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Long-distance migratory animals must contend with global climate change, but they

differ greatly in whether and how they adjust. Species that socially learn their migration

routes may have an advantage in this process compared to other species, as learned

changes that are passed on to the next generation can speed up adjustment. However,

evidence from the wild that social learning helps migrants adjust to environmental

change is absent. Here, we study the behavioral processes by which barnacle geese

(Branta leucopsis) adjust spring-staging site choice along the Norwegian coast, which

appears to be a response to climate change and population growth. We compared

individual-based models to an empirical description of geese colonizing a new staging

site in the 1990s. The data included 43 years of estimated annual food conditions and

goose numbers at both staging sites (1975–2017), as well as annual age-dependent

switching events between the two staging sites from one year to the next (2000–2017).

Using Approximate Bayesian Computation, we assessed the relative likelihood of models

with different “decision rules”, which define how individuals choose a staging site. In

the best performing model, individuals traveled in groups and staging site choice was

made by the oldest group member. Groups normally returned to the same staging site

each year, but exhibited a higher probability of switching staging site in years with larger

numbers of geese at the staging site. The decision did not depend on food availability in

the current year. Switching rates between staging sites decreased with age, which was

best explained by a higher probability of switching between groups by younger geese,

and not by young geese being more responsive to current conditions. We found no

evidence that the experienced foraging conditions in previous years affected staging site

choice. Our findings demonstrate that copying behavior and density-dependent group

decisions explain how geese adjust their migratory habits rapidly in response to changes

in food availability and competition. We conclude that considering social processes can

be essential to understand how migratory animals respond to changing environments.

Keywords: Branta leucopsis, climate change, decision-making, explorative behavior, group decision, memory,

migration, social learning
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INTRODUCTION

The choices that animals make in response to their environment
have typically been shaped by evolution, and are therefore
expected to maximize the animal’s survival and reproduction.
However, environments can change in ways that are hard to
predict (Dall et al., 2005). In those cases, animals must deal
with uncertainty in the consequences of their decisions. To
understand those decisions, it is necessary to know which
environmental factors individuals use to inform their decision,
and how they integrate those factors to make the decision
(i.e., their “decision rules”; Bauer et al., 2011; Budaev et al.,
2019). This is particularly true for long-distance migrants, which
must make decisions in anticipation of future and distant
conditions (Kölzsch et al., 2015).

Animals use current environmental conditions on which
to base their decisions, but also previous experiences may
affect decisions (Berbert and Fagan, 2012). Memories allow
animals to predict habitat quality by deducing temporal trends
in stochastic seasonal environments (Abrahms et al., 2019).
Furthermore, exploration of the environment can extend such
experiences and thereby contribute to making better decisions
in the future (Mettke-Hofmann et al., 2002; Tebbich et al.,
2009), for instance, by informing the animal about the spatial
distribution of resources. Another mechanism that can help
the animal to make better decisions is social learning, which
allows animals to exploit the experiences of others (Danchin
et al., 2004; Couzin et al., 2005; Guttal and Couzin, 2010). Social
learning can be an effective means to solve complex problems
(Hoppitt and Laland, 2013), especially when combined with
learning from previous individual experiences (Rendell et al.,
2010). Recent semi-natural experiments suggest that animal
populations can indeed accumulate improvements of migratory
routes over several generations by combining individual learning
with social learning (Sasaki and Biro, 2017; Jesmer et al., 2018),
but evidence from natural populations is lacking. It remains
largely unknown how migratory animals combine current and
previous individual experiences with social learning to make
decisions, and whether this combination helps them to adjust
their migrations to environmental change.

A good candidate for further investigation is the barnacle
goose, which is a social migratory species that has shown
striking changes in migratory behavior in response to population
growth and climate change (Eichhorn et al., 2009; Jonker et al.,
2013). Barnacle geese follow the green wave of grass growth
in spring (van der Graaf et al., 2006), but the sites where
they stop along the way to accumulate crucial fat reserves for
breeding (Drent et al., 2007) seem to be largely determined
by tradition. For example, the barnacle goose population that
migrates north along the Norwegian coast to breed on the
Svalbard archipelago traditionally staged exclusively in Helgeland
(Figure 1A; Black et al., 2014). Recently, a striking change
has occurred in this tradition (Tombre et al., 2019). After a
small group of birds in the 1990s colonized a new staging
site 250 km further north, Vesterålen, the majority of the
population has moved to the new site within a few generations
(Figure 1C). The increasing number of birds in Vesterålen

coincided with a strong increase in population size, which
increased competition for resources at the traditional staging
site. The shift in distribution also fits with an increase over the
years of suitable habitat in Vesterålen due to climate change.
Spring has advanced at both staging sites by 3 weeks since 1975.
Grass growth simulations indicated that this advance has led to a
higher grass production during the staging period at both sites,
and simultaneously to a strong decrease in grass digestibility
in Helgeland, but not in Vesterålen where spring starts ∼4
weeks later. As a result, the total production of digestible
biomass per square meter of grass during the staging period
has more than doubled in Vesterålen, but remained constant in
Helgeland (Figure 1B).

Tombre et al. estimated from ring resightings of individually
marked birds that ∼62% of the increasing use of Vesterålen can
be attributed to birds that switched from the traditional to the
new staging site in subsequent years, suggesting that the choice
of staging site might be partly determined by geese responding
to the changes in resource availability. However, in a year-to-
year comparison switching rates did not correlate with foraging
conditions, neither in the current nor in the previous year. This
suggests a lack of direct response to changes in food availability,
and implies that optimal foraging models (e.g., Bauer et al.,
2006; Klaassen et al., 2006) are unlikely to explain the observed
dynamics in staging site choice. Furthermore, young birds
exhibited higher switching rates than older birds (Figure 1D).
This implies that age-dependent changes in decision-making,
which may (partly) result from social processes, affected the
observed changes in migratory behavior.

We reason that the observed dynamics in staging site choice
may be better understood when explicitly taking into account the
ecological and social information that is available to individual
animals, and the “decision rules” by which they integrate this
information. To this end, we designed a set of simulation models,
in which we implemented different potential sets of decision rules
by which each individual in a simulated population of barnacle
geese decides whether it stages in Helgeland or in Vesterålen.
We used individual-based models, which are particularly suitable
when the decisions by individuals and interactions between
individuals are expected to affect the dynamics of the population
(Bauer and Klaassen, 2013). Specifically, we analyzed which set
of decision rules best explains the observed changes in staging-
site use, by comparing the performance of different models.
Using Approximate Bayesian Computation (Beaumont, 2010),
we simultaneously test which model is the most plausible given
the empirical data, and estimate the values of the parameters
in the selected model(s). Each model contains a different
combination of the following five components: (i) adjusting
choice to the expected quality of the current staging site, obtained
by memorized individual experiences in previous year(s), (ii)
comparing expected quality of the current staging site with
expected quality of the alternative staging site, which is obtained
through explorative behavior in previous year(s), (iii) leaving the
choice to others by traveling in a group, (iv) reconsidering staging
site choice at arrival in Helgeland, dependent on the current
number of geese and/or grass cover, and (v) impact of age on any
of the previous four processes.
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FIGURE 1 | Barnacle goose spring-staging sites. All panels are reproduced from Tombre et al. (2019). (A) is a map of the migratory route (green arrows), and the two

staging sites in red and blue. The geese winter at the Solway Firth, and breed on Svalbard. (B) shows the annual estimated staging site quality at both staging sites,

estimated as the sum of the daily digestible biomass growth of grass leaves during the staging period. The lines are linear regressions and the shaded areas delineate

the 95% confidence interval of local regressions. Panel (C) shows the number of spring staging geese at the two sites as found by the same study. Lines are the

trends estimated by local regression, the colored areas depict confidence intervals. (D) shows the probability of geese of particular ages (y-axis) in each year (x-axis) to

switch from staging in Helgeland to staging in Vesterålen in the subsequent year, as obtained from resightings of individually marked geese.

METHODS

Individual-Based Models
We simulated barnacle goose population dynamics in individual-
based population models with discrete time steps of one year (see
Figure 2 for a visual description). In each model, the simulation
runs started in 1970 with a population of 3,000 individuals
with randomly assigned sex (50% chance of either male or
female) and age (the initial age distribution was derived from
a pilot simulation). Each individual was also assigned an age at
which to become available as a partner, determined by drawing
randomly from the Poisson distribution + 1 and λ = 1.5.
This specific distribution with a mean of 2.5 and a standard
deviation of 1.2 matches the empirically observed distribution
(mean = 2.5, SD = 1.1; Choudhury et al., 1996). At the start
of each time step, partnerships were determined, with pairs
randomly assigned between available individuals (i.e., at or above
the age of first reproduction and unpaired) of the opposite sex.

Individuals remained with the same partner in subsequent years,
only becoming available again as a partner when the partner
died (Black et al., 2014; in reality the annual chance of a pair to
separate is 2%, which we chose to ignore). All unpaired birds and
a randomly assigned bird within each pair then chose a staging
site: either Helgeland or Vesterålen. During the first time step,
all individuals were set to choose Helgeland. In later time steps,
individuals could instead decide to visit Vesterålen (see section
Staging Site Decision Rules). Subsequently, each paired female
reproduced with probability bs,t , where s is the visited staging site
and t is the calendar year.

Previous simulation studies of goose behavior have focused
on energetics (Bauer et al., 2006; Klaassen et al., 2006).
While explicitly modeling density-dependent energy gain at
staging sites and the consequences for reproductive success,
they simplified the process of decision-making by assuming
optimal behavior. We focused on the decision-making process
and instead simplified the energetic part of the model. We
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FIGURE 2 | Flow chart diagram of the twelve individual-based models. Schematic overview of the individual-based model simulations. Each simulation begins with

3,000 individuals at start, and each individual follows the arrows in the diagram, with each cycle representing one year. The models, described in Table 2, differ only in

the presence or absence of five components: “memory” (yellow), “reconsider” (purple), “exploration” (green), “groups” (red) and “aging” (blue). Mortality occurs with a

probability of 0.11, reproduction occurs with a probability that depends on the conditions of the staging site (grass production as well as the number of geese at the

staging site, see Equation 1) that the female has visited, being either Helgeland (H) or Vesterålen (V).

assumed that bs,t depends linearly on the annually estimated grass
production at the staging site that she visited, and also decreases
linearly with an increasing number of birds at that staging site,
depending on the surface of foraging area:

bs,t = rs,t

(

1−
Ns,t

Ks

)

, (1)

where Ns,t is the abundance of birds at the visited staging site
and Ks is the total surface area of suitable foraging habitat at
that staging site (m2). The probability of reproduction in absence
of competition, rs,t , is a linear function of the digestible grass
production per m2 during the staging period in year t at staging
site s, qs,t (measured in g/m2, see next section):

rs,t = 0.1+ a · qs,t , (2)

where a is a conversion factor (m2/g). The lower boundary of
0.1 reflects the low probability of reproduction observed for
geese with very low body condition before departing Helgeland
(Prop et al., 2003). Instead of deriving KH (carrying capacity
in Helgeland) and conversion factor a mechanistically, we fitted
them by performing model simulations without staging site
choice, assuming all individuals to stage in Helgeland. The
simulated population sizes were compared to the population
count data between 1970 and 1997, when virtually all individuals
visited Helgeland (see Figure 1). KH and a were estimated as
44,000 and 0.0082, respectively, by selecting the values that
minimized the distance between the simulated population sizes

and the empirically derived values (see section Calculating the
Distance of Each Simulation to Empirical Data). Based on the
ratio of agricultural land in the two areas (summed surface
of agricultural land in 2017 was estimated at 27.6 and 88.5
km2 for the main goose areas in Helgeland and Vesterålen;
data downloaded from www.ssb.no), and given that barnacle
geese in Helgeland also make use of natural salt marshes and
that barnacle geese in Vesterålen face competition for food
with pink-footed geese (Tombre et al., 2019), we estimated
conservatively that KV was two times KH . A higher value of
KV had no strong effect on the model selection results, as the
population in Vesterålen remained far below carrying capacity
in all simulations (see Appendix I and Table S1).

The number of offspring produced by a reproducing female
was drawn from a Poisson distribution + 1 with λ = 1, resulting
in a mean of two offspring, which equals the distribution in
the number of juveniles associated with successful breeders in
the wintering area (Black et al., 2014). At the end of each time
step, individuals had a probability of dying, d, estimated at 0.11
(Black et al., 2014). Each simulation consisted of 48 time steps,
representing the period from 1970 to 2017.

Grass Production at the Staging Sites
The digestible grass production per m2 during each spring
staging period t at staging site s, qs,t (g/m2), was taken from
Tombre et al. (2019). It was estimated as the sum of the daily
digestible biomass growth of grass leaves from 30 April to 20
May (Prop and Black, 1998). The daily values were calculated
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by means of the simulation model CATIMO (Canadian Timothy
Model; Bonesmo and Bélanger, 2002a,b). CATIMO simulates
the daily growth of cell walls and cell contents in the leaves
of timothy, Phleum pratense. Timothy is one of the main
agricultural grass species and an important food source for
barnacle geese in Norway (Black et al., 1991). Daily grass growth
(g/m2) was converted to digestible daily grass growth (g/m2) by
taking into account that the digestible proportion for barnacle
geese is 0.16 and 0.64 for cell wall and cell content respectively
(Prop and Vulink, 1992). The simulations were based on daily
local temperature and radiation values. See Tombre et al. (2019)
for a full explanation.

Staging Site Decision Rules
We compared 22 models, all with different decision rules
determining the choice of staging site. Each set of decision rules
is a combination of five components. The first component is
memory, which we incorporated as an effect of staging site
quality that the focal individual experienced in previous years.
The second component is exploration, which we modeled as
an effect of staging site quality at the alternative staging site
in previous years when the individual was alive. The third
component is traveling in groups. This is an effect of the staging
site choice of others, in most cases the group leader, and hence
a consequence of social learning. The fourth component is to
reconsider staging site choice at arrival in Helgeland, with each
individual continuing migration to Vesterålen with a probability
that depends on the number of geese in Helgeland and/or the
grass cover in Helgeland. As the fifth component, we included
age-dependent differences between individuals in any of the four
previous components (see also Figure 2).

In all models, paired birds stay together and normally return
to the staging site of the previous year. In case newly paired birds
did not visit the same staging site in the previous year, they make
a random choice between both staging sites. Analysis of ring
resightings before and after pair formation does not suggest a
sex bias (TO and JP, unpublished data). Unpaired birds normally
visit the staging site of the previous year. We assumed that each
individual has an 18% probability of remaining with its parents
during the first spring migration (Black et al., 2014), thereby
copying the staging site choice of the parents. The first-year
birds that do not stay with their parents follow others, based
on one of the following criteria (denoted by parameter cjuv, for
all parameters see Table 1): (1) follow a random non-first-year
bird, (2) follow a parent (i.e., an individual that has produced
offspring in the previous year), or (3) follow an individual of at
least 10 years old, which is approximately the top 30% of the
age-distribution (Black et al., 2014).

On top of this basic scheme, each individual can decide to
switch staging site relative to the previous year. In the first model,
each individual has a fixed annual probability of switching staging
site (parameter n). Subsequent models incorporate different
combinations of the five components as described below.

Memory
In each year, the expected probability of reproducing when
returning to the current staging site (as opposed to switching

to the other staging site), E
(

bc
)

, is given by a weighted average
of its past experiences at that site. The weight of each of those

experiences is given by the decay function e−
y
m , where y is the

‘age’ of the experience (in years) and parameter m determines
the rate at which memories fade. We assumed that individuals
start switching to the other staging site when E(bc) falls below
a threshold that is given by parameter xa. Below this threshold,
the probability of switching increases with decreasing E(bc)with
a rate that is determined by parameter xr , where:

P
(

switch
)

= xr
(

max
(

0, xa − E
(

bc
)))

. (3a)

Exploration
Individuals explore the alternative staging site at the end of the
staging period with probability (v), enabling them to inform their
expectation of the reproduction probability when visiting the
alternative staging site, E

(

ba
)

. If the difference between E
(

ba
)

and E
(

bc
)

is larger than xb, then the probability of switching
staging site in the next year is given by:

P
(

switch
)

= xr
(

max
(

0, xb − E
(

bc
)

+ E
(

ba
)))

, (3b)

where parameter xr determines how fast the probability of
switching increases as the difference between E

(

ba
)

and E
(

bc
)

increases. This component only affects the model results when
memory is also implemented, with equation 3b replacing 3a.

Groups
Instead of individually deciding where to go, birds may also
choose to follow another individual, thereby copying its choice of
staging site. We modeled this by assigning each bird to a group,
and determining staging site choice per group instead of per
individual. In this case, juveniles do not join an individual, but
a group. We assumed that 18% of the juveniles joins the group
of their parents (Black et al., 2014), and the rest joins a randomly
chosen group. Group decisions may be made in different ways,
denoted by parameter cgroup. We assumed that individuals either
(1) form groups with a single leader, which may be (1) a random
bird, (2) a randomly chosen parent (i.e., an individual that has
produced offspring in the previous year), or (3) a randomly
chosen bird from among the oldest ones. Alternatively, each
group member first makes an individual choice as explained
above, after which the group reaches consensus by adopting the
“majority vote” (4). Note that simple and plausible behavioral
mechanisms allow individuals to follow any of these rules,
without having an overview of the process (Couzin et al., 2005).
We further assumed that individuals join the same group as in
the previous year (but see component v, Aging). Maximum group
size is determined by parameter g, with groups splitting into two
equally sized groups when larger than g, and merging with a
random other group when smaller than 0.25g.

Reconsidering Staging-Site Choice
At arrival in Helgeland, individuals have the possibility to
reconsider their choice, and continue to Vesterålen. The
probability to continue is either linearly dependent on the
number of geese, NH (Reconsidergeese), or on the grass cover at
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TABLE 1 | Parameter values used in the simulation runs.

Parameter Value Unit Description

Fixed parameters

qi,t 0– 40.8 g/m2 Estimated summed daily growth of dry leaf biomass during the staging period at staging site s in year t

a 0.0082 m2/g Conversion factor from staging site quality to maximum probability of reproduction (see Equation 1)

KH 44,000 Individuals Carrying capacity in Helgeland (see Methods)

KV 88,000 Individuals Carrying capacity in Vesterålen (see Methods)

d 0.11 – Annual probability of mortality (Black et al., 2014)

Randomly chosen parameters (drawn from transformed uniform distribution)

cjuv 1, 2 or 3 – Criterion for juveniles choosing whom to follow: 1 = randomly chosen individual, 2 = randomly chosen

parent, 3=old individual (>10 years)

cgroup 1, 2, 3 or 4 – Criterion for group decision: 1 = randomly chosen group leader, 2 = randomly chosen parent is group

leader, 3 = oldest individual is group leader, 4 = majority vote; each individual has a preference and the

majority preference is chosen by all

g 20–1,000 Individuals Maximum group size (groups split in two when at size g, and merge with another group at size 0.25g).

g = x2, where x =
√
20−

√
2000

n 0–0.9 – Fixed annual probability of switching staging site. n = x2, where x = 0− 0.3. Used in models without

memory (models 1 and 4)

m 0.2–100 y Determines the rate of memory loss: m = 2x/10, where x = 1− 10

xa 0−0.4 g/m2 Threshold value of expected probability of reproducing at current staging site, below which the probability

of switching staging site starts to increase linearly (see Equation 3a). Used in models without ‘exploration’

xb −0.3 to 0.3 g/m2 Threshold value of the difference between the expected probability of reproducing in the alternative and

the current staging site, below which the probability of switching staging site starts to increase linearly (see

Equation 3b). The switching probability is set at zero if the individual has no expectation of the alternative

staging site. Used in models with ‘exploration’

xr 1–200 – The slope of increase in probability of switching as the expected probability of reproduction decreases.

xr = tan(x), where x = π/4− π/2

v 0–1 – Probability of exploring

w0 0–1 – Probability of first-year birds to change group in the next year

ge0 8,000–15,000 – Number of geese in Helgeland at which the probability to reconsider staging site choice starts to increase

ger 0–0.1 1/individuals The rate of increase in the probability to reconsider staging site choice as the number of geese in

Helgeland increases. ger = tan (x) /50, 000, where x = (π/8− π/2)

gem 0–1 – The maximum probability to reconsider staging site choice after arrival in Helgeland

gr0 0–3 m2/m2 Leaf Area Index in Helgeland at which the probability to reconsider staging site choice starts to increase

grr 0.1–1,000 m2/m2 The rate of increase in the probability to reconsider staging site choice as the Leaf Area Index in Helgeland

increases. grr = tan (x) /3, where x = (π/8− π/2)

grm 0–1 – The maximum probability to reconsider staging site choice after arrival in Helgeland

ar 0.2–100 y Factor that decreases with age, starting at age 1 (see Equation 5). ar = 2x/10, where x = 1− 10

arrival in Helgeland (Reconsidergrass). Grass cover is calculated
for each day in CATIMO as the leaf area index, LAI, measured
in m2 of grass leaves per m2 of ground. Both functions depend
on three parameters: the number of geese or the grass cover at
which the probability to switch starts to increase (ge0 and gr0),
the linear rate at which the probability increases (ger and grr),
and the maximum switching probability (gem and grm):

P
(

Reconsidergeese
)

=
(

max
(

0,min
(

gem, ger∗(NH − ge0)
)))

(4a)

P
(

Reconsidergrass
)

=
(

max
(

0,min
(

grm, grr∗(LAIH − gr0)
)))

(4b)

Aging
We explored four different potential effects of age. The first
assumed that the influence of previous experiences on the current

decision decreases with the age of the individual. We modeled
this by multiplying the probability of switching (see Equations 3a
and 3b) with an age-factor a that changes with age according to
the function

a = e
1−age
ar , (5)

where age is measured in years. Parameter ar (also in years)
determines the strength of the age-effect. A second possibility
is that the probability of exploring (v) decreases with the
individual’s age, which is modeled by multiplying v by age-factor
a. Thirdly, if the animals make migratory decisions in groups (see
component i), then there may be an age-effect in the probability
of changing to a randomly chosen new group, w0, which is then
multiplied by the age-factor a. Fourthly, there could be an age-
effect in the tendency of individual geese to reconsider their
staging site choice upon arrival in Helgeland. This is modeled by

Frontiers in Ecology and Evolution | www.frontiersin.org 6 January 2020 | Volume 7 | Article 502

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Oudman et al. How Barnacle Geese Adjust Migration

multiplying the probability to reconsider (Equations 4a and 4b)
with the age-factor a.

Empirical Data
To determine which model is most plausible, we compared the
simulations to two different sets of empirical data, both published
by Tombre et al. (2019). The first set consists of the annual
number of spring staging barnacle geese in Helgeland and in
Vesterålen. This set contains 86 data points, being the estimated
numbers of birds at each site in each year from 1975 to 2017
(Figure 1C). They were derived from annual counts during the
staging period in Helgeland and Vesterålen, and annual counts
of the total population size in the wintering area. The second
set of data points consists of the probabilities of individual birds
switching from staging in Helgeland to staging in Vesterålen
in subsequent years (from here on referred to as “switching
probabilities”). Each data point is the switching probability for
an individual of a given age (age 1 to age 20) in a particular
calendar year between 2000 and 2016 (Figure 1D). These data
points were derived from resightings of marked individuals at
both staging sites, as well as the wintering and the breeding area.
Further details can be found in Tombre et al. (2019). As hardly
any geese were observed staging in Vesterålen from 1975 to 1995,
we infer that switching probabilities from Helgeland were zero
from 1975 to 1995 for all ages. The years 1996 to 1999 were not
part of the analysis. This resulted in a total of (21 + 17) × 20 =
760 data points. We did not compare the switching probabilities
in the other direction (from Vesterålen to Helgeland), because
these could not be estimated in years when the simulated bird
numbers were zero in Vesterålen.

Model Selection: Approximate Bayesian
Computation
We evaluated the relative strength of the different models by
comparing simulations to the empirical data using Approximate
Bayesian Computation (ABC; Beaumont, 2010) in R (R Core
Team, 2018). This statistical tool has been developed to quantify
the fit of different individual-based models to different sets
of empirical data simultaneously. The ABC-method allows the
fit of different models to be compared (e.g., models with and
without memory), as well as comparing the fit of different
parameter values within each model (e.g., values of a parameter
determining the rate of memory loss). The method is called
“Bayesian” because the method updates the degree of belief in
each model given the empirical data. It is “Approximate” because
it is not an analytical method, which is generally not an option
for individual-based models, but instead relies on simulations
(van der Vaart et al., 2015). We used rejection-ABC, the simplest
and most accessible type of ABC that can be used for ecological
models with multiple parameters (van der Vaart et al., 2015,
2016). Calculations were performed as in the R-package “abc”
(Csilléry et al., 2012), except for indicated differences. Below, we
explain the method step by step.

First, parameter values are defined. Where possible,
parameters were estimated from the literature (see Table 1). For
the other parameters, distributions were defined such that all
possible values are included (see Table 1). These distributions are

referred to as “prior distributions.” Then, 10,000 simulation runs
were performed for each model. For each simulation, the values
of all parameters in the model were drawn at random from the
prior distributions. After all simulation runs were performed, we
calculated the distance between each run and the empirical data
(see next section). To give equal weight to both used datasets
(bird numbers and switching probabilities), we calculated the
distance of each simulation run to the empirical data separately
for each dataset, and then took the mean of the two to arrive at a
single distance estimate for each simulation run. Finally, the 100
runs with the smallest distance were selected. The evidence for
model x relative to model y is expressed by the Bayes factor (Bx,y),
which in this context is defined as the ratio of simulations from
each model among the selected runs (van der Vaart et al., 2016).

To test whether the result would change with more
simulations, we ran a bootstrapping test of the model selection
accuracy by repeating the procedure 100 times, each time with
a randomly chosen half of all simulation runs. To evaluate
the ability of the ABC-method to distinguish between different
models, we carried out cross-validation as implemented in the
function “cv4postpr” in the “abc” R-package, and described in
Csilléry et al. (2012). First, 100 simulation runs are randomly
selected from each model. Then, for each of these runs, the
complete model selection procedure is repeated after removing
this run from the simulation data and replacing the empirical
data with this run. The result is a “confusion matrix”, where each
row represents the number of simulations under each model, and
each column represents the number of simulations assigned to
that model by the model selection procedure.

The distribution of parameter values among the selected
simulation runs (“posterior distributions”) can be regarded
as a probability distribution for each parameter, and acts as a
sensitivity analysis. To test whether the posterior distributions
were significantly different from the prior distributions
(distribution of parameter values among all runs), we performed
a Chi-square test after dividing the data into 10 equally-sized
bins with the function “bin” in R-package OneR (von Jouanne-
Diedrich, 2017). To correct for multiple testing, we applied a
Bonferroni correction to the standard significance level of 0.05.

Calculating the Distance of Each
Simulation to Empirical Data
Distance (ρ) is defined as the standardized Euclidian distance
between all data points j in simulation i (Mi) and the same data
points in the empirically derived data (D):

ρ (Mi, D) =

√

√

√

√

√

∑

j

(

Mij − Dj

sd
(

Mj

)

)2

, (6)

where Mi,j is the output of run i for datapoint j, Dj is the
empirically derived value of data point j, and sd(Mj) is the
standard deviation of data point t in all simulation runs. As
in van der Vaart et al. (2015), we used standard deviation
instead of median absolute deviation (as is done in the “abc”
package; Csilléry et al., 2012), because the median was zero
for several datapoints and this led to undefined distances. To

Frontiers in Ecology and Evolution | www.frontiersin.org 7 January 2020 | Volume 7 | Article 502

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Oudman et al. How Barnacle Geese Adjust Migration

TABLE 2 | Model selection results, showing for each model the number of runs among the best 100 simulation runs.

Model Decision rule Number of selected runs

First step*

1 Random 0

2 Reconsidergeese 0

3 Reconsidergrass 0

4 Memory 0

5 Memory + Exploration 0

6 Random + Groups 0

7 Reconsidergeese + Groups 3

8 Reconsidergrass + Groups 0

9 Reconsidergeese + Reconsidergrass + Groups 0

10 Memory + Groups 30

11 Memory + Exploration + Groups 23

12 Reconsidergeese + Memory + Groups 35

13 Reconsidergrass + Memory + Groups 7

14 Reconsidergeese + Reconsidergrass + Memory + Groups 2

Second step*

10 Memory + Groups 0

12 Reconsidergeese+ Memory + Groups 0

15 Reconsider*geeseAge + Groups 0

16 Reconsidergeese + Groups*Age 60

17 Memory*Age + Groups 0

18 Memory + Groups*Age 6

19 Reconsidergeese*Age + Memory + Groups 0

20 Reconsidergeese + Memory*Age + Groups 0

21 Reconsidergeese + Memory + Groups*Age 34

Selected models are in bold.

*Model selection was performed in two steps: first only with models without “Age.” The best model and competitive models were tested in a second step, together with a new set of

models based on those models that included “Age”.

avoid overfitting, we chose to compare the simulations to the
statistically estimated trends (Figures 1B,C), rather than to the
raw empirical data. We made this decision because an unknown
part of the inter-annual variation in the empirical data is caused
by non-modeled processes, such as annual conditions in the
breeding area and observation errors.

Reducing the Number of Simulations
To reduce the required number of simulation runs, we adopted a
two-step model selection procedure. First, we performed a model
selection of scenarios without the “age” component (models 1
to 15 in Table 2), and executing 10,000 simulation runs per
model. We then composed seven additional models based on
the selected models, but also including an age-effect (models 16
to 24 in Table 2), and executed 10,000 simulations per model.
We did not consider models with an age-effect on more than
one component, to further limit the number of models to be
tested. These additional models were tested in a new model
selection procedure, also including the selected models from
the first model selection. For parameters in the first selection
where the posterior distribution was significantly different from
the prior distribution (Figure S1, Table 3), we updated the prior

distributions for the simulations in the second model selection
procedure (Table 3).

RESULTS

Model Selection
The simulation most similar to the empirical data was produced
by model 16, which includes “reconsidergeese”, “groups”, and an
age-effect on “groups.” The pattern resulting from this simulation
corresponded to the observed annual bird numbers at both
staging sites (Figures 3D,E). Moreover, it showed a decrease in
switching probability with age (Figure 3F), which was similar to
the pattern in the empirical data (Figure 1D). This model was
also the best represented model among the 100 best simulation
runs (60 out of 100 runs, Table 2). The same model but with
“memory” (model 21) was represented with 34 runs.With a Bayes
factor of B16,21 = 1.8 there is no evidence that memory does
not play a role, but it does not improve the performance of the
model in explaining the empirical data. Roughly, a Bayes factor
of 3 to 10 is regarded as “substantial evidence” and above 10 as
“strong evidence” (Kass and Raftery, 1995; van der Vaart et al.,
2016). Apart frommodels 16 and 21, onlymodel 18 (model 21 but
without “reconsidergeese”) occurred among the 100 best models,
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TABLE 3 | Significance test of parameter distributions in selected simulations.

Parameter Short description First step Second step

Range prior distribution P-value Range prior distribution P-value

cjuv Follow-criterion juveniles 1, 2 or 3 –† –

cgroup Follow-criterion group 1, 2, 3 or 4 <0.0001* 1, 2 or 3 <0.0001*

g Maximum group size 10–1000 <0.0001* 10−1000 <0.0001*

n Random switching probability 0−0.9 – –

m Rate of memory loss 0.2−100 0.0031 Original range 0.4

xa Switch threshold memory 0−0.4 <0.0001* 0−0.35 0.09

xb Switch threshold exploration −0.3 to 0.3 <0.0001* –

xr Increase rate of switching prob. 1−200 <0.0001* Original range 0.56

v Exploration probability 0−1 0.04 –

ge0 Start reconsidergeese 8000−15,000 0.09 Original range <0.0001*

ger Increase rate reconsidergeese 0−0.1 0.8 Original range 0.18

gem Maximum reconsidergeese 0−0.5 0.1 Original range 0.64

gr0 Start reconsidergrass 0−3 – –

grr Increase rate reconsidergress 0.1−1000 – –

grm Maximum reconsidergrass 0−1 – –

w0 Group-switching probability 0−1 <0.0001*

ar Age-factor 0.2−100 <0.0001*

*Significant after Bonferroni correction (significance level = 0.05/20 = 0.0025).
†
No p-value is given when not enough simulations with this parameter were among the selected runs to perform statistics.

with 6 runs (B16,18 = 10 and B21,18 = 5.7), meaning that there
is substantial evidence for models 16 and 21 over model 18, and
strong evidence over all other models. Hence, the results suggest
that staging site choice is made in groups, with a decrease over age
in the probability that individuals change groups, and that groups
switch to another staging site based on the current number of
geese at the staging site. The results are indefinite regarding
the role of previous experiences at the alternative staging site.
There is no evidence that exploration of the other staging site in
previous years plays a role, nor that there is an effect of current
food conditions at the staging site.

Model Validation
Because models 16 and 21 both came out as likely to underlie
the empirical data, we focused on these models in the model
validation. When repeating the model selection analysis 1,000
times with a randomly chosen half of the data, models 16 and
21 together always made up the majority of the selected runs
(range 91–100 out of 100 selected runs, mean 96, Figure 4).
Hence, the evidence for models 16 and 21 relative to the others
is robust. The only other model that appeared among the
selected simulations was model 18 (“memory”, “groups” and an
age-effect on groups, mean 4, range 0–9). The cross-validation
procedure suggested that the model selection performs badly in
estimating the underlyingmodel of randomly drawn simulations:
of the runs that were produced by model 16 or 21, only 67%
were also estimated as such (Figure S2). This result was to be
expected, because simulations were similar between models for
a large proportion of parameter combinations. For example,
switching did not occur at all in many simulation runs of all
models with “groups” (between 6 and 40%). When performing

the cross-validation procedure with the 100 best fitting runs of
each model instead of randomly drawn runs, then 98.5% of the
runs produced by model 16 or 21 were also estimated as such
(Figure S2). Hence, when the data was close to the observed
trends, the model selection performed well.

Parameter Estimation
In the 100 selected simulations runs of the first step in the
model selection (see Figures 3A–C for simulation results), the
distribution of values (posterior distributions) of 10 out of 15
parameters were significantly different from the defined prior
distributions, of which five were in models that were represented
among the best simulations (Table 3, Figure S1). For those
parameters, we defined new prior distributions for use in the
simulation runs for the main model selection (Table 3). In the
selected simulations after the second step in the model selection,
the posterior distributions of five out of ten parameters were
significantly different from the defined prior distributions (cgroup,
g, ge0, w0 and ar , Table 3, Figure 5).

In all of the selected runs the birds traveled in groups.
Smaller groups occurred more often among the selected runs
than larger groups (see Figure 5B). In most of the selected
runs, the oldest individuals led the group (78 out of 100 runs,
Figure 5A). Simulations where group decisions were made by a
majority vote always performed badly (seeTable 3 and Figure S1;
it did not occur in the selected runs in the first step, and
was therefore removed from the prior distribution of the main
selection procedure). Individuals switched between groups in
all selected simulations, with most of the runs having an initial
switching probability below 0.4, and a relatively slow decrease
with increasing age (Figure 5F). In the selected runs where the
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FIGURE 3 | Patterns in best simulation runs. (A,B,D,E) show the annual numbers of barnacle geese staging in Helgeland and Vesterålen, respectively, from 1975 to

2017. The empirical estimates ± confidence interval (Tombre et al., 2019) are indicated by the light colors and dashed lines. Solid lines are the 25 best simulation runs.

(C,F) shows for the single best simulation run the probability of switching from Helgeland to Vesterålen in the next year, by calendar year (2000–2016, x-axis) and by

age (0–20, y-axis). The results of the first step in the model selection are on the left (A–C), the results of the second and final step are on the right (D,E,F).

probability for a group to switch increased with goose numbers
at Helgeland (94 out of 100), birds started to switch when
numbers were between 10,000 and 15,000 geese (parameter ge0).
The selected runs including “memory” and “reconsidergeese”
responded less strongly to density (parameter ger) than the runs
with “memory” but without “reconsidergeese” (Figure 5D). There
was no pattern in the maximum probability to reconsider staging
site (parameter gem; Figure 5D). The selected runs with memory
(40 out of 100) showed no clear pattern in the rate of memory loss
(parameter m; Figure 5F), suggesting that the rate of memory
loss is not importantly affecting the dynamics. The same was the
case for xr , the rate at which the probability of switching increases
when the expected probability of reproducing declines (the slopes
in Figure 5C).

DISCUSSION

Simulations resembled the empirical data best when geese were
assumed to travel in small groups that are led by the oldest
individuals, and when young geese switched more between

groups in subsequent years than did older individuals (Table 2,
Figure 5). Further, the results suggest that the current food
conditions are of minor importance to staging site choice, but
that the abundance of geese in Helgeland does increase the
probability for groups to reconsider their choice and continue
to Vesterålen. The model results are indecisive about whether
experiences acquired by the group leaders in previous years,
i.e., the “memory” component, influence the decision to switch
staging site. We found no evidence that experiences at the
alternative staging site in previous years contributes to the
decision (Table 2). Below we discuss the implications of these
results in more detail.

Grouping
The well-known fact that geese operate in groups need not
inherently imply that each individual’s choice of staging site
is influenced by other members the group. For example,
group-foraging pink-footed geese during spring staging
decided individually on their specific daily foraging locations
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FIGURE 4 | Bootstrapping test of model selection. The ABC-analysis was

repeated 100 times, each time using a randomly drawn 50% of all simulation

runs. Plotted are the frequency distributions of the representation of each

model among the 100 best simulation runs in each repeat, excluding zero. The

only models that always occurred among the selected runs are models 18

(green, mean = 4), 21 (blue, mean = 32) and 16 (red, mean = 64). Models 16

and 21 together always represented at least 91 of the 100 selected runs (gray,

mean = 96). These are two models that include “reconsidergeese”, “grouping”,

and an age-effect on “grouping.” Model 21 additionally includes “memory”

(see Table 2 and Figure 2).

(Chudzinska et al., 2016). Our results are the first to suggest that
group decisions do play a role in the choice of staging site. In all
selected simulations (i.e., best fitting with the empirical data),
staging site choice was made in groups.

The results further suggest that these decisions are not arrived
at by a majority vote. The gradual increase in numbers in
Vesterålen in the 1990s is not compatible with this decision
rule, which requires a high proportion of all individuals to
prefer switching, before the first geese start to switch. This aligns
with the idea that strong conformity is generally not a good
strategy in changing environments, because innovative behavior
is unlikely to spread even when highly adaptive (Eriksson et al.,
2007; Kandler and Laland, 2009). The most likely group decision
rule was to follow the oldest, and therefore most experienced,
bird of the group. This rule performed better than following
parents (Chi-squared test, χ2

1 = 36.6, p < 0.0001), which
in turn performed better than following a random individual
(Chi-squared test, χ2

1 = 7.7, p = 0.006).
Following experienced birds might be adaptive because the

annual food conditions at the staging site vary stochastically
(Figure 1B), and longer experience will provide a better
prediction of next year’s staging site conditions. In contrast,
following an individual that produced offspring in the previous
year is hardly predictive of the chances to reproduce in this year
if annual stochasticity is high (Baldini, 2012). This may explain
why the model results indicated that following an individual that
raised offspring was less likely than following an experienced
leader. That following experienced birds is better than following
successful breeders also could explain why in reality most first-
year barnacle geese choose not to follow their parents on their
first spring migration; on average, it would provide a higher
pay-off to follow old and experienced individuals than to follow
the parents. However, inclusive fitness arguments predict that
unrelated group members may be more hostile than parents or
other related individuals. Indeed, this also holds for barnacle

geese (Black et al., 2014). Nonetheless, there aremore examples of
animals that are more likely to copy old (Amlacher andDugatkin,
2005) and knowledgeable (Kendal et al., 2015) individuals, and to
copy experienced others rather than the parents (Agostini et al.,
2017). In bird flocks, leaders have been shown to be the more
experienced individuals (Flack et al., 2012; Mueller et al., 2013).
Our results imply that following experienced birds is especially
advantageous when recent success needs not be a good predictor
of subsequent success, but multiple-year averages of success are.

Reconsideration of Staging Site Choice at
Arrival in Helgeland
The component “reconsidergeese” featured in all selected
simulation runs. In models with this component, group leaders
are more likely to reconsider their staging site choice after
arrival in Helgeland in years when the number of birds in
Helgeland is high. Simulations with this density-dependent effect
corresponded better to the empirical data, because this effect
keeps individuals from switching to Vesterålen before 1990. This
also explains why simulation runs with “reconsidergrass” do not
perform well, not even when combined with “reconsidergeese”.
In models with “reconsidergrass”, the probability of reconsidering
staging site choice increases as the grass phenology is more
advanced at arrival in Helgeland. In those simulation runs,
individuals do often colonize Vesterålen before 1990 because
years with an early spring also occurred before 1990 (Figure 1B).
Hence, these results suggest that the choice between Helgeland
and Vesterålen is not a direct response to the “green wave”
of spring phenology (van der Graaf et al., 2006). Instead, the
growing preference for Vesterålen follows from a response to
other geese, both positive (grouping) and negative (density-
dependent switching).

Memory and Exploration
From an optimal foraging perspective, it is expected that any
knowledge about the conditions at the current or alternative
staging site should play a strong role in the decision whether or
not to return to the current site in the following year (Stephens
and Krebs, 1986, Abrahms et al., 2019). This influence was
captured in the “memory” and “exploration” components of the
model. The “memory” component was part of 40 out of 100 of the
selected simulations (models 18 and 21; see Table 2), Although
this is not evidence against memory playing a role, we conclude
that there is no need to assume that geese memorized foraging
conditions at the staging site in the previous year(s). Note that
this only concerns memory of foraging conditions. In all models,
individuals (or at least group leaders) are assumed to have spatial
memory, and remember the migration route and staging site of
the previous year (Mettke-Hofmann and Gwinner, 2003).

Adding the “exploration” component also did not improve
the fit of simulations to the data, as the best model in the first
step of the model selection with exploration (model 12) was
less well represented than the same model without exploration
(model 11). Hence, the current results are also indecisive with
regard to the importance of exploration for decision-making.
Geese have only rarely been observed to spend a significant
amount of time at both staging sites in one spring, but they
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FIGURE 5 | Parameter values of selected simulation runs. The pre-defined parameter distributions from which random values were drawn for each simulation are

given in light gray. The frequency distributions of parameter values among the 100 selected simulation runs in the main model selection (see Table 2) are given in dark

gray. In the line graphs, each model is shown in a different color. For the bar plots, patterns did not differ between models. (A) gives the following criterion in each

simulation of the models with “groups” (parameter cgroup). (B) is the frequency distribution of the maximum group size in each simulation run (parameter g). The lines in

(C) define how the annual switching probability depends on the individual’s expected probability of reproducing at the current staging site, E(bc). They are determined

by parameters xa (threshold value below which the probability becomes non-zero) and xr (the slope of the line below xa) in the models with memory but without

exploration. In (D), the lines are determined by parameters ge0, ger and gem in the models with “reconsidergeese”, which determine how the probability to switch

preference after arrival at the staging site, depending on the number of geese there. (E) shows how, resulting from differences in m, the weight of each memory

declines over the years. The lines in (F) depend on parameters w0 and ar , and define how the probability of switching between groups decreases with age in each

simulation (only models 16 and 21).

occasionally made a short stop in Helgeland before continuing
to Vesterålen (PS, IT and JP, unpublished data). Less frequently,
geese staging in Helgeland were also observed in Vesterålen at the
end of the staging period, although most geese fly directly north
after staging in Helgeland (PS and Larry Griffin, unpublished
visual observations of departing geese and satellite tracks). A
potential way forward is to add a third set of empirical data
to the comparison, for example containing information on
individuals that were (or were not) observed at multiple staging
sites, in relation to their switching behavior. However, exploring
individuals may be easily missed by observers if they land only
shortly or not at all, making it hard to determine the rate
of occurrence by ring resightings. More information on the
rate of exploration and age-dependent changes in exploration
could be derived by tracking individuals with gps-tags. Another
possibility is to model the effect of exploration in more detail,
which might lead to a better fit with the current empirical data.
For example, new simulations could allow the probability of
exploring Helgeland when staging in Vesterålen to be different
from the probability of exploring Vesterålen when staging
in Helgeland.

Aging
The finding that migratory decisions are age-dependent confirms
a general trend that young birds become more consistent in
their migratory decisions as they grow older (Lok et al., 2011;
Oppel et al., 2015; Vansteelant et al., 2017). In Eurasian spoonbills
(Lok et al., 2011) as well as in pink-footed geese (Clausen
et al., 2018), a higher probability for young individuals to
switch wintering site between years was attributed to young
birds being more explorative. This has also been the main
hypothesis to explain the higher probability of staging site
switching by barnacle geese (Tombre et al., 2019). However,
our results suggest that juveniles do not explore new staging
sites deliberately. Instead, they are more likely to travel with
different groups in subsequent years, which results in a higher
probability of ending up at different staging sites. Also this group-
switching behavior might be understood as being “explorative”,
but it is social exploration rather than spatial exploration. This
is an important distinction because it implies that migratory
innovation needs not start with young and naïve individuals, as
was suggested before. The modeling exercise indicates that the
colonization of Vesterålen is more likely to have been initiated
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by old and experienced individuals, which were being followed
by young animals.

Suggestions for Future Research
By comparing our simulations to the statistical trends in the
empirical data (instead of the raw empirical data) uncertainty
in the empirical trends were not conveyed to the statistics of
our model selection procedure. We think that this method is
to be preferred over using the raw data in this case, because
the empirical trends were derived from a resighting analysis of
individual bird observations. That analysis takes into account the
probability of either not observing a bird when it is actually there
(resighting probability) or not observing a birds because it is dead
(mortality probability; for details see Tombre et al., 2019). To take
these considerations into account when comparing individual-
based models to the raw data, it would be necessary to also
simulate the process of data collection within these models.
We propose that incorporating data collection in the simulation
exercise could be an interesting venue for future research.

In individual-based models, each decision must be modeled
explicitly (Bauer and Klaassen, 2013). The advantage is that all of
the underlying assumptions, many of which remain implicit and
are often ignored in other types of modeling, become explicit. A
disadvantage is that it remains unknown how much the way a
process is modeled affects the results. For example, we modeled
the process of pair formation and group formation in a basic
way, with young individuals choosing a partner or a group at
random. There are indications that individuals will be more
likely to group with others that they grew up with (Choudhury
and Black, 1994; van der Jeugd et al., 2002). Other studies have
shown that social structure within groups can have strong effects
on group dynamics (e.g., Bateman et al., 2013). Modeling these
aspects more precisely could produce further insights into the
causes and consequences of group formation by barnacle geese.

We stress that we only investigated the tip of the iceberg when
it comes to individual differences. There may well be differences
in decision-rules between individuals other than those mediated
by age. Research on individual differences (Dingemanse et al.,
2010), including those in barnacle geese (Kurvers et al., 2009),
has shown that animals within the same population and of the
same age can differ greatly in personality characteristics such
as dominance, aggression, and exploration. Although beyond
the scope of this study, such individual variation could be
incorporated as an extension of the current study by assuming
that individuals within the same population can act according to
different sets of decision rules.

Cultural Evolution of Migratory Behavior
Social learning is an essential part of migratory inheritance and
development for many migratory bird species (Sutherland, 1998;
Helm et al., 2006; Németh and Moore, 2014), and for barnacle
geese in particular (e.g., Eichhorn et al., 2009; Jonker et al.,
2013). This study is the first attempt to infer the details of the
learning processes in migratory decision-making from empirical
data. The results indicate that geese travel in groups led by the
oldest individual whose decisions are density-dependent, and

the modeling explains how barnacle geese are able to respond
so rapidly to long-term trends in competition and climate
change at the staging sites. This is in line with the long-held
conviction that cultural evolution allows for faster adaptation
than genetic evolution (Boyd and Richerson, 1985; Sutherland,
1998). However, copying the behavior of conspecifics can also
inhibit behavioral adjustment, and cause sub-optimal traditions
to be maintained (Warner, 1988; Day et al., 2001; Németh and
Moore, 2014). In order for social learning to lead to rapid
adaptation, it typically needs to be combined with some low
amount of individual learning, or other processes that introduce
variation (Rendell et al., 2010). Intriguingly, the decision process
that we identified here as being the most likely for migratory
decisions by barnacle geese, does exactly this. Most geese follow
others, but some of the experienced geese that lead the groups
alter their decisions in response to current conditions.

We have discussed how the adaptive value of the observed
decision rules is expected to depend on the amount and nature
of the environmental variation. Although we expect that our
results will also apply to other decisions, both by barnacle geese
and by other social species, we stress that care should be taken
when generalizing the results. An interesting venue for future
research will be to apply the methods presented here to other
published studies of migratory behavior across taxa and across
situations. Finding general patterns between decision rules and
environmental and social context will help to understand why
some populations are more vulnerable to environmental change
than others, and allow for better predictions of the ecological
consequences of climate change. Currently, most studies of
population dynamics do not consider the specific processes by
which animals make their decisions. While arguably in some
cases this may be a legitimate simplification, in cases like
the present one, social and developmental aspects of decision-
making turn out to be essential for understanding the population-
scale response to environmental change.
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