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Both biotic and abiotic factors likely played a role in influencing the diversification

patterns of clades. Although the role of environmental forcing on the long-term evolution

of biodiversity has been explored for invertebrate clades, little is known about how

vertebrate groups responded to environmental changes. Among vertebrates, fishes

(ray-finned fishes and elasmobranchs) have a long, rich, and complex evolutionary

history comprising numerous diversification and extinction events. Yet, knowledge on

the causes for the diversity fluctuations of these most speciose aquatic vertebrate

clades in modern marine and continental ecosystems were restricted to qualitative

interpretations. Here we use multiple regression methods to quantitatively examine

the role of six abiotic parameters over the long-term variations of elasmobranch and

actinopterygian genus-level diversity. We find that marine actinopterygian diversity is

mainly controlled by temperature while continental fragmentation is the primary driver

of the diversity fluctuations of elasmobranchs. Sea-level variations correlate positively

with the diversity variations of both marine groups, whereas none of the tested proxies

explains the diversity variation of freshwater ray-finned fishes. Our results indicate that

such contrasting responses are mainly due to ecological and life-history trait differences

between these groups.

Keywords: macroevolution, abiotic factors, actinopterygians, chondrichthyans, biodiversity, climate

INTRODUCTION

Understanding the relationships between biodiversity and global environmental variations through
geological time represents a major focus in macroevolution and global change studies. However,
this challenge has long been hampered by controversies over how much reliable the fossil record
is (Erwin, 2009). It has been demonstrated that taking the fossil record at face value to estimate
diversity variations produces inaccurate palaeodiversity reconstructions due to several geological
and sampling biases that affect its direct reading (Raup, 1976; Peters and Foote, 2001; Smith,
2001; Peters, 2005, 2006; Benton and Emerson, 2007). Over the past decade however, a number
of analytical approaches have been developed to circumvent these biases and produce more reliable
estimates of deep-time diversity variations based on fossil data (Norell, 1993; Alroy et al., 2008;
Alroy, 2014; Silvestro et al., 2014). Meanwhile, geochemical studies have gathered a tremendous
amount of data (Prokoph et al., 2008; Veizer and Prokoph, 2015) on a number of proxies that reflect
climate and environmental parameters (Cárdenas and Harries, 2010; Hannisdal and Peters, 2011;
Mayhew et al., 2012). These recent advances have permitted to test the hypothesis of a long-term
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control of various environmental factors over the fluctuations of
taxonomic richness throughout the Phanerozoic. These studies
mainly focused on marine invertebrate data (Mayhew et al.,
2008, 2012; Cárdenas and Harries, 2010; Ezard et al., 2011;
Hannisdal and Peters, 2011; Liow et al., 2015), whereas those
that explored the role of some environmental variations over
marine or continental vertebrate clades are comparatively scarce
and concern low-diversity tetrapod groups (Marx and Uhen,
2010; Benson and Butler, 2011; Butler et al., 2011; Martin et al.,
2014; Mannion et al., 2015). Multiple lines of evidence indicate
that temperature acted as a major control over the evolutionary
history of clades (Aguirre and Riding, 2005; Hunt et al., 2005;
Marx and Uhen, 2010; Ezard et al., 2011; Figueirido et al., 2012;
Mayhew et al., 2012; Condamine et al., 2013, 2019; Martin et al.,
2014; De Blasio et al., 2015; Mannion et al., 2015), but it has
been demonstrated that other factors such as sea-level (Peters,
2005; Benson and Butler, 2011; Hannisdal and Peters, 2011),
tectonics (Zaffos et al., 2017), and nutrient availability (Cárdenas
and Harries, 2010) likely acted over the evolution of biodiversity.

We focus on elasmobranchs (sharks, skates, and rays)
and actinopterygians (ray-finned fishes)—the most speciose
aquatic vertebrate clades in modern marine and continental
ecosystems—to test the hypothesis of a long-term control of
abiotic factors over vertebrates’ diversity. These clades encompass
a tremendous range of ecological, biological, morphological
and environmental adaptations and their evolutionary history
includes three of the biggest diversification events among
jawed vertebrates (Alfaro et al., 2009). Previous family-level
analyses indicated similar diversification patterns for marine
actinopterygians and elasmobranchs, whereas the diversity
variations of freshwater actinopterygians show contrasting
patterns (Guinot and Cavin, 2015). However, quantitative
analyses of the determinants of the diversification patterns of
these clades are lacking at lower taxonomic levels. Here we
use multiple regression methods to examine the role of six
abiotic parameters over the long-term diversity variations of
elasmobranch, marine and freshwater ray-finned fish clades
based on bias-corrected diversity data at genus level.

METHODS AND DATA

Taxic Diversity Data
The diversity datasets used in the present work (Figures 1A,B,
Supplementary Data 1) encompass all extant and extinct
elasmobranch genera (541 taxa) over most of the time interval
of the group (Upper Triassic to Recent) and all extinct
actinopterygian genera (780) over the Upper Jurassic-Paleocene
interval. Post-Paleocene phylogenetic and fossil record data for
actinopterygians could not be included in the analyses for a
two-fold reason: integrating extinct taxa into the still fluctuating
molecular phylogenies of recent acanthomorphs alongside the
necessary re-assessment of the systematic affinities of much of
the enormous Eocene to Recent fossil record are tasks beyond
the scope of this study.

Data were extracted from a phylogeny-based analysis
of elasmobranch and actinopterygian fossil records and
diversification patterns (Guinot and Cavin, 2016). This

analysis produced a genus-level supertree for each clade and
provided phylogenetic diversity estimates (PDE). For each
timescaled phylogeny, polytomies were treated in two ways
following Boyd et al. (2011): (i) resolved in chronological order
[pectinate arrangement placing the taxon having the oldest
First Appearance Datum (FAD) at the base of the resolved
clade and the one with the youngest FAD in the most derived
position] and (ii) resolved in reverse-chronological order
(pectinate arrangement placing the taxon having the youngest
FAD at the base of the resolved clade and the one with the
oldest FAD in the most derived position). This produced two
topologies (chronological and reverse-chronological polytomy
resolutions) for each of the supertrees considered. Uncertainty
in the age of FAD were considered in each tree topologies
by randomly picking an absolute age within the FAD range
of each taxon, for each 1,000,000 replicates as in Boyd et al.
(2011). Two tree topologies were selected for each polytomy
resolution method based on their congruence scores (Wills,
1999; Pol and Norell, 2001), which assess the fit of phylogenetic
relationships with stratigraphic ranges of terminal taxa. This
resulted in four phylogenetic diversity estimates (PDE) for
each clade: most congruent chronological, least congruent
chronological, most congruent reverse-chronological and least
congruent reverse-chronological (see Guinot and Cavin, 2016).
Actinopterygian PDE data were further divided into three
datasets corresponding to three ecological preferences: (i)
exclusively marine actinopterygian genera, (ii) exclusively
freshwater actinopterygian genera, and (iii) genera from
mixed environments (i.e., genera either including species from
freshwater and marine environments, or including euryhaline
taxa). The latter were excluded from our analyses because of
equivocal environmental distributions. For each dataset, analyses
were performed on each four PDE data. We also selected the
median diversity value for each time bin in order to sum up all
PDE in one curve (Figures 1A,B).

Selection of Explanatory Variables
Data on abiotic variables (Figures 1C–H,
Supplementary Data 1) were taken from the literature and
averaged for each time bin to comply with the diversity data.
Two sets of data on sea level fluctuations were selected. Data
from Haq et al. (1987) are based on sequence stratigraphy
and span the Triassic-Recent interval. Sea level data from
Miller et al. (2005) reflect eustatic changes due to variations in
continental ice sheet volumes, which are recorded by δ

18O from
foraminifera over the Early Jurassic-Recent interval. Data of
Miller et al. (2005), although more recent, do not span the entire
time interval of the elasmobranch evolutionary history. We
therefore created a composite sea level dataset by standardizing
the original data at minimal and maximal values of 0 and 100,
respectively, following Cárdenas and Harries (2010) and using
the function scale () of the R-package “Scales” (Wickham, 2017).
We then selected the scaled data of Miller et al. (2005) for the
Aalenian-Recent interval and those of Haq et al. (1987) for the
Carnian-Toarcian interval. Oxygen isotope records (expressed as
δ
18O values) were selected as representatives of trends in global
climate change. Although climate change is multifactorial, δ18O
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FIGURE 1 | Global “fish” genus-level diversity and abiotic variables. (A) PDE estimates for elasmobranchs and (B) for actinopterygians. Thick curves represent the

median values computed to sum up the four PDE considered here and pale-colored areas represent the range of values of all PDE. Curves were produced using the

spline interpolation method based on diversity values of each time bin. (C) Oxygen isotope data, (D) continental fragmentation index, (E) strontium, (F) carbon,

(G) sulfur, and (H) sea-level data. Empty gray circles represent data points that served to compute mean data points (black points) for each time bin. Curves were

produced using the spline interpolation method and are provided for visual representation of the trends only. Source data are available in Supplementary Data 1.

records are considered as an inverse proxy for global climate
change that mainly reflects temperature fluctuations (also global
ice volume during icehouse periods) (Zachos et al., 2008). The
δ
18O data used here were taken from Veizer and Prokoph (2015).
We selected the surface-water (mixed surface layer) data for the
temperate and tropical realms excluding deep-sea and high-
latitude data to preserve a homogenous signal over time bins
and to comply with the dominant geographic and environmental

distributions of the taxa included in our dataset. The δ
13C data

of Prokoph et al. (2008) were selected to represent a proxy
of productivity and preservation of organic matter (Cárdenas
and Harries, 2010). Proxies representing nutrient input from
continental weathering (Martin, 1996; Shields, 2007) (87Sr/89Sr)
and from recycling of organic material in ocean sediments
(Cárdenas and Harries, 2010) (δ34S) over the Triassic-Recent
interval were extracted form Prokoph et al. (2008). Missing value
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for two time bins (Tithonian and Hettangian) in the δ
34S data

were extrapolated using the spline interpolation method with
the function aspline () of the R-package “akima” (Akima and
Gebhardt, 2016) to perform an univariate akima interpolation
at 0.5 years intervals. These were then averaged for each of the
time bins used here. The index of continental fragmentation
produced by Zaffos et al. (2017) that ranges from 0 (maximum
tectonic plate aggregation) to 1 (complete plate fragmentation)
was selected as another abiotic variable to represent temporal
changes in the geographic arrangement of continental crust.

Proxies representing geological sampling were selected
in order to account for the possible effect of this parameter
in biasing diversity estimates. The elasmobranch and
actinopterygian fossil records have been sampled since the
end of the 18th century with uneven information about historic
collections, which precludes a direct measure of the number
of fish-bearing collections. Consequently, sampling effort is
represented here by counts of fossiliferous geological stratae
and we also considered counts of fossil collections, which were
tested alternatively in our models. Collection or strata ages
that span several time bins due to uncertainty were considered
present in their whole age range. Data representing this proxy
were downloaded from the Paleobiology Database (http://
paleobiodb.org, accessed on July 2018) and divided into marine
and continental subsets.

Generalized Least Squares
This approach is a multiple regression method that offers
the possibility of comparing a single dependent variable (here
the PDE) to multiple explanatory variables (proxies). Whereas
ordinary least square (OLS) regressions assume no serial
correlation, generalized least squares (GLS) do not assume that
data series or values within data series are independent and
include autoregressive models in the analyses to account for
autocorrelation issues. The set of models tested here comprises
all possible combinations among the six explanatory variables
considered as well as a null (intercept) model, which resulted in
64 models. The marine-related explanatory variables represented
by δ

13C and δ
34S were not considered in analyses of the

freshwater actinopterygian PDE because of their irrelevance as
proxies for continental macroevolutionary patterns. However,
we chose to keep the 87Sr/89Sr variable as it also represents
variations in weathering intensity of landmasses and orogenic
uplifts (Raymo and Ruddiman, 1992; Shields, 2007). This resulted
in 33 models (including the null model) for the freshwater
actinopterygian analyses. All models were duplicated to include a
variable representing the rock record sampling, either expressed
as the global count of fossiliferous stratae or as the number of
fossil collections. This was made with the aim of considering the
potential increased fit of adding such variables to our models,
which would suggest incomplete sampling bias correction of the
diversity variables. Following the method used in some previous
macroevolutionary studies (e.g., Hunt et al., 2005; Marx and
Uhen, 2010), we first fitted our 128 models (66 models for the
freshwater data) using OLS and then fitted autoregressive models
[function ar () of the R-package “Stats”] of order 1 (first-order
autoregressive covariance model) to the residuals of the OLS. We

then ran our models using GLS with the correlation structure of
the residuals provided for the first order of autoregressivemodels.
We subsequently compared the fit of autoregressive orders 0 (no
autocorrelation) and 1 for eachmodel and selected the best model
for each combination of variables using the modified version
of Akaike’s information criterion for small sample sizes (AICc).
The conditional probabilities for each model (Akaike weights,
wAICc) as well as the generalized coefficient of determination
(R2) were computed to inform on the proportion of variance in
the dependent variable that is explained by each model.

Non-normality of the residuals and heteroskedasticity
(unequal variance of residuals) can cause issues in biasing
estimates of the standard errors and of the variance of
the coefficient estimators (incorrect testing of confidence
intervals and hypothesis testing). We tested for normality and
homoskedasticity of residuals using the Jarque and Bera (1980)
and Breusch and Pagan (1979) tests, respectively. Most models
for the elasmobranch dataset and some models in the marine
and freshwater actinopterygian datasets contained non-normally
distributed residuals that could not be removed by transforming
the data (either Log or Square root transformation). For
elasmobranch data, non-normality was avoided by deleting
the data point for the Pleistocene-Recent interval and, in most
instances, models that contained non-normality in all datasets
were not ranked among the best fit models and did not affect
the interpretation of our results. One exception is the freshwater
actinopterygian analysis on the least congruent chronological
PDE data, which contains non-normally distributed residuals.
However, results were comparable to the same models for
other freshwater actinopterygian PDE datasets with normally
distributed residuals (see below). Heteroskedasticity was absent
from the models of the actinopterygian datasets but present
in some models of the elasmobranch dataset and we used
heteroskedasticity-consistent standard error (and p-value)
estimators (White, 1980) to correct estimates. We used the
function vcovHC () of the R-package “Sandwich” to produce
heteroskedasticity-consistent estimations of the variance-
covariance matrix of coefficient estimates using the H3 type, as
recommended by Long and Ervin (2000). However, such method
might overcorrect for heteroskedasticity since significance is
sometimes lost after H3 type correction for variables in models
that contain heteroskedasticity, whereas similar homoskedastic
models used for other PDE estimates provided significant
correlations (see below).

Ecology Data
We compiled the main ecologies of living marine actinopterygian
and elasmobranch species (Supplementary Data 2) with the aim
of estimating the proportion of species living on (benthic) or
close to (demersal, bathydemersal) the bottom among these
two clades. Species with a range of ecologies that are not
strictly benthic/demersal (e.g., benthopelagic) were not counted.
Data for marine actinopterygians were extracted from FishBase
(Froese and Pauly, 2019) through the R package “rfishbase”
(Boettiger et al., 2012) and those for elasmobranchs were mainly
taken from Ebert et al. (2013) and Last et al. (2016) with some
complements from FishBase. For elasmobranchs, among a total
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of 1,203 species, 1,157 are marine and 1,003 marine species
are benthic, demersal, or bathydemersal. Among the 14,324
strictly marine actinopterygian species, 6,560 species are benthic,
demersal or bathydemersal.

RESULTS

Results of our analyses on the median diversity data are
summarized in Table 1 and those of all PDE datasets are detailed
in Supplementary Data 3–5. Regardless of the taxonomic dataset
considered, none of the models including the sampling bias
proxies as an additional explanatory variable is ranked among the
best fit models (Supplementary Data 3–6). This tends to suggest
that PDE provide robust estimations of diversity and efficiently
correct for sampling biases. Alternatively, the sampling biases
affecting the elasmobranch and actinopterygian datasets might
not be accurately represented by the available global sampling
bias proxies. However, in the absence of a direct measure of
the number of “fish”-bearing collections (see section Selection
of Explanatory Variables), there are no other available data that
quantify sampling biases.

Results for the elasmobranch dataset indicate close 1AICc
values for the first four best fit models as well as low wAICc
(Supplementary Data 3), suggesting a nearly equivalent fit.
However, all four best fit models, which altogether represent a
cumulative wAICc of 0.807, indicate a strong (from 587 to 597
according to models) and statistically significant (p < 9.98e−10)
positive correlation coefficient for the continental fragmentation
index. Sea level correlates weakly (0.909–0.92) but significantly
in all first four models. Similarly, sulfur correlates moderately

(3.14–3.28) in all four models with statistical significance for
all of them, although significance is lost after the use of
heteroskedasticity-consistent estimates for the two models that
contain heteroskedasticity.

Results for the marine actinopterygian dataset indicate that
the best fit model (wAICc = 0.497, R2 = 0.986) is the one
that comprises all six abiotic variables. Among them, surface-
water (mixed surface layer) δ

18O values have a strong negative
correlation coefficient (−37.57) with strong statistical support
(p = 0.015). In addition, a positive correlation (4.35) is
found significant (p = 0.019) for the variable representing sea
level fluctuations. Similar results are found for all four PDE
datasets taken independently (Supplementary Data 4). Analyses
on the freshwater actinopterygian data identify the model
including δ

18O, continental fragmentation and 87Sr/89Sr data as
explanatory variables (wAICc = 0.565, R2 = 0.90). However,
none of the correlation coefficients is statistically supported,
and similar results are obtained for each PDE hypothesis
(Supplementary Data 5).

Our results indicate that sea-level fluctuations correlate
positively with the diversity variations of both marine
actinopterygians and elasmobranchs. Furthermore,
elasmobranch diversity is strongly positively correlated with
continental fragmentation whereas diversity fluctuations of
marine actinopterygians are predominantly affected by sea
surface temperature variations. It could be expected that
differences between both marine clades be due to the different
time interval covered by the elasmobranch (Upper Triassic-
Recent) and actinopterygian (Upper Jurassic-Paleocene) datasets.
However, analyses ran with the elasmobranch dataset over the
Upper Jurassic-Paleocene interval still indicate that continental

TABLE 1 | Estimated best-fit model parameters computed with generalized least squares regression for the median genus-level PDE of the elasmobranch, marine, and

freshwater actinopterygian datasets.

Elasmobranchs Actinopts (marine) Actinopts (freshwater)

Model details

R2 0.792 0.986 0.903

AICc 295.02 126.673 103.729

wAICc 0.246 0.497 0.565

AR order 1 1 1

JB 0.526 0.289 0.134

BP 0.258 0.352 0.191

Correlation coefficients ± SD (p-value)

Sea level 0.914 ± 0.34 (9.9E-3)* 4.35 ± 1.58 (1.86E-2)* –

δ
18O −2.01 ± 3.19 (0.53) −37.57 ± 13.12 (1.15E-2)* 2.48 ± 4.86 (0.62)

δ
13C – −2.99 ± 9.56 (0.76) –

87Sr/89Sr −8.2E3 ± 8.81E3 (0.36) 3.15E4 ± 8.29E4 (0.71) 4.07E4 ± 2.81E4 (0.17)

δ
34S 3.14 ± 1.16 (0.01)* 10.08 ± 6.39 (0.14) –

Cont. Frag. 590.74 ± 84.69 (0.0)* −675.14 ± 475.9 (0.18) −106.44 ± 133.72 (0.44)

Significance at alpha = 0.05 is indicated with asterisks (*). R2 is the generalized coefficient of determination. AICc is the modified version of Akaike’s information criterion for small

sample sizes. Akaike weights (wAICc) represent the probability that the model is the best one given the observed data and considering the set of candidate models. AR order indicates

the order of the autoregressive model. JB and BP indicate the p-value of the Jarque-Bera (non-normality) and Breusch-Pagan (heteroscedasticity) tests, respectively. All models were

duplicated with the addition of a sampling proxy to account for the potentially biasing effect of sampling on PDE trends. Results shown here comprise the number of geological stratae

as sampling proxy, those using the number of fossil collections are provided in Supplementary Data 6. Complete model rankings and parameter values for each PDE are included in

Supplementary Data 3–5. Cont. Frag., continental fragmentation index.
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fragmentation has a strong and significant positive correlation
coefficient in all best fit models (Supplementary Data 7).

DISCUSSION

A positive relationship between diversity and continental
flooding, through eustatic sea level change, has been observed for
both marine invertebrates (Peters, 2005; Hannisdal and Peters,
2011) and marine tetrapods (Benson and Butler, 2011; Butler
et al., 2011; Mannion et al., 2015). Continental flooding has been
considered as a potential driver of marine diversity through a
species-area relationship (Peters, 2005) by controlling the extent
of epicontinental seas [although the relationship might be more
complex, see Holland (2012)], which host most of the marine
vertebrate and invertebrate diversity today (Tittensor et al., 2010).
A previous macroevolutionary analysis on marine vertebrates
indicated that sea level is positively correlated with the diversity
of shallow marine tetrapods, but showed a weaker relationship
with open sea taxa (Benson and Butler, 2011). It is likely that
the positive correlation found with marine actinopterygians and
elasmobranchs reflects the dominance of shallow water taxa in
the clades analyzed here. Numerous studies have suggested or
found a link between sea level (or continental flooding) and
sampling bias metrics (Sepkoski, 1976; Peters and Foote, 2001;
Smith, 2001; Peters, 2005, 2006; Benton and Emerson, 2007),
which led to establishing the “common cause” hypothesis (Peters,
2005). However, our results indicate a lower fit for models that
include a sampling proxy, suggesting that sea level has a genuine
biological effect and represents an important driver of the long-
term fluctuations of marine biodiversity.

Although sea level likely played a role in shaping the
evolutionary history of marine fish clades, our results
indicate that other abiotic variables had stronger effects on
their paleobiodiversity variations. We found that marine
actinopterygian diversity correlates strongly negatively with
δ
18O values, which are considered as an inverse proxy for global
climate change that mainly reflects temperature fluctuations
(also global ice volume during icehouse periods) (Zachos et al.,
2008). The positive link between temperature and diversity
has probably been the most widely recovered relationship in
macroevolutionary studies on both marine and terrestrial groups
and across many lineages (Aguirre and Riding, 2005; Hunt
et al., 2005; Marx and Uhen, 2010; Ezard et al., 2011; Figueirido
et al., 2012; Mayhew et al., 2012; Condamine et al., 2013, 2019;
Martin et al., 2014; De Blasio et al., 2015; Mannion et al.,
2015). Temperature is also recognized as acting on the spatial
distribution of biodiversity in modern ecosystems through the
latitudinal diversity gradient (Willig et al., 2003; Hillebrand,
2004; Tittensor et al., 2010). Although considering a direct
relationship between climate and available energy might be an
oversimplified view (Clarke and Gaston, 2006; Erwin, 2009),
empirical data indicate that increasing energetic resources
provided by warmer climates have increased mutation rates and
shortened generation times (Rohde, 1992; Gillooly et al., 2002)
and hence supported faster speciation and/or lower extinction
rates (Allen et al., 2006). The correlation recovered here provides

additional evidence for a positive effect of temperatures on clades’
diversification and quantitatively confirms previous hypotheses
that marine ray-finned fish diversity variations were linked with
sea surface temperatures (Cavin and Forey, 2007; Cavin et al.,
2007). This is exemplified by the tremendous Cenomanian and
Palaeocene-Eocene actinopterygian diversifications (Guinot
and Cavin, 2016), which occurred during hyperthermal events
(Zachos et al., 2008; O’Brien et al., 2017). In addition, it has
been demonstrated that higher seawater temperatures tend
to shorten both planktonic larval and egg duration times in
marine organisms (Hirst and Lopez-Urrutia, 2006; Duarte, 2007;
O’Connor et al., 2007). Shorter planktonic larval and egg phases
imply decreasing dispersal capabilities, which promotes isolation
and speciation (Duarte, 2007; O’Connor et al., 2007). The vast
majority of ray-finned fish groups include larval phase and most
comprise a free/pelagic egg phase in their development (Kendall
et al., 1984). This temperature-sensitive trait may partly explain
the stronger effect of climate on actinopterygian diversity than
on elasmobranchs, which produce less egg cases (or youngs
per liters) and have no larval or free egg phases. However, a
recent species-level analysis provided evidence that lamniform
extinction rates were negatively correlated with temperature
(Condamine et al., 2019), which indicates that this parameter also
played a role in some clades of mostly pelagic elasmobranchs.

Nonetheless, our analyses show that elasmobranch
diversity variations most strongly correlate with continental
fragmentation, suggesting a first-order effect of this
environmental parameter on elasmobranch diversification
patterns. Plate tectonics has long been hypothesized to have
impacted global biodiversity (Valentine and Moores, 1970) by
reducing biodiversity during periods of continental coalescence
and increasing biodiversity during breakup of continental
masses. Under this hypothesis, continental fragmentation
produces geographic barriers that lead to the evolution
of new lineages via vicariance, which contributes to the
global biodiversity increase. In the marine realm, continental
fragmentation also produces more coastlines and neritic
environments that are known to correlate with the taxic
diversity of coastal groups in modern ecosystems (Tittensor
et al., 2010). However, this plate tectonic regulation hypothesis
lacked quantitative testing in a macroevolutionary context until
a recent analysis demonstrated that the long-term trends in
biodiversity of Phanerozoic skeletonized marine invertebrates
are well predicted by the supercontinent coalescence-breakup
cycle (Zaffos et al., 2017). The temporal similarities between the
fluctuations of elasmobranch biodiversity and the continental
coalescence-breakup cycles (Figures 1A,D) is exemplified by the
almost continuous Jurassic-Late Cretaceous diversity increase
that matches a steady rise in continental fragmentation, which
reflects the breakup of Pangaea and particularly of Gondwana
(Zaffos et al., 2017). This result on a marine vertebrate clade
supports previous invertebrate-based evidence that the shifting
distribution of continental landmasses has been a major driver
of long-term global Phanerozoic biodiversity patterns (Valentine
and Moores, 1970, 1972; Zaffos et al., 2017). However, we
found no significant effect of continental fragmentation on
the biodiversity variations of marine actinopterygians, which,
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added to our results for temperature, indicates contrasting
responses to long-term environmental changes between these
two clades. Living elasmobranch species are dominated by
benthic and demersal taxa (86.7%), while these ecologies
represent minor components (45.8%) of marine actinopterygian
diversity (Supplementary Data 2). Fossil-based estimates of the
ecological distribution of Mesozoic ray-finned fishes remain to
be completed. However, the large post-Mesozoic diversification
of reef-associated demersal fish lineages (Alfaro et al., 2007;
Cowman and Bellwood, 2011) and the absence during the
Mesozoic of typical demersal clades such as the flatfishes
(Pleuronectiformes) (Friedman, 2008), or of extinct clades with
similar ecology, indicate that the demersal component of ray-
finned fishes was even lower during the Mesozoic than during
the Cenozoic. These results are consistent with the expectation
that habitat area and geographic barriers more strongly influence
species richness of clades dominated by benthic taxa, which are
more prone to vicariance due to limited dispersal capabilities
(Hart and Pearson, 2011). Finally, we note that δ

34S correlates
positively with elasmobranch diversity, but statistical significance
is not present in all datasets. Although regarded as a proxy for
organic nutrient inputs or shelf redox conditions (Cárdenas and
Harries, 2010; Mayhew et al., 2012), the ecological significance
of δ

34S is contentious (Cárdenas and Harries, 2010; Hannisdal
and Peters, 2011) and a full understanding of the direct link
between this parameter and biodiversity variations requires
further study. Apart from sea level, which appears to be a
common driver in the marine groups investigated here, our
results indicate that different abiotic parameters played a role
between the macroevolutionary history of elasmobranchs
(continental fragmentation) and marine actinopterygians
(climate change).

An analysis of the fish family-level diversity dynamics
demonstrated that both marine actinopterygians and
elasmobranchs follow a similar equilibrium model of diversity
variation (Guinot and Cavin, 2015). This apparent contradiction
with the present analyses may relate to the use of different
taxonomic levels as it has been proposed that logistic diversity
curves prevail for higher taxonomic ranks and gradually change
toward an exponential distribution when lower levels are
considered (Benton, 1997; Lane and Benton, 2003; Benton
and Emerson, 2007). Although post-Paleocene genus-level
diversity data are lacking for actinopterygians, our pre-Eocene
data (Figure 1B) suggest that such contrasting taxonomic-level
patterns might occur in marine ray-finned fishes. Yet, the
genus-level elasmobranch diversification pattern also fits an
equilibrium model (Guinot and Cavin, 2015), and our results
indicate that this equilibrium model is mainly tectonically
driven. This suggests that continental fragmentation probably
drove higher-level taxonomic richness, which can be regarded
as reflecting key morphological or physiological adaptations
(Guinot and Cavin, 2015), and that diversification patterns at
lower taxonomic levels are influenced by different parameters
according to the ecology of the clades.

Another noticeable result is the absence of correlation
between the tested variables (continental fragmentation, sea level,
δ
18O and 87Sr/89Sr) and the long-term freshwater ray-finned

fish diversity fluctuations. This result should be parallelized
with previous family-level analysis showing that the diversity
dynamics of freshwater ray-finned fishes do not follow that
of their marine relatives, i.e., the variation is better described
with an exponential function rather than with a logistic one
(Guinot and Cavin, 2015). Potential causes at the origin of
this pattern are proposed and discussed by Guinot and Cavin
(2015). The present study highlights the fact that continental
fish diversity may be under control of abiotic parameters that
are unquantifiable at the macro scale (e.g., modifications of
regional hydrographic systems, orogenesis). In addition, biotic
factors such as competition and predation, which are known to
enhance speciation and to be more intense in the freshwater
realm (Vermeij and Grosberg, 2010), may play a preponderant
role in shaping continental fish diversity. It has been proposed
that sea level/continental flooding may have exerted a control on
the diversity variations of continental clades on the basis of the
well-established species-area relationship (Barnosky et al., 2005),
but none of the analyses that quantitatively tested this hypothesis
provided significant results (Butler et al., 2011; Mannion et al.,
2011). Our results on continental actinopterygians lend support
to the absence of a long-term effect of sea level on diversity in
the continental realm, although some large variations probably
punctually affected diversity changes (Hallam, 1989; Hallam and
Wignall, 1999).

Our analyses cover all available abiotic parameters that
are so far quantifiable and proposes potential environmental
drivers and their outcomes on the two most speciose vertebrate
clades in today’s aquatic realms. The contrasting response of
different “fish” clades to extrinsic parameters indicates that
biological factors such as life-history traits and ecology likely
control the response of clades to environmental change. Many
macroevolutionary studies have analyzed the drivers of the
Phanerozoic marine invertebrate clades as a whole (Cárdenas and
Harries, 2010; Mayhew et al., 2012), with no distinction between
groups (taxonomic, biological, physiological, ecological). Based
on our results, it is expected that results found in such
Phanerozoic marine invertebrate analyses are unbalanced by
dominant ecologies amongmarine invertebrates and that the real
patterns of abiotic control on deep-time biodiversity variations
are more complex than previously expected. Although this is a
first step in the understanding of what shapes the evolutionary
history of clades, biotic interactions including competition (Liow
et al., 2015; Silvestro et al., 2015; Voje et al., 2015) and predation
(Huntley and Kowalewski, 2007; Marx and Uhen, 2010) have
been more scarcely tested but have been demonstrated to
play a role in the diversification patterns of clades, including
sharks (Condamine et al., 2019). Exploring these intrinsic
biotic effects represent another challenge for future studies, as
is the understanding of the long-term drivers of continental
fish diversity.
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