PeerJ) ]. (E) Composite powder snail shell (F) ABS brachiopod (G) Tranluscent ABS polymer blastoid (H) plaster radiolarian [E from

(Crofts and Summers, 2014) (used with permission from How to best smash a snail: the effect of tooth shape on crushing load.), F from (Dievert et al., 2019) (used

with permission from Elsevier), G (Huynh et al., 2013) (used with permission via CC BY license, Paleontological Society), H (Ishida and Kishimoto, 2015) (used with

permission via CC BY license, Volumnia Jurassica). (Images not to scale).

the fossil record (e.g., Mehrabani et al., 2014; Wen et al., 2014;
Porter et al., 2015; Walker and Humphries, 2019).

Material Selection
Once a model is in a 3D printable format, a printing material
must be chosen. There is an ever-growing variety of materials
available for 3D printing including plastics, steel, aluminum,
sandstone, thermoplastic polyurethane, photopolymer resin, and
composite powders (see Shapeways4 and Bluedge5). Themethods
used to create prints using these different materials are variable
(e.g., Fused Deposition Modeling (FDM), Polyjet Technology,
and Binder Jetting, Selective Laser Sintering (SLS), and Selective
Laser Melting) (Bluedge5 and Shapeways4, see Walker and
Humphries, 2019) as are their resolutions and capabilities. Many
different materials have been used in previous paleontological
and biological studies, primarily plastics (Huynh et al., 2013;
Germann et al., 2014; Mehrabani et al., 2014; Porter et al.,
2015; Muscutt et al., 2017; Pearson, 2017; Anderson et al.,
2018; Garcia et al., 2018; Voegele et al., 2018; Dievert et al.,
2019), powders (Schilling et al., 2013; Crofts and Summers,
2014; Ishida and Kishimoto, 2015; Kolmann et al., 2015; Johnson
et al., 2018), and resins (Jonsson et al., 2017; DiMarco et al.,
2018). The cost of printers and materials varies widely. Printers
themselves can vary significantly in cost [e.g., as of June 2019

4https://www.shapeways.com
5https://www.bluedge.com

printers from two prominent companies ranged from $1,299.00
to 6,499.00 (MakerBot) and $3,500 to 9,999.00 (Formlabs)].
Some printers also require additional post-processing equipment
(e.g., Formlabs). Materials that can be used for inhouse printers
also vary widely in cost (as of June 2019 a small spool of
material for MakerBot was $16 while an XXL spool was $225
and FormLabs materials ranged from $149.00 to $399.00 per
liter) (see Walker and Humphries, 2019 for additional review
of materials and costs). The cost of printing with an external
company often varies with the material and size of the print.
It can be useful to get an estimate early in the process to
approximate final costs.

Just as model creation is critical to accurately representing
morphology, the properties of the chosen printing material
will impact the fidelity and applicability of the study. The
material selected will determine important limitations for the
model and the necessary pre-processing before printing. For
instance, if one seeks to create a hollow model from power or
resin, often a built-in hole is required to release excess material
which otherwise will become trapped inside. Added holes in
biological models may have little to no effect on kinematic
studies but an appreciable influence on kinetic studies (e.g.,
holes behave as stress concentrators in compression). Print
thickness and precision is also tightly linked to the printing
material. For example, we have found differences in the ability
to print thin shell walls with rigid resins (successful print) and
other resins (e.g., holes, wall collapse, failure to complete print).
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Here we discuss some common applications of materials for
paleontological studies of functional morphology.

Powder has been demonstrated to be a useful material for
tests of shape and strength for brittle biological morphologies.
Crofts and Summers (2014), Kolmann et al. (2015), and Johnson
et al. (2018) used composite powder to print gastropod shells
and retain their brittle nature. In each study, the prints
were used to isolate different morphologies involved in the
interactions of shell-crushing predators and their prey. Crofts
and Summers (2014) used 3D printed replicas of CT scanned
gastropods to test the efficacy of different predator dentitions and
found that idealized crushing morphologies contain biological
tradeoffs that make them unlikely to occur in nature (Figure 2E).
Kolmann et al. (2015) instead used the same shell prints to
test relationships between crushing ability and stingray jaw
morphology and found that jaw morphology was not predictive
of performance. Rather than using scans, Johnson et al. (2018)
created mathematically idealized 3D printed gastropods to test
relationships between shell shape and strength to resist crushing
by a predator. Powder composite prints were critical to all these
experiments to realistically isolate the influence of geometry
on systems involving brittle prey while negating the effects of
microstructure. However, powder prints are not the optimal
choice for all experiments.

Plastics have been a popular choice to study functional
morphology in hydrodynamic studies (Huynh et al., 2013;
Muscutt et al., 2017; Pearson, 2017; Anderson et al., 2018; Garcia
et al., 2018; Peterman and Ciampaglio, 2018; Dievert et al., 2019).
This is likely because of their comparatively low cost and easy
accessibility compared to other waterproof materials. Anderson
et al. (2018) used plastic prints of turritelline gastropods to
study the influence of shell ornamentation on fluid flow on
partially buried snails. Dievert et al. (2019) tested the influence of
shape and orientation on brachiopod feeding; using a translucent
plastic to visualize fluid flow within the valves (Figure 2F).
Dievert et al. (2019) also printed dissolvable supports for the
delicate brachidia inside their shells. Plastics were the most viable
option for these tests, which required a rigid shell but not a
brittle material.

Pre-processing
Once materials have been chosen, the digital model must
be prepared to be printed according to the requirements of
the printer. While pre-processing requires some knowledge of
the best practice for specific printers and material, there are
commonly shared challenges including solidifying, repairing
holes/instabilities, choosing a possible printing orientation, and
creating sufficient supports.

In this phase, meshes may be refined and smoothed to
preserve shape and reduce complexity. Solidifying and repairing
holes can reduce printing errors in specimens which may be
taphonomically incomplete. Printing files can also be made
water-tight in select printing programs; while this method may
increase the amount of material needed and overall printing time,
we have found it may decrease printer error by reducing the need
for complex supports.

The optimal printing orientations can typically be
determined using printer-specific software; however, some
manual manipulation may be necessary for complex prints
requiring specific supports. For example, some printing
programs, like Preform and Netfabb, allow the user to change
the density, location, and size of supports for ease of removal
during post-processing. Depending on the material chosen
and the desired morphology, hollow prints can contain
both internal and external supports. When appropriate,
making a model hollow can also reduce printing costs
and time.

Oncemesh repairs and supports are complete, the model must
be globally scaled to an appropriate size for the printing bed.
In some cases, if the desired size is larger than the bed, the
investigator may be tasked with printing a model in multiple
parts which can later be combined (e.g., White et al., 2017).
Beyond the size limitations of the printing bed, experiments may
require models to be a specific size to be meaningful for the test
being conducted. For example, Huynh et al. (2013) scaled their
models of spiraculate blastoid hydrospires to 72 times the original
size to conduct fluid tests on prints made of a translucent ABS
polymer (Figure 2G). While Huynh et al. (2013) had to scale
their morphology to create an observable experiment, Garcia
et al. (2018) had to scale brachiopods by a factor of 1.5 to
reach maximum printer resolution. There are also biological
reasons for scaling in the pre-processing phase. Johnson et al.
(2018) scaled various shell shapes to be the same height in
one dimension to make informed comparisons about defenses
against crushing predation. Since shell crushing predators are
limited by gape-size, this scaling was critical to their experimental
design (Wainwright, 1987).

Post-processing
Post-processing can be used to clean the model and change the
material properties of the final print. Common post-processing
techniques for cleaning the model include sanding down
elements and support removal to increase model fidelity.
To obtain relevant material properties, different techniques
can be necessary. The duration and combination of alcohol
washes, photo-curing, and baking change fundamental
properties (e.g., tensile, flexural, and impact strength, and
heat deflection temperature) of the final print. Generally,
information about changes in material properties with post-
processing treatments is found on the manufacture’s website.
Investigators may also seek additional post-processing beyond
factory recommendations for experimental models. For
example, print weight has been an important consideration
in previous studies. Garcia et al. (2018) added iron shavings
to make their printed brachiopods the density of calcium
carbonate before subjecting them to tests underwater. Similarly,
to compare results of virtual hydrodynamics models of
orthoconic cephalopods to physical models Peterman and
Ciampaglio (2018) distributed mass appropriately during
post-processing to make the prints neutrally buoyant.
Post-processing is a critical final step to maintain the
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desired qualities of the final model, and therefore, cannot
be overlooked.

DISCUSSION AND CONCLUSIONS

Geologic constraints obscure the wealth of information that
lies in the fossil record. However, 3D printing has vastly
expanded the possibilities for experimental tests on the functional
morphology of fossilized taxa. New innovations in the properties
of printed materials, methods of printing, and advances in
bioinspired materials (Gbureck et al., 2007; Dorozhkin, 2010;
Dimas et al., 2013; Murphy and Atala, 2014; Chia and
Wu, 2015) hold promise for increasing the accuracy and
precision of paleontological studies (see Walker and Humphries,
2019 for review). With increasing, accessibility to 3D-printing
paleontologists can now investigate extinct taxa as if they
were extant, conduct tests on hypothetical morphologies, and
validate virtual experiments. Moving forward novel 3D printing
techniques will allow us to re-examine existing hypotheses
and develop new hypotheses to understand form-function
relationships that were previously inaccessible.
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