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An explicit link between the abiotic environment, the biotic components of ecosystems,

and resilience to disturbance across multiple scales is needed to operationalize the

concept of ecological resilience. To accomplish this, managers must be able to

measure the ecological resilience of current conditions and project resilience under

future scenarios of landscape change. The goal of this paper is to present metrics and

describe a process for using geospatial data, landscape pattern analysis and landscape

dynamic simulation modeling to evaluate ecosystem resilience at management scales.

The dynamic equilibria of species abundances, community structure, and landscape

patterns that are produced under a given combination of abiotic conditions, such as

topography, soils, and climate, can form a foundation to define desired conditions and

measure resistance and resilience. The degree of forcing required to push the system

from this dynamic range is a measure of resistance, and the rate of return to the

dynamic range after the perturbation is a measure of the resilience and recovery of

the system. Several tools from the field of landscape ecology are useful in defining the

dynamic range of an ecosystem under natural regulation and to measure the forcing

required to drive departure and the rate of recovery. Simulation models provide means to

quantify the expected range of species abundance, community structure, and landscape

patterns under a variety of scenarios, including the natural disturbance regime, current

disturbance regime, and possible future regimes under alternative management and

climate scenarios. Landscape pattern analysis andmultivariate trajectory analysis provide

ameans to quantify conditions and change vectors relative to this desired range. Together

this combination of tools provides a means to define the conditions of a desired state

for an ecosystem, to quantify the degree of resistance and resilience of the system

to perturbation, and to measure and monitor the departure from the range of natural

variability in the system dynamics.

Keywords: landscape dynamics, FRAGSTATS, rmlands, landscape pattern analysis, resilience, recovery

INTRODUCTION

Ecological resilience is a measure of the amount of perturbation required to change an ecosystem
from one set of processes and structures to a different set of processes and structures, or the amount
of disturbance that a system can withstand before it shifts into a new regime or alternative stable
state (Holling, 1973; Curtin and Parker, 2014). In applied ecology, ecological resilience is also used
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as a measure of the capacity of an ecosystem to regain
its fundamental structure, processes and functioning despite
stresses, disturbances, or invasive species (e.g., Hirota et al.,
2011; Chambers et al., 2014a; Pope et al., 2014; Seidl et al.,
2016). Much of the original literature on ecological resilience
focused on theory, definitions, and conceptual ideas regarding
resilience concepts (e.g., Gunderson, 2000; Folke et al., 2004,
2010; Walker et al., 2004; Gunderson et al., 2010). A major focus
early resilience research was the importance of species diversity
and species functional attributes related their response to stress
and disturbance at local scales (e.g., Angeler and Allen, 2016;
Baho et al., 2017; cf. Pope et al., 2014; Roberts et al., 2018).
More recently research has focused on the ability of systems
to maintain fundamental structures, processes, and functioning
following disturbances (Folke et al., 2010). This so-called general
resistance concept is now widely applied to evaluate responses
ecosystems and landscapes, and to predict which systems are
most vulnerable to transitions to alternative states (e.g., Hirota
et al., 2011; Brooks et al., 2016; Levine et al., 2016), based on the
relationships among an ecosystem’s attributes and its responses
to stressors and disturbances (Chambers et al., 2014a,b, 2017a,b).

Most relevant to this paper is the concept of spatial resilience,
or how spatial attributes, processes, and feedbacks vary over
space and time in response to disturbances and how they
affect the resilience of ecosystems (Wu, 2013; Allen et al.,
2016). Spatial resilience focuses on the capacity of landscapes
to support ecosystems and biodiversity over time based on
changes in landscape composition and configuration in response
to disturbances (Frair et al., 2008; Keane et al., 2009; Olds et al.,
2012; Hessburg et al., 2013; McIntyre et al., 2014; Tambosi et al.,
2014; Rappaport et al., 2015).

The field of landscape ecology has developed a number of
conceptual frameworks and modeling tools which underpin
quantitative, spatial analysis of resilience (Turner, 1989; Wu
and Loucks, 1995; McKenzie et al., 2011). The idea of dynamic
equilibria of species abundances, community structure, and
landscape patterns that are produced under a given combination
of abiotic conditions, such as topography, soils, and climate, can
form a foundation to define desired conditions and measure
resistance and resilience (Romme and Knight, 1981). Specifically,
under a given abiotic condition most ecosystems establish a
dynamic equilibrium of species abundance, community structure
and landscape patterns as a result of intrinsic competitive
dynamics of the biological community interacting with the
prevailing disturbance regime characteristic of that ecosystem in
its topographical, edaphic, and climatic context (Turner et al.,
1997). The dynamic equilibrium is an emergent property of the
system under natural regulation and its characteristics can be
used as state variables to define desired conditions. The degree of
forcing required to push the system from this dynamic range is a
measure of resistance and the rate of return to the dynamic range
after the perturbation is removed is a measure of the resilience
and recovery of the system.

Managing for ecological resilience requires a multiscale
approach due to the nested, hierarchical nature of complex
systems (panarchy; Holling, 1973; Wu and Loucks, 1995; Allen
et al., 2016). Incorporating larger scales provides the basis for

directing limited management resources to those areas on the
landscape where they are likely to have the greatest benefit (Holl
and Aide, 2011; Allen et al., 2016; Chambers et al., 2017c).
Restoration efforts or conservation measures for individual
species or small areas are often inefficient or unsuccessful if
they do not consider the larger environmental context, pattern
and process interactions, and essential ecosystem elements, such
as biodiversity, habitat connectivity, and capacity to supply
ecosystem services over time (Chambers et al., 2019).

To assess and manage ecological resilience managers need
tools that can measure attributes of ecosystems relevant to
resilience at scales larger than local measurements. Most research
and monitoring of ecological systems and that related to
resilience has focused largely on site measurements of soil,
vegetation, water and other attributes measurable at points
or in plots. However, much of the pattern-process dynamics
of ecological systems occurs at scales of landscapes (Turner,
1989). Thus, it is essential that managers and scientists have
methods to assess ecological conditions in landscapes, track
them over time, and project changes under alternative scenarios.
This is particularly true in the context of managing public
lands in the Western United States, given the rapid changes
in disturbance regimes and resulting ecological conditions
resulting from the interaction of rapid climate change (Littell
et al., 2018) and the legacy effects of past fire suppression
(Baker, 1992; Kotliar et al., 2002).

The United States public lands agencies, most notably the US
Forest Service, have been pioneers in adopting a landscape-scale
approach to natural resources management, and now operate
under an adaptive management paradigm in which desired
conditions that are intended to reflect resilient and sustainable
ecological states are defined, management is implemented
to move the landscape toward those desired conditions,
and monitoring is conducted to track the effectiveness of
management in achieving those desired conditions. However,
adaptive management, as implemented by the US Forest Service,
has been limited due to administrative, technical and financial
obstacles. This has resulted in a piecemeal, inconsistent and often
inefficient application of the concepts. Most critically, US natural
resource agency applications of landscape management have not
widely adopted quantitative spatial analysis to assess current
landscape conditions, nor have they frequently linked them with
spatial simulation modeling efforts to project conditions into
the future under alternative scenarios and altered disturbance
regimes. Without quantitative spatial assessment and projection
of future changes it is difficult to assess current conditions or
to choose among alternative management scenarios based on
expected impacts on future ecological conditions.

This paper describes landscape-level approaches to measure
and track ecological conditions relative to management goals or
resilience ranges/targets.We discuss howmanagers can link these
spatial assessments to landscape modeling to project ecological
dynamics into the future under novel stressors and disturbance
or successional regimes.

Landscape dynamic simulation modeling provides means to
quantify the expected range of species abundance, community
structure and landscape patterns under natural regulation (e.g.,
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Costanza and Voinov, 2004; Littell et al., 2011). Tools such as
landscape pattern analysis (McGarigal et al., 2012), direct and
indirect community ordination (TerBraak and Prentice, 1988;
Cushman and McGarigal, 2002; Ohmann and Gregory, 2002),
and multivariate trajectory analysis (Cushman and McGarigal,
2007) provide a means to quantify conditions and change vectors
relative to resilient desired conditions. Together this combination
of tools provides a means to define the conditions of a desired
state for a healthy ecosystem and to quantify the degree of
resistance and resilience of the system to perturbation, and
to measure and monitor the departure from these conditions
relative to the range of natural variability in the system dynamics.

This paper is organized around an example of operationalizing
these ideas at the scale of a large landscape. The sections
below introduce the case study area and the scope and focus
of the assessment, present ways to use landscape pattern
analysis to assess the composition and configuration of the
case study landscape, and then introduce the use of spatially
explicit, dynamic landscape simulation modeling to assess the
perturbation of the system from the range of variation under a
natural disturbance regime, and use landscape pattern analysis
and trajectory analysis to evaluate the extent and nature of
departure of the case study landscape from the historic range
of variability.

In this study we use departure of landscape structure from
ranges expected under a natural disturbance regime as a measure
of perturbation of the ecosystem, with the assumption that
the range of natural variation represents resilient conditions
that support natural ecological processes and that the degree
of departure is a measure of perturbation or reduction in
system resilience. The degree to which and the time needed
for the landscape to recover to within this range is a measure
of ecosystem capacity to recover. It is important to note
that this is a single example focusing on landscape patterns
in comparison to dynamic ranges under historic disturbance
regimes. This example is not exhaustive in terms of representing
all the aspects of resilience and recovery that are relevant in
ecosystems at the landscape level. It is chosen to illustrate tools,
in particular multivariate analysis of landscape pattern statistics
and landscape dynamic simulation modeling, which can be
employed to assess ecosystem structure, function, resistance and
recovery at a range of spatial and temporal scales in relation
to a range of pattern-process relationships. Ecological resilience
and desired conditions should be assessed relative to meaningful,
quantitative and specific benchmarks. We chose to use dynamic
ranges under historic disturbance regimes as a conceptually
accessible approach to using landscape pattern analysis and
simulation modeling to assess landscape condition and trend
relative to desired conditions. However, in practice historic
landscape dynamics prior to major human perturbations are
often not particularly realistic given the rapid, global alteration
of ecological conditions (Crutzen, 2006; Hobbs et al., 2009).
In practice, therefore, we recommend managers and analysts
develop desired conditions based on process-based assessments
of ecological system structure and function. The historic range
of variability of landscape conditions, in that context, often will
not define desired conditions, but usually will still remain highly

relevant as a benchmark or reference framework to assess current
system and future system characteristics, drivers and dynamics
(McGarigal et al., 2018).

OVERALL STRUCTURE OF APPROACH

Before going into the details of the particular case study example,
it may be useful to provide a broad, conceptual overview of the
approach, its components, and how these are integrated. Figure 1
is a conceptual diagram showing the main steps of this approach.
The boxes represent tools, circles represent inputs, outputs or
outcomes, and the arrows represent applications and connections
of the tools. The analysis can be run in two “directions.” First,
modeling and landscape pattern analysis can be used to assess
the current condition relative to a reference framework, such as
simulation of landscape pattern and dynamics under a historic
disturbance regime (Figure 1A). That can be one way to inform
the development of a “desired condition” that management
will try to achieve. Once the desired condition is specified,
the modeling approach can be run to evaluate how alternative
scenarios of management, climate change, altered disturbance
regimes and other factors affect the trajectory of landscape
change toward or away from that objective, and to select
the optimal scenario that most effectively meets management
objectives (Figure 1B).

The example presented below combines these two approaches,
by first using simulation modeling to define the dynamic
range of landscape conditions expected under the historic
disturbance regime, assessing the current landscape departure
from that range of conditions and then evaluating how readily
the landscape can return to those conditions if the historic
disturbance regime were reinitiated. As noted above, this is a
simplified example for heuristic purposes. In practice, managers
would likely be better served by defining desired conditions
based on more sophisticated assessments of resilience than
historic ranges of variability, such as evaluating how a range
of species, ecological conditions, and disturbance processes
interact to affect system dynamics and stability. Furthermore,
a more sophisticated approach to scenario evaluation should
typically be used, in which a range of realistic alternative
management scenarios, in the context of potentially changing
climatic and disturbance drivers, interact to affect landscape
conditions relative to these resilience goals (e.g., Kaszta et al.,
2019). McGarigal et al. (2018) is perhaps the most complete
and robust current example of combining both of these
components in evaluating resilience of large forested landscapes
and comparing alternative management scenarios to achieve
desired conditions.

PROJECT AREA DESCRIPTION

The case study landscape is located in western Montana
and northern Idaho, USA, and encompasses portions of the
Lolo, Idaho Panhandle, and Kootenai National Forests, and
the Flathead Indian Reservation. It is a logical ecological
unit encompassing 1,827,400 ha and three subsections (Coeur
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FIGURE 1 | Conceptual diagram of applying landscape pattern analysis, landscape dynamic simulation modeling and landscape trajectory analysis to assess

resiliency goals and desired conditions. Circles represent inputs or outputs of the analysis. Boxes represent analytical steps. Arrows represent linkages between

inputs, analysis and outputs. (A) Shows the steps in a process of producing quantitative, detailed and specific desired conditions statements from a priori resiliency

goals. (B) Shows the process of evaluating alternative scenarios given a priori detailed, specific and quantitative desired condition statements.

d’Alene Mountains, St. Joe-Bitterroot Mountains, and Clark
Fork Valley and Mountains) in the Bitterroot Mountains
section (Figure 2).

There are many agents of pattern formation at the scale
of the case study landscape. At more than 1.8 million
hectares in size, the case study landscape contains a diverse
physical environmental template, including dramatic gradients
in moisture, temperature, and vegetation driven largely by
variability in landform and climate. Vegetation communities
and how they are distributed along environmental gradients
provide the dominant source of coarse-scale landscape pattern
and have a profound influence on most ecological processes
and the distribution and abundance of species. Landscape
dynamics in the case study landscape are driven by several

coarse-scale disturbance processes such as wildfire and bark
beetle outbreaks (e.g., mountain pine beetle) that interact
with the physical template and each other to significantly
affect vegetation patterns. Human land use patterns, past
and present, also exert powerful controls on vegetation.
Urban and agricultural development, largely in the low-lying
valley floors, and industrial land uses such as mining and
the associated transportation infrastructure (i.e., roads) create
patterns that can affect the function of the landscape, in particular
by disrupting habitat suitability and connectivity for wide-
ranging organisms. In addition, forest management practices
associated with timber harvesting and fire suppression have
altered the spatial pattern of vegetation seral stages across
the landscape.
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FIGURE 2 | Study area orientation map. The case study landscape consists of a natural ecological unit in the Bitterroot Mountains of Idaho and Montana, USA (inset

landscape with orange border). The Prospect Creek sub-landscape, where much of the spatial analysis is illustrated is shown as a green polygon with blue border.

LANDSCAPE DEFINITION

The next step after defining the case study landscape is to select
an appropriate landscape definition to represent patterns and
their relationships to processes. This step has many important
considerations (Cushman et al., 2013). Our analysis uses the
landscape mosaic model (Forman and Godron, 1981), since it
is by far the most commonly employed conceptual model and
most landscape analysis tools use this framework. However, it
is important to consider the implications of choosing the patch
mosaic approach in terms of what patterns can be represented
and how they can be related to driving processes. Often a gradient
representation of patterns and processes can be more realistic
(e.g., McGarigal and Cushman, 2005; Cushman et al., 2010),
but is often limited in applicability due to lack of landscape
pattern and landscape simulation tools that operate in a gradient-
based framework.

Given the framework of the landscape mosaic model, we
must first decide on the thematic content and resolution of the
map (Buyantuev and Wu, 2007) as well as its spatial resolution

(i.e., grain and minimum mapping unit; Turner, 1989; Wu,
2004). These decisions are constrained by available GIS data,
the extent of the landscape, and the objectives of the analysis.
There are nearly an unlimited number of variations in landscape
definitions, which can have important implications for landscape
analysis (Buyantuev and Wu, 2007). For heuristic purposes, we
shall consider only one landscape definition in the analyses
below. However, it is essential to realize that how the landscape
is defined in terms of grain, extent, thematic content and
thematic resolution completely controls the patterns that are
measured and their relationships to underlying processes and to
the concepts of resistance, resilience and recovery.

The landscape definition chosen for this analysis has the
following attributes. Thematic content—The thematic content of
our landscape definition is a raster map representing a patch
mosaic of vegetation cover types with large streams and all roads
overlaid. Thematic resolution—The thematic resolution of our
land cover map is defined by the combination of two factors:
(1) vegetation cover type, (2) condition, which is essentially
seral stage and canopy closure. The cover type map is taken
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from Landfire (Rollins, 2009) and includes 22 cover types plus
human development classes of road, agriculture, urban, and
water. Condition has eight classes as follows: non-seral, early-
all structures, mid-all structures, late-all structures, mid-closed,
mid-open, late-closed, late-open. The final covercondition
(covcond) map used for measuring and modeling landscape
patterns therefore consists of the combination of 22 cover types
at each of the eight condition classes. The spatial resolution of all
raster maps is 30m.We ran spatial filtering to specify a minimum
mapping unit of patches of at least 4 cells in extent, to remove
the salt-pepper effect of small and inaccurately identified patches,
which can negatively impact landscape pattern analyses.

For the example analyses presented here we have chosen a
subbasin within the case study landscape (Figure 3). Prospect
Creek Basin is a 47,058 ha watershed in the Lolo National
Forest of western Montana (Cushman et al., 2011). We
chose this landscape because a regional landscape analysis of
biophysical characteristics identified it as highly representative
of the surrounding 1,827,400 ha comprising three subsections
(Coeur d’Alene Mountains, St. Joe-Bitterroot Mountains, and
Clark Fork Valley and Mountains) of the Bitterroot Mountains
Ecosection. The covercondition classes used in the analyses

below are the intersection of these the cover type and seral
stage classifications. We show them individually here given
the difficulty of interpreting maps with many classes, but it is
important to keep in mind that the analysis is done on the
intersection of these two, producing 22 covercondition classes.

MEASURING LANDSCAPE PATTERN

The next step is to quantify landscape patterns for the case
study landscape and describe its structure and composition.
This step involves using the landscape pattern analysis program
FRAGSTATS (McGarigal et al., 2012). Given the need for brevity,
we focus on the results of this landscape pattern analysis.
However, choice of landscape metrics is critically important and
it is essential that researchers and managers understand metric
parsimony (Cushman et al., 2008) and behavior (Neel et al.,
2004), as well as how different landscape metrics may be related
to ecological processes of interest, such as species distributions
(Grand et al., 2004; Chambers et al., 2016) or connectivity
(Cushman et al., 2012, 2013).

Landscape structure consists of several attributes measuring
landscape composition (the abundance and variety of landscape

FIGURE 3 | Prospect Creek sub-landscape. The panel in upper left of figure shows the location of the Prospect Creek watershed. The panel in the lower left shows

the seral stage mosaic of the watershed, while the panel in the upper right shows the vegetation cover type mosaic of the watershed.

Frontiers in Ecology and Evolution | www.frontiersin.org 6 December 2019 | Volume 7 | Article 440

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Cushman and McGarigal Landscape Analysis of Resilience

elements) and landscape configuration (measuring the pattern
and configuration of landscape elements). Generally, for most
ecological processes landscape composition has larger effects
than landscape configuration (e.g., Fahrig, 2003; Mateo-Sanchez
et al., 2014). However, landscape configuration is particularly
important for spatial processes, such as disturbance initiation
and spread, and dispersal and colonization (Cushman et al.,
2012), which are often the focus of assessments and analyses
of ecological resilience. Therefore, we strongly suggest analysts
consider several of the main aspects of landscape configuration
(Cushman et al., 2008), such as edge contrast, patch shape
complexity, aggregation, patch proximity/nearest neighbor, and
large patch dominance, in addition to landscape composition.
For this illustration it is not important to fully understand the
intricacies of each metric. Instead, we focus on a few metrics that
have intuitive interpretation.

LANDSCAPE DYNAMIC SIMULATION
MODELING

The example presented here focuses on analyses of historic
range of variability (HRV) of landscape structure under a natural
disturbance regime, the departure of the current landscape from
that range, and the degree to which return to natural disturbances
could lead to recovery of resilient landscape patterns. We use
a landscape disturbance-succession model (LDSMs, Mladenoff
and Baker, 1999) to quantify HRV. In this paper, we present the
results of the Rocky Mountain Landscape Simulator (RMLands,
Cushman et al., 2011; McGarigal et al., 2018) to quantify HRV for
the Prospect basin study area. Because we are using an LDSM to
quantify HRV, we will refer to the “simulated range of variation”
(SRV) instead of HRV to highlight the fact that our determination
of HRV is based on a simulation and therefore subject to the
limitations of the model.

RMLands Overview
RMLands is a grid-based, spatially-explicit, stochastic landscape
simulation model designed to simulate disturbance and
succession processes affecting the structure and dynamics
of Rocky Mountain landscapes. RMLands simulates two key
processes: succession and disturbance. These processes are
fully specified by the user via model parameterization and are
implemented sequentially within user-specified time steps for a
user-specified period of time. Succession occurs at the beginning
of each time step and represents the gradual growth and/or
development of vegetative communities over time. Succession is
implemented using a stochastic state-based transition approach
in which vegetation cover types transition probabilistically
between discrete states (conditions). Transition pathways and
rates of transition between states are defined uniquely for
each cover type and are conditional on several attributes of a
vegetation patch.

Model Characteristics
RMLands can be classified as a hybrid statistical/probabilistic
model with the following distinguishing characteristics: (1)
RMLands utilizes a grid-based data model in which the landscape

is represented in a regular grid lattice structure. Each grid cell
(pixel), representing a fixed geographic area, possesses a number
of ecological attributes (e.g., cover type, age). Attributes possess
multiple states (i.e., unique values), many of which change over
time in response to succession and disturbance. (2) Consistent
with the grid structure, RMLands is a spatially-explicit model;
grid cells are geographically explicit and topological relationships
are important in all processes (e.g., disturbance initiation and
spread). (3) RMLands is a process-based model and simulates
both disturbance and succession. Disturbance processes include
a variety of both natural and anthropogenic disturbances that
are implemented in a common fashion. Succession is based on a
discrete state transition model for each cover type. (4) RMLands
is a stochastic model. Each cell has a probability of initiation
for each disturbance process that is contingent on several cell
attributes. Thus, given the same cell attributes, some cells will
initiate while others will not. There is a stochastic element to
nearly all processes in RMLands. (5) The grid can be defined
at any spatial resolution, although current applications utilize a
relatively high resolution (25–30m cell size) grid that allows for
detailed representation of landscape patterns. In addition, while
RMLands does not limit the extent of the landscape, it is most
applicable to landscapes between 10,000’s ha to over 1 million ha.
(6) RMLands operates on a user-specified time step and is most
applicable to simulating landscape dynamics over 100’s to 1000’s
of years.

STEPS OF ASSESSING SRV AND
CURRENT DEPARTURE RELATIVE TO
ECOLOGICAL RESILIENCE

This example focuses on using landscape pattern analysis and
landscape dynamic simulationmodeling to evaluate the resilience
of a case study landscape. The evaluation is based on quantifying
current landscape structure and comparing it to the ranges
of landscape patterns simulated under a natural, historical
disturbance regime. The link to resilience is the idea that the
structure of the landscape (composition and configuration) that
emerged under the natural historic disturbance regime reflects
the dynamics of the landscape under regulation by natural
processes and the conditions under which ecological processes
and species existed prior to perturbation by human influences.
The assessment example is presented in five steps, which are
described below.

Step 1. Establish the Objective of the
Analysis
The first step is to establish the objective of the analysis. Our
overall objective is to quantify HRV for the sample landscape and
compare the current landscape departure from it to assess some
aspects of ecological condition relevant to resilience, and evaluate
how readily the landscape can recover from this departure if
the natural disturbance regime were reimposed, as a measure of
recovery. We focus on three questions: (1) What is the historic
range of variation in landscape structure in the sample landscape?
(2) What is current degree of departure of the current landscape
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condition from that historic range of variability, and how do
these things change with the spatial scale (extent) of the landscape
under consideration? (3) How readily does the landscape pattern
recover to within the HRV after the reimposition of the historic
disturbance regime.

For the purpose of this example we define “historic” as the
period from about 1300 to the late 1800s, representing a period of
largely indigenous settlement. This period represents a time when
broad-scale climatic conditions were generally similar to those
of today, but Euro- American settlers had not yet introduced
the sweeping ecological changes that now have greatly altered
many Rocky Mountain landscapes. Moreover, it was a time
of relatively consistent (though not static) environmental and
cultural conditions in the region, and a time for which we have a
reasonable amount of specific information to enable us to model
the system.

Step 2. Define the Digital Landscape
The next step is to define the digital landscape. We selected a
single sample landscape (Prospect Creek Subbasin), from the
entire case study landscape based on the following criteria:
(1) landscape extent large enough to incorporate meaningful
landscape dynamics given the scale of the major disturbance
processes, yet small enough to be computationally efficient for
lab use, (2) representativeness of the major land cover patterns
found throughout the entire case study landscape; in particular,
focusing on adequate representation of the four dominant forest
cover types, (3) a heterogeneous mixture of land use practices,
including developed lands with a wildland-urban interface, a
mixture of public and private lands dominated by the former,
and an adequate road network to facilitate future vegetation
treatments, and (4) a logical ecological unit, in this case, a
watershed, meeting the above criteria. Based on these criteria,
we selected Prospect Creek basin, a 47,058 ha watershed located
roughly in the center of the case study landscape (Figure 3).

We classified the sample landscape into land cover classes
based on the LANDFIRE project (Rollins, 2009). Specifically,
land cover classes represent unique biophysical settings (BpS) or
potential vegetation types (PVT). The only significant change we
made to this classification scheme was to combine three separate
BpS classes corresponding to “riparian” settings into a single
“riparian” class. The spatial grain (or resolution) of the landscape
was set at 30m, consistent with the spatial resolution of the data
sources used in the LANDFIRE project. The spatial extent of the
landscape was based on the hydrological watershed of Prospect
Creek, a tributary of Clark Fork River; however, for simulation
purposes we included a 2-km wide buffer zone around the basin,
bringing the total extent of the simulation landscape to 69,293 ha.

Step 3. Run the RMLands Simulation and
Quantify the Structure of the Simulated
Landscapes Using FRAGSTATS
The next step is to parameterize and run the RMLands
simulation and then parameterize and run FRAGSTATS to
quantify the structure of the simulated landscapes. RMLands
parameterization generally involves extensive research and expert

TABLE 1 | Percentage of the Prospect Creek Basin case study landscape in each

of the major cover types.

Cover type %Land

Mesic-wet spruce-fir forest and woodland 25.65

Mixed conifer forest-ponderosa pine-douglas fir 33.52

Western Hemlock-Western Red-cedar forest 11.27

Mixed conifer forest-grand fir 17.80

Riparian 4.65

Mixed conifer forest-larch 3.27

Total 96.16

team meetings, and can take weeks to years to complete. To
illustrate this example we ran a 2,000 year (200 10-year timestep)
simulation. We selected a broad range of class- and landscape-
level metrics, including both structural and functional metrics, to
assess landscape structure produced by the simulation.

Step 4. Examine the Model Equilibration
The next step is to examine the model equilibration. We must
first characterize HRV under dynamic equilibrium conditions in
which the landscape fluctuates within a stable range of variation.
Because the current landscape may not be operating within its
HRV, it is usually necessary to allow the simulated landscape
to “return” to its stable SRV. Consequently, there is usually
an “equilibration period” at the beginning of the simulation
during which the landscape adjusts to equilibrium conditions.
Here, we will examine the magnitude and duration of the model
equilibration. There is no simple way to quantify the existence
and length of the equilibration period, so it is usually determined
subjectively by examining the simulated trajectory of landscape
change. There are several possible descriptive statistics that could
be evaluated to assess the equilibration period. For pragmatic
reasons, here we will consider only two.

Seral-Stage Distribution
In this section we consider the dynamics in the seral-stage
distribution for each cover type. We first examine the cover-
condition dynamics plots for evidence of a model equilibration
period—a period at the beginning of the simulation during
which the seral stage distribution is noticeably different from
the remainder of the simulation. Note, it would be prudent
to pay attention to only those cover types with substantial
area in the simulation landscape (Table 1), since the dynamics
for the poorly represented cover types can be unreliable
or uninformative.

There is a distinct model equilibration period in landscape
composition that is evident in all cover types, as illustrated
in the example below in the seral-stage distribution of mixed
conifer forest-ponderosa pine-Douglas fir cover type (Figure 4).
Based on the majority of metrics, the equilibration period is
roughly 200 years, but a few metrics don’t equilibrate until after
500 years.

There is considerable variation in the equilibration
period among cover types, as illustrated by the differences
between mesic-wet spruce-fir forest and woodland (MW_SF,
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FIGURE 4 | Temporal plot of proportion of the Prospect Creek landscape covered by each of the different seral stages for one focal vegetation cover type, Mixed

Conifer Forest - Ponderosa Pine-Douglas Fir.

Figure 5) and mixed conifer forest-ponderosa pine-Douglas fir
(MCF_PPDF). In general, the equilibration period is relatively
short, in the range of 100–150 years, for the ponderosa pine
type, but considerably longer, up to 500 years, for the spruce-fire
type. The differences between these cover types are likely
due to dramatic differences in their characteristic disturbance
regimes. The ponderosa pine type is subject to very frequent
wildfires (mean fire return interval of roughly 25 years),
while the spruce-fir type is subject to infrequent disturbances
(mean fire return interval of roughly 200 years). The frequent
disturbances in the ponderosa pine type allows the system to
equilibrate rather quickly in contrast to the slow dynamic of the
spruce-fir type.

Landscape Structure
The next step is to consider the dynamics in landscape structure
based on the FRAGSTATS landscape-level metrics. First, we
determine if there is a detectable model equilibration period in
landscape structure based on the FRAGSTATS landscape-level
metrics and estimate what that period is. We evaluate how this

equilibration period differs among landscapemetrics and identify
the aspects of landscape structure that appear to be most in need
of model equilibration.

There is a distinct model equilibration period in landscape
structure, but it is highly variable among landscapemetrics. Some
metrics show a distinct model equilibration period, while others
exhibit essentially no model equilibration. This indicates that
some aspects of the current landscape structure are within the
simulated range of variability, while others are not. In particular,
the landscape metrics associated with the large patch structure
(e.g., GYRATE_AM, LPI, CONTAG, Figures 6A–C), specifically
the size and extensiveness of the large patches, are most in
need of model equilibration. That is to say, the large patch
structure in the current landscape departs the most from the
SRV. In addition, the interspersion and juxtaposition index and
Shannon’s and Simpson’s landscape diversity indices all exhibit a
distinct model equilibration, indicating that the diversity of the
current landscape also deviates considerably from the SRV. This
result is consistent with the findings from the cover-condition
statistics that indicate that most cover types have a current
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FIGURE 5 | Temporal plot of proportion of the Prospect Creek landscape covered by each of the different seral stages of one focal vegetation cover type, Mesic-Wet

Spruce-Fir Forest and Woodland.

seral-stage distribution that deviate from their SRV. In contrast,
many aspects of landscape structure, in particular edge density
and edge contrast, do not require anymodel equilibration and are
thus currently within their SRV. In general, with the exception of
SHAPE_AM, the landscape metrics requiring equilibration do so
rather quickly, mostly within 100 years.

Step 5. Evaluate the Simulated Range of
Variability in Landscape Structure and
Current Departure for Individual Metrics
Seral-Stage Distribution
A tabular summary of SRV in cover-condition (i.e., cover type
seral-stage distribution) provides a simple means to evaluate the
departure of the current condition from SRV. Given the large
number of covercondition classes in this analysis, here we present
only a subset of a few cover types of particular interest for this
analysis. These include mixed-conifer, ponderosa pine-Douglas
fir, early seral (MCF_PPDF_e), mixed-conifer forest, ponderosa
pine-Douglas fir, late seral open canopy (MCF_PPDF_lo), and
mesic-wet spruce-fir, late seral open canopy (MW_SF_lo).

Table 2 provides a summary of the simulated range of variability
in the distribution of area among condition classes (i.e., seral
stages) for these cover types and the departure of the current
landscape from the simulated range of variability for each
condition class, the current value of the metric, and a summary
of the computed cover type departure index (CDI). This index
represents the overall departure of a cover type from the
simulated range of variability in the distribution of area among
condition classes. The table also includes how many standard
errors the current condition is from the mean of the simulated
distribution (stderr), and the percentile the current condition is
of the range of the simulated distribution (pct_srv).

We can use the information in these tables to evaluate the
range of variability and departure of the current landscape
composition from the SRV for the three covercondition classes
listed above. We choose to quantify the SRV (HRV) based on
the 5th and 95th percentiles of the simulated distribution in the
percentage of the cover type comprised of each seral stage. The
5th−95th percentiles capture almost the full range of variability
without being overly sensitive to extremes. Based on this we see,
for example, the SRV for PLAND of MCF_PPDF_e is from 0.5 to
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FIGURE 6 | Temporal plot of three landscape metrics within the Prospect

Creek landscape. (A) Correlation Length (Gyrate_AM), (B) Largest Patch Index

(LPI), (C) Contagion (CONTAG). The blue line represents the value of the

landscape metric over the simulation time. The gray line is the upper 95th

percentile of the simulated range, and the orange line is the lower 5th

percentile of the simulated range.

3.4% and the median value of the SRV is 1.8%. Similarly the SRV
for PLAND of MCF_PPDF_lo is 13.7 to 27.8% and the median is
23.7%. Finally, for MW_SF_lo the SRV of PLAND is 3.2 to 16.8%
with a median of 8.3%. There is not sufficient space in this paper
to discuss or elaborate on the SRV results for all the classes or all
the metrics, but one could compute and compare SRV, current
value and departure for all metrics for all covercondition classes
to identify the attributes that are most departed from SRV and in
what way they are perturbed from the range expected.

Table 2 also contains several measures of the current
departure from the range of variability (SRV) for the amount
of the landscape in each cover-condition class. There are many
ways we could represent the degree of departure. This table shows
three: (1) cover type departure index (CDI), ranging from 0

(no departure) to maximum (current value as a proportion of
the range between median-95% confidence limit), (2) standard
errors of current from distribution of SRV, (3) percentile of
SRV. Focusing again on the PLAND metric for the three
coverconditoin classes, we see that for MCF_PPDF_e we have
a DPI of 0.1 indicating that the current value is larger than
the median by 10% of the range between the median and 95th
percentile. This indicates the value is well within the SRV.
Different measures of the same thing are given by stderr and
pct_srv, which show, respectively, that the current PLAND for
this covercondition class is 1.5 standard errors above the mean
of the simulated distribution and that the current value is 50th
percentile of the SRV. Conversely, for MCF_PPDF_lo we see
the CDI value is −2.3, indicating that the current value is lower
than the median by 2.3 times (230%) the range from the median
to the 5th percentile. The stderr and pct_SRV also show strong
departure, with values of −66.3 and 0, respectively, indicating
that PLAND of MCF_PPDF_lo in the current landscape is
much lower than the range expected by the SRV. Likewise, for
MW_SF_lo the current PLAND of 22.7% has a departure index
(CDI) of 1.7, a stderr of 51.4 and pct_SRV of 1.0, indicating
that the current extent (PLAND) of late open spruce fir is much
greater than the range of the SRV.

Landscape Structure
In addition to range of variation and departure of amounts
and configuration of each covercondition class, we are often
interested in examining SRV in landscape structure and current
departure based on the FRAGSTATS landscape-level metrics.
The structure of Table 3 is very similar to that of the
covcond table above, the only difference being that instead
of unique cover-condition classes (rows), we have landscape
metrics which measure the composition and configuration
of the entire landscape mosaic of multiple covercondition
classes simultaneously. The landscape departure index (LDI) is
computed in the same manner as the cover type departure index
(CDI) and represents the average departure among landscape
metrics from the SRV. Likewise, the standard errors from
the mean of the SRV distribution and percentile of the SRV
distribution are calculated the same way as well.

We can use the information inTable 3 to identify what aspects
of landscape structure exhibit the greatest SRV (not departure).
Specifically, the large patch structure, specifically the size and
extensiveness of the large patches and overall clumpiness of the
landscape (AREA_AM, GYRATE_AM, CONTAG), exhibits the
greatest SRV. Essentially, under natural dynamic conditions the
coarse patch structure of the landscape fluctuates dramatically
in response to coarse scale disturbances followed by succession.
Large, contiguous patches of, for example, mature high-elevation
spruce-fir forest are occasionally broken up by infrequent
large disturbance events, generally a wildfire or mountain
pine beetle outbreak, only to be followed by long periods
of succession during which disturbance patches succeed and
eventually coalesce to form large extensive patches again.

Table 3 also contains several measures of the current
departure from the range of variability (SRV) for structure and
composition of the covercondition class mosaic. For example, the
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TABLE 2 | Simlulated range of variability of 12 class-level landscape metrics.

MCF_PPDF_e 95th 5th 50th current CDI stderr pct_srv

PLAND 3.4 0.5 1.8 1.9 0.1 1.5 0.5

ED 9.4 1.5 5.1 12.2 1.7 39.2 1.0

AREA_AM 267.7 15.6 57.9 4.3 −1.3 −10.3 0.0

GYRATE_AM 748.1 167.4 355.3 96.0 −1.4 −20.6 0.0

SHAPE_AM 4.4 2.0 2.9 2.1 −0.9 −15.1 0.1

CPLAND 3.4 0.5 1.8 1.9 0.1 1.3 0.5

CAI_AM 99.9 97.7 99.3 98.0 −0.8 −25.5 0.1

CWED 3.0 0.5 1.7 3.0 0.9 20.7 0.9

TECI 36.0 31.8 34.0 24.3 −4.4 −101.1 0.0

CLUMPY 0.9 0.7 0.8 0.5 −2.0 −64.4 0.0

IJI 67.7 50.3 59.8 35.9 −2.5 −64.1 0.0

AI 86.6 65.4 79.2 52.4 −1.9 −62.5 0.0

MCF_PPDF_lo 95th 5th 50th current departure stderr pct_SRV

PLAND 27.8 13.7 23.7 0.2 −2.3 −66.3 0.0

ED 48.5 21.8 42.0 2.0 −2.0 −66.2 0.0

AREA_AM 440.8 181.8 344.0 0.4 −2.1 −56.0 0.0

GYRATE_AM 1046.3 602.0 888.6 26.9 −3.0 −80.0 0.0

SHAPE_AM 5.3 3.9 4.7 1.2 −4.3 −104.7 0.0

CPLAND 19.4 9.9 15.9 0.0 −2.7 −64.0 0.0

CAI_AM 76.1 62.5 69.3 3.8 −9.7 −141.9 0.0

CWED 13.9 5.8 11.6 0.3 −2.0 −59.2 0.0

TECI 30.7 22.9 27.7 14.7 −2.7 −72.9 0.0

CLUMPY 0.9 0.8 0.8 0.2 −15.1 −191.7 0.0

IJI 75.0 63.7 71.0 40.3 −4.2 −98.5 0.0

AI 88.7 83.2 87.1 17.6 −17.7 −203.8 0.0

MW_SF_lo 95th 5th 50th current departure stderr pct_SRV

PLAND 16.8 3.2 8.3 22.7 1.7 51.4 1.0

ED 31.6 12.2 22.4 24.8 0.3 6.0 0.7

AREA_AM 1684.3 31.6 315.3 5792.4 4.0 156.5 1.0

GYRATE_AM 2308.6 233.0 808.2 7094.1 4.2 139.1 1.0

SHAPE_AM 14.2 3.6 6.9 18.0 1.5 50.8 1.0

CPLAND 14.4 2.0 6.2 17.9 1.4 47.1 1.0

CAI_AM 84.7 56.0 75.8 78.5 0.3 4.0 0.7

CWED 5.3 2.2 3.6 6.9 1.9 52.0 1.0

TECI 18.7 13.9 15.7 26.4 3.5 91.2 1.0

CLUMPY 0.8 0.6 0.8 0.9 1.8 22.9 1.0

IJI 46.3 28.3 41.2 59.4 3.6 43.5 1.0

AI 86.6 64.4 79.6 91.6 1.7 23.5 1.0

PLAND, Percentage of the landscape; ED, Edge Density; AREA_AM, Area_WeightedMean Patch Size; GYRATE_AM, Correlation Length; SHAPE_AM, Area-WeightedMean Shape Index;

CPLAND, Core Area Percentage of Landscape; CAI_AM, Area-Weighted Core Area Index; CWED, Contrast Weighted Edge Density; TECI, Total Edge Contrast Index; CLUMPY, Clumpy

Index; IJI, Interspersion and Juxtaposition Index; AI, Aggregation Index. For three covercondition classes (Mixed Conifer Ponderosa Pine Douglas Fir Early Seral (MCF_PPDF_e), (Mixed

Conifer Ponderosa Pine Douglas Fir Late Seral Open Canopy (MCF_PPDF_lo), Mesic-wet Spruce Fir Late Seral Open Canopy (MW_SF_lo). For each metric, for each covercondition

class we report seven statistics: (1) 95th percentile of the SRV (95th), (2) 5th percentile of the SRV (5th), (3) 50th percentile, or median, of the SRV (50th), (4) current value of the metric

at beginning of the simulation (current), (5) class-level departure index (CDI), which is the value of the current condition as a proportion of the range between the 50th and 5th or 95th

percentile, (6) the number of standard errors the current condition is from the mean of the simulated distribution (stderr), and (7) the current condition as a percentile of the SRV (pct_srv).

landscape departure index (LDI), ranging from 0 (no departure)
to maximum (current value as a proportion of the range between
median-95% confidence limit) shows that the current landscape
structure departs greatly from the SRV for 8 metrics, listed here
in order of decreasing departure: GYRATE_AM, AREA_AM,
IJI, LPI, CONTAG, SHIDI, SHAPE_AM, SIDI. The sign of
these LDI scores indicates that the current landscape is much
more aggregated (CONTAG, IJI), with large and more extensive

patches (AREA_AM, GYRATE_AM, LPI), which are much more
complex in shape (SHAPE_AM) that would be expected under
the SRV. In contrast, several other metrics are not departed from
the SRV, including ED, CWED, TECI, which indicates that the
amount of total edge and edge contrast in the landscape is within
the SRV. Standard errors of current from distribution of SRV and
percentile of SRV echo the LDI in terms of the relative departure
of the different metrics.
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TABLE 3 | Simlulated range of variability of 16 landscape-level metrics.

95th 5th 50th current LDI stderr PCT_SRV

LPI 1.292809 −0.78302 −0.36629 5.812824 3.724378 137.7747 1

ED 1.55674 −1.62435 0.012545 −0.47298 −0.31442 −6.97831 0.316062

AREA_AM 0.915318 −0.55719 −0.27197 6.711543 5.881918 220.2471 1

GYRATE_AM 0.915977 −0.6705 −0.25718 6.741833 5.965976 209.386 1

SHAPE_AM 1.27749 −0.83172 −0.35159 4.137876 2.755835 81.32819 1

TCA 1.980695 −1.45541 −0.0771 0.650122 0.353399 10.03254 0.761658

CAI_AM 1.980686 −1.45542 −0.07712 0.65014 0.353416 10.03309 0.761658

CWED 1.516198 −1.65653 −0.04656 −1.05277 −0.64386 −13.8009 0.202073

TECI 1.895774 −1.36278 −0.21861 −0.75141 −0.25199 −7.28902 0.233161

CONTAG 1.357931 −1.54328 −0.0908 4.251333 2.997199 66.11022 1

IJI 1.503616 −1.32438 0.122581 −5.51436 −4.08168 −90.5089 0

SHDI 1.625125 −1.39075 0.112796 −4.21371 −2.86082 −65.4413 0

SIDI 1.659579 −1.59001 0.099262 −2.93827 −1.94674 −43.2698 0

AI 1.623673 −1.56193 −0.0149 0.396397 0.25101 5.913172 0.637306

LPI, Largest Patch Index; ED, Edge Density; AREA_AM, Area_weighted Mean Patch Size; GYRATE_AM, Correlation Length; SHAPE_AM, Area-Weighted Mean Shape Index; TCA,

Total Core Area; CAI_AM, Area-Weighted Core Area Index; CWED, Contrast Weighted Edge Density; TECI, Total Edge Contrast Index; CONTAG, Contagion Index; IJI, Interspersion

and Juxtaposition Index; SHDI, Shannon Diversity Index; SIDI, Simpson Diversity Index; AI, Aggregation Index. For the full mosaic of all covercondition classes taken together. Ee report

seven statistics: (1) 95th percentile of the SRV (95th), (2) 5th percentile of the SRV (5th), (3) 50th percentile, or median, of the SRV (50th), (4) current value of the metric at beginning of

the simulation (current), (5) class-level departure index (CDI), which is the value of the current condition as a proportion of the range between the 50th and 5th or 95th percentile, (6) the

number of standard errors the current condition is from the mean of the simulated distribution (stderr), and (7) the current condition as a percentile of the SRV (pct_srv).

Conducting this evaluation shows that current departure is
very sensitive to the choice of metric. For example, the cover type
departure indices derived from the seral-stage distribution data
(covcond) vary greatly for the cover types with significant area in
the Prospect Creek landscape. Similarly, the landscape departure
indices based on individual landscape structure metrics range
similarly widely. For example, the aggregation index (AI) at
the landscape level has a departure index of 0.23, indicating
the current condition is well within the range of the SRV. In
contrast, correlation length (GYRATE_AM) at the landscape
level has a departure index of 5.97 because the current landscape
condition is exceeds the 95th percentile of the SRV by 5.97
times the range from the median to the 95th percentile. Thus,
the choice of metric can lead to opposite conclusions regarding
the departure of the current landscape. For this reason, a
multivariate approach is necessary, whereby several metrics are
evaluated together.

MULTIVARIATE TRAJECTORY ANALYSIS

Landscape-Level Landscape Multivariate
Trajectory Analysis
We implemented a landscape trajectory analysis (sensu Cushman
andMcGarigal, 2007) withmulti-temporal principal components
analysis (e.g., Cushman and Wallin, 2000) to show the main
pattern among landscape-level metrics (e.g., FRAGSTATS;
McGarigal et al., 2012) across the 200 time steps of the
simulation (Figure 7). The PCA was done on a table of
centered and standardized values of 14 landscape-level metrics:
ED, edge density; CWED, contrast-weighted edge density;
TECI, total edge contrast index; SHDI, Shannon diversity
index; IJI—interspersion and juxtaposition index; SIDI, Simpson
diversity index; AI, aggregation index; TCA, total core area;

CAI_AM, area-weighted core area index; CONTAG, contagion;
GYRATE_AM, area-weighted mean patch radius of gyration;
LPI, largest patch index; AREA_AM, area-weighted mean patch
size; SHAPE_AM, area-weighted mean patch shape index.

The first two axes explain 70% of the total variance in class-
level landscape structure, with the first axis explaining 43% and
the second 37%. The first axis is highly aligned with CONTAG,
IJI and SHDI. CONTAG increases to the left, and IJI and
SHDI increase to the right, indicating that the right represents
a more heterogeneous condition with lower aggregation, higher
diversity of patches and higher interspersion of patches, while
the left indicates conditions where there is high homogeneity
and aggregation of the landscape. The second axis is associated
with patch interspersion, and edge contrast, with highest patch
interspersion and edge contrast to the top of the axis. The black
ellipse on the plot indicates the 95% probability ellipse for all
points in the plot. The red vectors point in the direction of
increasing value of each metric. For example the upper right
quadrant of the PCA is areas with high edge density, low
core area, low aggregation, and high edge contrast. The lower
left quadrant is the opposite: conditions characterized by high
landscape aggregation, high core area, low edge density and low
edge contrast. The upper left quadrant is represented by extreme
conditions associated with very high largest patch size, very high
area-weighted mean patch size, and very high area-weighted
mean patch radius of gyration. This represents conditions with
very large and very extensive patches.

The numbers on the graph represent the time step in the
simulation. The location of the time steps across the PCA
space shows the trajectory of change in multi-variate landscape
structure from the current (initial) condition (0) to the end of
the simulation (200). The current condition is far to the upper
left, indicating that the current landscape has much larger, more
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FIGURE 7 | Multi-temporal principal components plot of landscape-level metrics in the Prospect Creek watershed across the simulation time. Blue numbers represent

landscape conditions at each time step, which represent years of simulation/10. The blue ellipse contains 95% of the simulated range in principal components space.

The red vectors represent the direction of change in each of the landscape metrics, whose acronyms are shown at the end of each vector. AI, Aggregation Index;

TCA, Total Core Area; CAI_AM, Area-weighted Core Area Index; CONTAG, Contagion; GYRATE_AM, Correlation Length; AREA_AM, Area-weighted Mean Patch Size;

LPI, Largest Patch Index; ED, Edge Density; CWED, Contrast-weighted Edge Density; IJI, Interspersion and Juxtaposition Index; TECI, Total Edge Contrast Index;

SHDI, Shannon’s Diversity Index; SIDI, Simpson’s Diversity Index.

extensive, and more connected patches than expected under the
SRV. The distance from the initial condition (0) to the centroid of
the PCA (which is 7.4 PCA axis units in this case) is a measure of
departure from the center of the SRV, and the distance from the
boundary of the 95% ellipse (4.9 in this case) is a measure of the
departure from the SRV range. The ratio of these, 8.4/4.9, or 1.71,
indicates how far the current value is beyond the SRV ellipse in
terms of the width of the SRV ellipse. This means that the current
multivariate LDI index is 1.71, given that the current condition
is 1.71 times farther from the centroid of the PCA than the full
width of the SRV condition.

During the simulation, the landscape condition returns
to within the SRV (95% ellipse) within 5 time steps (50

years). There is considerable dynamic variation in landscape
structure over the simulation time, with some quasi-periodic
fluctuation between upper right (high edge density and low
core and contagion) and lower left (low edge density and
high core and contagion). However, never in the simulation
time does the condition of the landscape approach anything
like the initial (current) condition, which is characterized
by very large, highly connected and extensive patches with
low diversity. The current condition is far outside the
SRV, but the patterns change relatively quickly over the
simulation time to return to within the 95% ellipse, showing
relatively rapid recovery once the historic disturbance regime
is reestablished.
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FIGURE 8 | Multi-temporal principal components analysis of class-level metrics in the Prospect Creek watershed across the simulation time. Gray dots are

combinations of cover type at a given seral stage at a given simulation time step. The gray ellipse contains 95% of the simulated range in landscape structure space.

The red vectors represent the direction of increase of each landscape metric and metric acronyms are labeled at the end of each vector. The blue ellipses show

cover-seral conditions for two cover types (Mixed-Conifer Ponderosa Pine-Douglas Fir Late Seral Open Canopy - NCF_PPDF; Mesic-Wet Spruce-Fir Late Seral Open

Canopy - MW_SF) at early and late simulation times. Simulation times are indicated by the numbers at the end of the acronym. For example, MCF_PPDF:lo0-10

ellipse encloses the initial condition and first ten time steps of the Mixed-Conifer Ponderosa-Pine Douglas Fir Late Seral Open Canopy cover-seral class in landscape

structure space. TECI, Total Edge Contrast Index; IJI, Interspersion and Juxtaposition Index; CAI_AM, Area-weighted Core Area Index; CLUMPY, Clumpy Index; AI,

Aggregation Index; CWED, Contrast Weighted Edge Density; CPLAND, Core Area Percentage of the Landscape; PLAND, Class Percentage of the Landscape; ED,

Edge Density; GYRATE_AM, Correlation Length; AREA_AM, Area-weighted Mean Patch Size; SHAPE_AM, Area-weighted Shape Index.

Class-Level Landscape Multivariate
Trajectory Analysis
We again used multi-temporal principal components analysis
(e.g., Cushman and Wallin, 2000) to show the main pattern
among cover-condition classes across the 200 time steps of the
simulation (Figure 8). The PCA was done on a table of centered
and standardized values of 12 class-level metrics: TECI, total edge
contrast index; IJI, interspersion and juxtaposition index; CAI-
AM, area-weighted core area index; CLUMPY, clumpy index;
AI, aggregation index; CWED, contrast-weighted edge density;
CPLAND, core area percentage of the landscape; PLAND,
percentage of the landscape; ED, edge density; GYRATE_AM,
area-weighted mean radius of gyration; AREA_AM, area
weighted mean patch size; SHAPE_AM, area-weighted shape
index. The first two axes explain 85% of the total variance in
class-level landscape structure, with the first axis explaining 51%
and the second 34%. The first axis is highly aligned with PLAND
and CPLAND, with these metrics increasing to the right. This
axis is associated with very extensive cover types to the right

and low extent of the cover types to the left. The second axis
is highly associated with patch interspersion, and edge contrast,
with highest patch interspersion and edge contrast to the top
of the axis. The black ellipse on the plot indicates the 95%
probability ellipse for all points in the plot. The red vectors point
in the direction of increasing value of each metric.

The points on the graph indicate the locations of each cover
type at each time-step in the landscape structure space. To
illustrate the temporal change in landscape structure in a few

key landcover types we have located and labeled the initial and

ending locations of four cover-condition classes: MW_SFlo—

mesic-wet, spruce-fir, late seral, open canopy; MCF_PPDF:lo—
mixed conifer forest, ponderosa pine, Douglas fir, late seral, open
canopy; MCF_PPDF:e—mixed conifer, ponderosa pine, Douglas
fir, early seral. The change in conditions over the simulation
time is illustrated by the movement of the points for that cover-
condition class across these two-dimenions of the PCA. For
example, MW_SF:Lo (blue ellipses) starts far to the right of axis
1 and bottom of axis 2, with conditions characterized by very
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high extent (percent of the landscape) and very large patch size
(AREA_AM,GYRATE_AM). This indicates that at the beginning
of the simulation (current condition), the landscape is highly
dominated by large, complexly shaped patches of mesic-wet
late seral open canopy spruce fir. This structure is far outside
the 95% ellipse of the simulated range (SRV), indicating the
current condition of the landscape departs substantially from
expected under the historic disturbance regime. At the end of
the simulation time (which represents the simulated range of
conditions under the historic disturbance regime), this cover-
condition class has moved toward the left of axis 1 and somewhat
below the center on axis 2. This indicates that under the simulated
historical disturbance regime mesic-wet spruce fir late seral open
canopy class would likely exist in relatively moderate extent,
with much smaller and simpler shaped patches than in the
current condition.

In contrast to MW_SF:Lo, which our simulation predicts is
more extensive than expected under the SRV, MCF_PPDF:Lo
shows the opposite response. Specifically, at the beginning of
the simulation mixed conifer ponderosa pine, Douglas fir, late
seral open canopy is the farthest to the left on axis 1 of
any cover-condition class, indicating very low extent and small
patches. During most of the simulation, however, this cover-
condition class moves far to the right on axis 1 and up on
axis 2, such that under the SRV it is expected to be the
most extensive cover type, with the largest and most complex
shaped patches.

The same exercise could be repeated for each cover-condition
class, calculating the distance in PC space (e.g., displacement,
Cushman and McGarigal, 2007) from the initial condition
to the centroid of the distribution of the SRV or the 95%
ellipse. Making this calculation we see that MW_SF:Lo and
MCF_PPDF:Lo are the two cover-condition classes that are most
departed from multi-variate class-level pattern in their current
condition compared to the SRV, with late-open spruce fir much
more extensive and late-open ponderosa pine, Douglas fir much
less extensive than expected under the SRV. Given landscape
patterns are inherently multivariate, this kind of analysis using
multi-temporal PCA across the full simulation time is more
informative and comprehensive, although less intuitive, than
looking at plots for individual metrics for individual cover-
condition types. The number of time steps it takes the simulation
to change the landscape structure for each cover-condition type
to within the SRV, or 95% ellipse, is a measure of the amount of
time needed for recovery of landscape patterns once a historical
disturbance regime is re-established. From this we see it takes a
different amount of time for MW_SF:Lo (∼150 years) than for
MCF_PPDF:Lo (∼60 years). This shows that the departure of
MW_SF:Lo from SRV is not only larger (e.g., distance in PCA
space), but less responsive for recovery (time to return within
the SRV).

DISCUSSION

A resilience-based management approach facilitates regional
planning by providing evaluations of current ecological

conditions relative to system equilibrium and reference states
(Hessburg et al., 2013; McIntyre et al., 2014; Tambosi et al., 2014;
Rappaport et al., 2015; Chambers et al., 2019). Importantly,
operationalizing the concept of resilience into an analytical
framework enables the optimization of management actions
to achieve have the greatest benefits (e.g., McGarigal et al.,
2018). Chambers et al. (2019) reviewed six key components
of a resilience-based approach, including (1) formalizing
the concept of managing for adaptive capacity, (2) selecting
an appropriate spatial extent and grain, (3) understanding
the factors influencing the resilience of ecosystems and
landscapes, (4) the importance landscape context in measuring
and defining resilience, (5) pattern and process interactions
and their variability, and (6) relationships among ecological
and spatial resilience and the capacity to support habitats
and species. The purpose of this paper is to provide an
introduction to concepts and methods from landscape ecology
to implement these six components of assessing and managing
for ecological resilience.

A spatially explicit approach coupling geospatial information
on ecological system characteristics and disturbance provides
the foundation for resilience-based management. Landscape
ecology is the science of pattern-process relationships and, in
particular, how patterns of disturbance, recover and ecological
conditions drive ecological processes (Turner, 1989). The tools
of landscape ecology, including landscape pattern analysis and
landscape dynamic simulation modeling provide a means to
implement the six components of the ecological resilience
framework (Chambers et al., 2019). In this paper we provide
a case study landscape of using landscape pattern analysis
(e.g., McGarigal et al., 2012) and landscape dynamic simulation
modeling (e.g., Littell et al., 2011; McGarigal et al., 2018)
to assess the ecological condition of a case study landscape
and how the current condition of that landscape departs
from the range of conditions expected under a historic
disturbance regime.

In this example (1) we formalize the concept of managing
for adaptive capacity under the framework of assessing current
conditions relative to the range of conditions expected under
a natural disturbance regime, which can subsequently be used
to optimize management scenarios to best achieve resilient
landscape conditions (e.g., McGarigal et al., 2018). Our example
focuses on (2) developing a meaningful and appropriate
landscape definition for analysis, including decisions regarding
grain, extent, thematic content and thematic resolution.
This is critical, as all pattern-process relationships, including
assessments of resilience, depend on correctly defining the
landscape relative to the dominant ecological characteristics
and the drivers that affect their value and dynamics (Wu, 2004;
Buyantuev and Wu, 2007). We assess (3) factors affecting the
resilience of ecosystems and landscapes in this case study by
focusing on the processes of how natural disturbance regimes
interact with topography, climate and vegetation to driver
patterns of ecosystem structure (Romme and Knight, 1981). The
use of a spatially explicit, dynamic landscape simulation model
(Mladenoff and Baker, 1999; Costanza and Voinov, 2004) allows
(4) assessment of the landscape context in evaluating resilience.

Frontiers in Ecology and Evolution | www.frontiersin.org 16 December 2019 | Volume 7 | Article 440

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Cushman and McGarigal Landscape Analysis of Resilience

Specifically, in this case our simulation of the expected range
of ecological conditions under a natural disturbance regime
provides a framework for evaluating the current condition
relative to the range of conditions the system would exist in
without human perturbation. This provides the key reference
framework for evaluating current conditions relative to measures
of ecological resilience, including degree of departure from
reference conditions (simulated range of natural variation), and
ability of the system to recover (how rapidly it reenters the range
of simulated range of variability once a natural disturbance
regime is reestablished. This framework is formally based on
(5) evaluating pattern-process interactions (Turner, 1989)
and their variability, which is a key component of defining,
measuring and managing for ecological resilience. Finally, (6) the
assessment we provide can be linked to assessing the relationship
between landscape patterns and particular ecological processes,
such as maintenance of habitats and species (e.g., Cushman
et al., 2011). For example, Cushman and McGarigal (2007)
used the RMLands model to simulate several alternative forest
management scenarios and coupled them to multi-scale habitat
relationships modeling for a focal species (American marten,
Martes americana) and used multivariate landscape trajectory
analysis to quantify the relative impacts of different forest
harvest regimes on the extent, pattern and trajectory of change
of habitat for this forest dependent species. Similarly, Cushman
et al. (2011) used RMLands and multi-scale habitat modeling
to project the effects of climate change, forest restoration
treatments and fire suppression on habitat extent and pattern
of two focal species (American marten and flammulated owl)
in the Prospect Creek case study landscape. That analysis
showed that forest restoration treatments, at levels realistic given
management and logistical constraints, are unlikely to greatly
affect wildfire disturbance regimes and that climate driven
changes in fire regimes likely will decrease habitat quality for
the closed-forest dependent American marten, but are less likely
to severely affect habitat quality for the open-canopy specialist
flammulated owl.

The case study example in this paper focuses on a particular
watershed in the U.S. Northern Rocky Mountains and measures
how the current landscape composition and configuration differ
from the expected range under a natural disturbance regime.
The example is intended to be heuristic and illustrative of the
ideas, methods and tools used by landscape ecologists to assess
current conditions relative to reference conditions. In this case we
defined the landscape based on a patch mosaic model with cover
types defined by combinations of dominant vegetation type,
stand age and canopy closure. This choice of landscape definition
fundamentally affects all analyses, results and interpretation. We
do not propose that this particular landscape definition is ideal
for all, or even any, particular applications. We chose since it is
intuitively familiar to most managers and scientists, and since
many tools we utilize employ a patch mosaic framework (e.g.,
FRAGSTATS, McGarigal et al., 2012, RMLANDS, McGarigal
et al., 2018), and because many past assessments of landscape
effects on ecological processes have used similar landscape
definitions (e.g., Cushman and McGarigal, 2007; Cushman et al.,
2011; McGarigal et al., 2018).

We illustrate the use of landscape pattern analysis with
FRAGSTATS (McGarigal et al., 2012) as a means to quantitatively
measure the spatial attributes of landscapes over time and across
space. The ability to comprehensively and quantitatively evaluate
and compare ecological conditions across space and time is
essential to measure the characteristics of current conditions
and compare them to reference frameworks of other landscapes
or dynamic ranges under historic disturbance regimes (e.g.,
McGarigal et al., 2018), or to outcomes of simulated alternative
future scenarios (e.g., Kaszta et al., 2019). Landscape pattern
analysis is a foundational idea in landscape ecology and is a
powerful tool to measure and evaluate ecological conditions
in the context of ecological resilience. In our example we
illustrated this by using FRAGSTATS to measure a number of
spatial attributes of the case study landscape, which collectively
quantified many attributes of its composition and configuration
which we chose based on their utility in describing major
gradients of landscape structure (e.g., Cushman et al., 2008), and
their known associations with many ecological processes (e.g.,
Grand et al., 2004; Chambers et al., 2016).

We used spatially-explicit dynamic landscape simulation
modeling with RMLANDS to provide a spatio-temporal
reference framework for assessing some aspects of ecological
resiliency. Landscape dynamic simulation modeling is extremely
useful to project the dynamic range of conditions one would
expect under different scenarios of disturbance, succession,
management and climate. A reference framework to compare
current conditions against quantitatively is an essential
foundation for any rigorous assessment of resilience. Reference
frameworks can be constructed by comparing focal landscapes to
other landscapes which have particular reference characteristics
(e.g., comparing managed or disturbed landscapes to those
in protected areas such as Wilderness), or to the distribution
of all landscapes in the study region (e.g., how does the
focal landscape compare to the range of conditions more
broadly). These approaches in a sense “trade space for time”
by assuming that the current conditions of the reference
landscapes reflect some important aspects of the past conditions
of the reference landscape, relevant for assessing resilience.
There are strengths and weaknesses of that approach. The
strength is it is comparing real current conditions to real
actual conditions in reference landscapes, which removes
uncertainty arising from modeling projections. The weakness
is that it is not clear how well current conditions in the
reference landscape actually reflect a meaningful benchmark for
assessing resilience, as they are physographically and ecological
different than the focal landscape, and it is difficult to find
any reference landscape that is unaffected by perturbation and
human impacts.

The landscape simulation modeling approach for developing
reference frameworks has a number of important advantages.
First, it avoids the challenge of trying to compare ecologically and
physiographically different areas, by simulating dynamic changes
over time on focal landscapes themselves. Second, it removes
the challenge of the legacy effects of past disturbance histories,
which necessarily will differ between different current landscapes.
Instead, it allows simulation of expected ranges of ecological
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condition under a given set of disturbance-succession-climate-
management scenarios. This provides a strong means to compare
current conditions to the range of reference conditions expected
under, for example, a natural disturbance regime, or to compare
current conditions to what would be expected under a set of
future alternative scenarios (e.g., McGarigal et al., 2018).

SCOPE AND LIMITATIONS

This example was necessarily simplified and intended as a
heuristic example to fit into the format and length of a journal
article. Our goal was to present the ideas, methods and tools
for this kind of assessment, rather than to provide a fully
realistic and completely developed example. Accordingly, we
provide comparison of a single case study landscape to the
reference condition of the historic disturbance regime. This
allowed us to introduce landscape definition, landscape pattern
analysis, landscape simulation modeling, and to use them
to compare current conditions to the range expected under
the historic natural disturbance regime. This enables us to
measure landscape patterns and compare them to simulated
ranges. By doing this we showed that the current landscape
departs extensively from the range of historic conditions. We
showed how we can use univariate and multivariate analyses
to plot trajectories of change from current conditions to the
range of simulated conditions under the natural disturbance
regime. We showed how we can calculate the degree of
departure from the simulated range based on FRAGSTATS
metrics, and how different metrics provide different views
of departure or perturbation of landscape patterns, and how
multivariate methods, such as multi-temporal PCA (Cushman
and Wallin, 2000) and landscape trajectory analysis (Cushman
and McGarigal, 2007) provide a means to quantify the degree
and nature of difference between current conditions and the
simulated natural range of variation.

We used a simple example of time for the simulation to return
the current condition to within the range of natural variation
as a heuristic measure of one aspect of capacity for ecological
recovery. This idea uses the time it would take for a reestablished
natural disturbance regime to move the landscape back into the
range of natural variability. As a heuristic example this has some
utility to illustrate the idea, but it is not realistic for a number of
reasons. For example, there are very few real landscapes where
it is politically, socially or even physically possible to reestablish
a natural disturbance regime as it would have existed prior to
human perturbation. As such our measure of ecological ability
to recovery is meant to be an abstract representation of the
relative degree to which the ecosystem could recover, rather than
a practical measure of how it actually could be recovered. We feel
that the example given here, while, simple, serves is main purpose
of describing the methods, tools, and approaches for landscape
pattern analysis and landscape simulation modeling in a context
relevant to assessing ecological resilience.

To implement these ideas more realistically several extensions
and elaborations on our approach would be needed. An example
of a recent analysis of this kind will serve to illustrate this.

McGarigal et al. (2018) modeled historical range of variability
and alternative management scenarios in the upper Yuba River
watershed, Tahoe National Forest, California. The purpose of the
project was to evaluate the degree of departure of the current
landscape from historical ranges under a natural disturbance
regime as a benchmark to evaluate ecological resilience, and to
design and evaluate the impacts of alternative forest restoration
scenarios intended to reestablish aspects of landscape structure
and dynamics consistent with the historical range. McGarigal
et al. (2018) simulated the dynamics in vegetation driven
by wildfire during the historical reference period (ca. 1550–
1850) and quantified the range of variability in composition
and configuration of the landscape mosaic, and compared the
results to the current landscape to quantify departure. They also
created a set of eight alternative management scenarios reflecting
different objectives and applying different treatment types and
intensities and conducted 20 replicate 100-year simulations
of each of these management scenarios and quantified the
range of variability in landscape composition and configuration.
Then, the range of variation in each landscape attribute among
management scenarios was compared with the historical range of
variability and the current landscape to determine the potential
for management scenarios to move the current landscape toward
its historical range of variability. McGarigal et al. (2018) found
that their study landscape during the historical reference period
was best characterized as a shifting mosaic of vegetation types
and conditions and was subject to a high wildfire disturbance
rate. Due to fire suppression and other human landscape
changes, the current landscape departs from the historical
range of variability in the composition and configuration of
the vegetation mosaic, and more so in some attributes than
others. Scenario analysis revealed the comparative effects of
alternative management strategies on landscape composition and
configuration. The quantitative approach used by McGarigal
et al. (2018) demonstrates the feasibility of creating detailed,
specific, and quantitative desired landscape conditions, and
monitoring progress toward achieving those conditions. In
the context of ecological resilience, it shows how landscape
pattern analysis can be coupled to simulation of historic and
alternative future conditions, under realistic management and
restoration scenarios, to evaluate current conditions relative to
the concepts of ecological resilience, including resistance to
and recovery from perturbations of ecological pattern-process
relationships. One important result of the scenario analysis
demonstrates that active vegetation management involving a
combination of mechanical and prescribed fire treatments has
the potential to emulate many aspects of landscape structure
that would occur under a natural disturbance regime, but it
would require a much higher intensity of treatment than we
are accustomed to—perhaps as much as 10 times the current
treatment rate.

CONCLUSION

We illustrate how to combine landscape pattern analysis with
spatially-explicit, dynamic landscape simulation modeling to
evaluate the condition of a case-study landscape relative to its
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expected dynamic range under a historic disturbance regime,
and to use this information on departure in current conditions
and ability of the landscape pattern to recover to within
the range as measures of perturbation and resilience of the
ecosystem, respectively. We showed the importance of carefully
defining the study objective, choosing an appropriate landscape
definition, and implementing realistic and relevant analyses
and simulations at appropriate spatial and temporal scales.
Simulation models provide means to quantify the expected
range of species abundance, community structure and landscape
patterns under a variety of scenarios, including the natural
disturbance regime, current disturbance regime, and possible
future regimes under alternative management and climate
scenarios. Landscape pattern analysis and multivariate trajectory
analysis then enable quantification of current conditions and
change vectors relative to historic ranges of variability under
natural disturbance regimes and alternative future scenarios
of management, climate and natural disturbance. Together
this combination of tools provides a means to define the
conditions of a desired state for a healthy ecosystem and to
quantify the degree of resistance and resilience of the system
to perturbation, and to measure and monitor the departure

from the range of natural variability in the system dynamics.
Evaluating the structure and composition of landscapes relative
to historical, current and future ranges of variability is
fundamental to providing context and guiding management
in the face of rapidly changing climate, disturbance regimes
and the resulting structure and function of ecological systems
(Littell et al., 2011, 2018), and their impacts on focal species
(e.g., Cushman et al., 2011; Wan et al., 2019).
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