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The shells of marine mollusks represent promising metagenomic archives of the past,
adding to bones, teeth, hairs, and environmental samples most commonly examined
in ancient DNA research. Seminal work has established that DNA recovery from
marine mollusk shells depends on their microstructure, preservation and disease
state, and that authentic ancient DNA could be retrieved from specimens as old as
7,000 years. Here, we significantly push the temporal limit for shell DNA recovery to
≥100,000 years with the successful genetic characterization of one Portlandia arctica
and one Mytilus mussel sample collected within a dated permafrost layer from the
Taimyr Peninsula, Russia. We expand the analysis of ancient DNA in carbonate shells
to a larger number of genera (Arctica, Cernuella, Crassostrea, Dreissena, Haliotis,
Lymnaea, Margaritifera, Pecten, Ruditapes, Venerupis) from marine, freshwater and
terrestrial environments. We demonstrate that DNA from ancient shells can provide
sufficient resolution for taxonomic, phylogenetic and/or population assignment. Our
results confirm mollusk shells as long-term DNA reservoirs, opening new avenues for the
investigation of environmental changes, commercial species management, biological
invasion, and extinction. This is especially timely in light of modern threats to biodiversity
and ecosystems.

Keywords: ancient DNA, mollusk shell, high-throughput DNA sequencing, taxonomic assignment, climate
change, invasion, extinction

INTRODUCTION

Applications of ancient DNA (aDNA) to ecological studies are plentiful, especially now that high-
throughput DNA sequencing (HTS) technologies make it possible to generate genome-wide data at
the scale of populations for the last million years (Orlando et al., 2013; Der Sarkissian et al., 2015;
Leonardi et al., 2016; Nielsen et al., 2017; Fages et al., 2019; Narasimhan et al., 2019). By allowing
high-resolution genomic history reconstructions, aDNA has the power to reveal how changes in
the environment (e.g., climate, pollution levels), or interactions with other species and populations
(e.g., hybridization, admixture, invasions), have potentially affected past organisms or populations
through adaptation, distribution shifts, or extinction (e.g., Green et al., 2010; Lorenzen et al., 2011;
Orlando and Cooper, 2014; Palkopoulou et al., 2015). Although most ancient DNA studies have
focused on mammal bones and teeth (Green and Speller, 2017), new knowledge in ecology and
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evolution could be gained by applying ancient genomics
to shell-producing mollusks (Coutellec, 2017). These animals
indeed grow their carbonate shells in an incremental fashion,
simultaneously recording biological and environmental data
(Fortunato, 2015; Steinhardt et al., 2016; Butler et al., 2019),
which can be tracked through a multitude of proxies, including
morphology, isotopes (e.g., ∂18Oshell, ∂13Cshell), trace elements
and metal composition (e.g., Ba, Cd, Cu, Mo, Pb, U, Zn). The
rich fossil record of mollusk shells, thus, provides an equally
rich environmental archive of seawater paleo-temperature and
salinity (Surge et al., 2003; Chauvaud et al., 2005; Hiebenthal et al.,
2012; Vokhshoori and McCarthy, 2014; Reynolds et al., 2016;
Black et al., 2017), pollution levels (Vander Putten et al., 2000;
Liehr et al., 2005; Pérez-Mayol et al., 2014), stress (Hiebenthal
et al., 2012; Trivellini et al., 2018), infection history (Paillard et al.,
2004; Trinkler et al., 2010), as well as food availability and primary
productivity (Lartaud et al., 2010; Sadler et al., 2012).

Despite recent advances in ancient genomics and the
ecological relevance of mollusks, no mollusk genomic time
transect has ever been produced. The potential of applying
HTS to ancient marine mollusk shells has, however, been
assessed for the first time in a recent study that revealed their
metagenomic content (Der Sarkissian et al., 2017). This study
identified species with aragonitic shell microstructures, such as
Mytilus mussels, Haliotis abalones, Arctica islandica quahogs,
and Venerupis/Ruditapes clams, as good candidates for mollusk
DNA content and/or preservation, with the longest DNA survival
observed for a Mytilus specimen dated to ∼7,000 years Before
Present (year BP; Der Sarkissian et al., 2017). This timeframe
allows for the examination of many important questions relative
to ecological changes and the genomic responses of mollusks,
as it is characterized by several climatic transitions (Marcott
et al., 2013), e.g., the Little Ice Age in the North Hemisphere
(∼14th century to∼1850 C.E.) or post-industrial global warming
(Mann et al., 1999, 2009). During this period of intensifying
human impact, mollusks have been exposed to increasing
pollution levels that have resulted from rising human population
densities, industrial activities, extensive farming, fishing and
transportation (Jackson, 2001). They have also been commercially
exploited as resources for food, nacre or pearls (Fortunato,
2015), and have been displaced over long distances intentionally
for aquaculture purposes, or unintentionally (e.g., through
ship transportation) (Carlton, 1999). Although successful DNA
recovery may prove challenging, investigating mollusk shell
DNA preservation beyond the 7,000 year BP limit holds the
potential to provide valuable information about the impact of
earlier climatic shifts in the Quaternary, such as the Pleistocene
glacial/interglacial/interstadial oscillations, the transition into
the Holocene, and subsequent increased human environmental
impacts (Stephens et al., 2019). Other important areas of research
include the applicability of ancient shell genomics to freshwater
and terrestrial mollusks (Lydeard et al., 2004) and determining
if ancient mollusk shell DNA enclose useful phylogenetic and
population structure information.

To further unlock the potential of ancient mollusk shell
DNA for ecological studies, we apply an aDNA HTS approach
to a range of samples that extends previous assessments to

significantly older specimens, to a larger number of species,
as well as to mollusks of the freshwater and terrestrial niches.
We then illustrate the importance of ancient mollusk DNA for
understanding the impact of environmental change, extinction
and biological invasion. We also explore the limitations of such
investigations and evaluate the research potential of each genus
examined, including genera of commercial interest.

MATERIALS AND METHODS

Samples
For aDNA analyses, we selected three fossils identified as mollusk
shells, sampled in a river-cut sediment succession along the
lower reaches of the Bol’shaya Balaknya River (site BBR17 in
Möller et al., 2019b, with close-by subsites 17A and 17B),
situated in the southern portion of the Taimyr Peninsula, Russian
Federation (N73◦ 37,084′; E105◦ 38,178′; Supplementary Table
S1). This location is south of the limits of repeated Kara Sea-
based glaciations during the last glacial cycle (the Zyryanka,
Marine Isotope Stage (MIS) 5d-2) (Svendsen et al., 2004; Möller
et al., 2015, 2019b). The samples were all found in a distinct
marine silty clay designated sediment unit A, overlaid by fluvial
sand and gravel (sediment unit B) (see sediment log in Möller
et al., 2019b). The marine unit A sediment is rich in bivalve and
gastropod shells (Supplementary Table S2), including subarctic
species such as Buccinum undatum, Mytilus edulis, and Macoma
balthica, not present today in the Kara Sea (to the north)
and the Laptev Sea (to the east), thus suggesting interglacial
conditions at sediment deposition (Möller et al., 2019b). Three
shells (Portlandia arctica) from the unit A sediments were dated
by Electron-Spin Resonance (ESR) to 101–105 kyr (± 9–12 kyr;
averaged here to ≥100 kyr). The above-lying unit B fluvial
sediments were dated to their deposition by Optically Stimulated
Luminescence to 42–43 kyr (± 3–4 kyr), which is within the
Middle Zyryanka (MIS 3), while redeposited mollusks (P. arctica)
within the unit B sediments, eroded from underlying marine
unit A, gave ESR ages of 122 and 123 kyr (± 15 kyr). Möller
et al., 2019b thus concluded that the unit A marine sediment
can be placed with high confidence to their deposition within
the Karginsky interglacial (MIS 5e), equivalent to the North West
European Eemian. Site BBR 17 is located∼50 km from the ocean
today, but paleoenvironmental reconstructions showed marine
inundation of the Taimyr lowlands in front of the retreating
ice margin at the transition between the Taz glaciation (MIS 6)
and into the Karginsky interglacial (MIS 5e), with sea level at
its maximum reaching levels in excess of 80 m above present
sea level in this area (Möller et al., 2019b). The shells subjected
to aDNA analyses were sampled from frozen marine unit A
sediment (permafrost) at site BBR 17A and have been kept frozen
since the time of collection in 2010 to optimize DNA preservation
post-excavation.

An additional 39 mollusk shell specimens from nine
genera (Arctica, Cernuella, Crassostrea, Dreissena, Haliotis,
Lottia, Lymnaea, Margaritifera, Mytilus) were obtained
from museum and laboratory collections. When available,
genus- or species-level identification based on morphological
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examination, as well as collection location and date were
retrieved from the information curated together with the
specimens (Supplementary Table S1). Samples were selected to
represent genera from marine, freshwater and terrestrial niches,
with particular relevance to important ecological questions,
such as those related to economical exploitation, environmental
changes, biological invasions and extinctions, as well as to
optimize comparison with available genomic resources.

DNA Extraction, Shotgun DNA Library
Construction and High-Throughput
Sequencing
We carried out shell DNA extraction, shotgun DNA library
construction and amplification setup following (Der Sarkissian
et al., 2017) in conditions strictly limiting DNA contamination
at the ancient DNA facilities of the Centre for GeoGenetics,
University of Copenhagen, Denmark. In order to monitor DNA
contamination during pre-PCR laboratory work, every step was
simultaneously performed on non-template Extraction Blank
Controls (EBCs; Supplementary Table S1).

Fragments of the shells’ ventral margin were first
decontaminated for 10 min under agitation in one volume
of 1% sodium hypochlorite, before being rinsed three times in
three volumes of distilled water, air-dried, and reduced to powder
with a mortar and pestle (Der Sarkissian et al., 2017). We then
performed DNA extraction based on the method developed in
Yang et al., 1998; Gamba et al., 2014, 2016. Shell powder (112–
2,990 mg) was incubated overnight at 37◦C in 15 mL of digestion
buffer (0.45 mM EDTA, 0.5% N-laurylsarcosyl, 0.25 mg/mL
proteinase K) under constant mixing. Centrifugation at 3,000
RPM for 2 min allowed separating remaining solids from the
liquid phase, which was then concentrated to a volume of
∼200 µL using an Amicon Ultra-15 30 kDa centrifugal filter unit
(Merck Millipore) at 3,000 RPM for 50–60 min. The retentate
was subjected to the MinElute PCR Purification kit (Qiagen),
and purified DNA was obtained in a final elution volume of
60 µL EB buffer in presence of Tween (0.05% final concentration,
hereafter, EB-Tween).

Double-indexed blunt-ended DNA libraries were constructed
following a protocol modified from Orlando et al., 2013; Seguin-
Orlando et al., 2013, where adapters carried an identifying 7 bp-
index and were paired in a combination unique to each library
(Rohland et al., 2015). We used the NEBNext Quick DNA Library
Prep Master Mix Set for 454 (New England Biolabs) with a
starting volume of 42.6 µL shell DNA extract in reaction volumes
of 50 µL for end-repair (12◦C for 20 min then 37◦C for 15 min)
and ligation (20◦C for 20 min; 0.5 µM Illumina adapter final
concentration), and 25 µL for fill-in (37◦C for 20 min then 80◦C
for 20 min). After end-repair and ligation, the reaction mixes
were purified using the MinElute kit with elution volumes of 30
and 20 µL EB-Tween, respectively.

For each library, we used real-time PCR (qPCR) to
estimate the optimal number of amplification cycles to
obtain DNA amounts compatible with Illumina sequencing,
while minimizing library clonality. We performed two
independent qPCRs per library in 20 µL of the following

reaction mix: 1 µL 1/20 diluted DNA library (in EB buffer), 2.5
units AccuPrime DNA polymerase, 1× AccuPrime mix (Thermo
Fisher Scientific), 1 mg/mL BSA, 0.2 µM primer inPE1.0
(5′-AATGATACGGCGACCACCGAGATCTACACTCTTTCCC
TACACGACGCTCTTCCGATCT-3′) and 0.2 µM of an Illumina
6 bp-indexed (“I”) primer (5′-CAAGCAGAAGACGGCA
TACGAGATIIIIIIGTGACTGGAGTTCAGACGTGTGCTCTTC
CG-3′), and 0.8 µL of 1:4:2000 ROX:SybR:DMSO DNA dye mix
(Thermo Fisher Scientific). qPCRs were performed on a
LightCycler 480 Real-Time PCR System instrument (Roche
Applied Science) with the following conditions: activation at
95◦C for 5 min; 40 cycles of: denaturation at 95◦C for 15 s,
annealing at 60◦C for 30 s, elongation at 68◦C for 30 s; final
elongation at 68◦C for 5 min.

We analyzed qPCR data with the LightCycler Software 4.0 and
the second derivative maximum method to estimate Ct values
used as a relative measure of DNA concentration for each library.
We found that libraries built from EBCs differed in Ct values
by 4–6 additional cycles from those constructed from ancient
shells. As the corresponding 16–64-fold increase in the amount
of DNA in ancient samples relative to EBCs was not large enough
to confidently rule out a significant impact of laboratory-derived
DNA contamination, we subjected EBC libraries to the same
PCR amplification and sequencing protocols as ancient shell
libraries (see below).

Each double-indexed library was PCR-amplified using one
Illumina IS4 primer and one unique 6 bp-indexed primer, thus,
resulting in the introduction of a third, external index. The
same conditions as for qPCR were applied, apart from non-
diluted DNA and total reaction volumes of 5 and 25 µL,
respectively, and from the absence of ROX:SybR:DMSO. We
derived the optimal number of cycles to apply from the qPCR
results on a per-library basis (14–29 for ancient samples and
34–35 for EBCs; Supplementary Table S1). In order to limit
clonality, all libraries were first amplified for 12 cycles, before
MinElute-purified reaction mixes (25 µL EB elution volume)
were re-amplified as above for the required remaining number
of cycles and in four independent reaction volumes (25 µL
each) per library. Amplified libraries were purified using the
Agencourt AMPure XP system (Beckman Coulter) and 25 µL
of bead solution. Libraries eluted in 25 µL EB were quantified
on a 2200 TapeStation Instrument (High Sensitivity D1000
Screen Tape; Agilent).

All triple-indexed libraries were pooled together in equimolar
proportions and sequenced in paired-end mode on an Illumina
HiSeq4000 platform at the Danish National High Throughput
DNA Sequencing Centre. Raw sequencing data were deposited on
the European Nucleotide Archive (ENA) public database (project
PRJEB35671). Previously published ancient mollusk DNA data
from Der Sarkissian et al. (2017) were retrieved from ENA
(project PRJEB20113) and reanalyzed here.

Post-sequencing DNA Read Processing
Post-sequencing, we de-multiplexed DNA reads and only
retained those displaying the expected, unique combination of
indexes, i.e., unlikely to represent chimeric sequences. We used
PALEOMIX v1.2.13 (Schubert et al., 2014) to trim adapters
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and collapse overlapping pair-end mates with AdapterRemoval2
v2.3.0 (Schubert et al., 2016) as described in Fages et al. (2019),
i.e., applying default parameters and quality/length filters –
minlength 25 –trimns –trimqualities –minquality 2.

Mapping to Mitochondrial and Nuclear
Reference Sequences
Initial molecular taxonomic assignment was performed by
mapping shotgun DNA reads to 145,457 reference sequences
of the mitochondrial cytochrome c oxidase subunit I gene 5′-
extremity barcode region (COI-5P) compiled for the Mollusca
phylum from the Barcode of Life Database (BOLD1). Building on
the results, reads were then mapped to reference sequences for
mitochondrial complete genomes, nuclear genome or transcript
assemblies, when available for the identified genus/species
(Supplementary Table S3). Some of the genera studied show
Doubly Uniparental Inheritance, where the mitochondrial
genome of the mother (or F-genome) is transmitted to both
the somatic and gonadic cells of the female offspring, but only
to the somatic cells of the male offspring, the gonadic cells
of which get their mitochondrial genome from the father (M-
genome). As a consequence, we used both F- and M-genomes as
reference sequences for mapping (Supplementary Table S3). The
end of the circular reference mitochondrial genome sequences
was extended using the first 30 bp of the sequence in order
to take the circularity of the mitochondrial genomes into
account. We used the BWA v0.5.9 aln alignment command
(Li and Durbin, 2009) in PALEOMIX (Schubert et al., 2014)
with default parameters and disabled seeding as recommended
in Schubert et al., 2012. We kept all reads mapping to the
BOLD Mollusca database, whereas only reads showing mapping
qualities ≥30 against the mitochondrial and nuclear DNA
reference sequences were retained. We removed duplicated non-
collapsed reads with MarkDuplicates in Picard Tools version
1.1192 and duplicated collapsed reads with the PALEOMIX
FilterUniqueBAM Python script (Schubert et al., 2014). Average
depth-of-coverage (coverage) was calculated using PALEOMIX
and considering only unique high-quality reads (after quality
filtering and duplicate removal). When multiple reference
sequences were available for a given genus, we retained the one
yielding the highest coverage for each sample.

Complete Mitochondrial Genome
Assembly and Maximum Likelihood
Phylogenetic Reconstructions
For samples showing maximal coverage ≥3× when mapping
against complete mitochondrial genome reference sequences,
we built complete mitochondrial genome consensus sequences
from which we constructed maximum-likelihood phylogenies.
This was achieved using the perl script wrapper.pl (for circular
genomes) as well as the C++ programs bam2prof, endoCaller
and log2fasta within the schmutzi pipeline (Renaud et al., 2015),

1http://www.boldsystems.org
2http://broadinstitute.github.io/picard/

taking into consideration rates of cytosine deamination at the 5′-
and 3′- read ends, and only retaining bases with quality ≥30.
For each sample, we called a first consensus from the rescaled
BAM file, then re-mapped all shotgun reads to the newly built
consensus with PALEOMIX as described above, and called a final
consensus from the resulting rescaled BAM with schmutzi.

We then constructed alignments from the consensus sequences
for ancient samples obtained here and in Der Sarkissian et al.
(2017), as well as all sequences previously published for the
genus/species of interest. We extracted the sequences of 12
genes (CYTB, COX2, NADH1, NADH4, COX3, NADH2, NADH3,
COX1, ATP6, NADH4L, NADH5, NADH6) and aligned them
independently with PRANK (Löytynoja and Goldman, 2005). For
the analyses of Mytilus sp. sequences, we added the sequences
of the 12S ribosomal RNA gene (12S rRNA), and 23 transfer
RNAs (tRNA). Maximum-likelihood trees were reconstructed
using the program PhyML 3.0 (Guindon et al., 2010) with
an approximate likelihood-ratio test (aLRT) and a Shimodaira-
Hasegawa-like procedure for branch support estimation. Using
the SMS heuristic procedure for model selection implemented in
PhyML 3.0 (Lefort et al., 2017), we assessed the best substitution
models for the concatenated alignments: the Generalized Time-
Reversible model, with invariant sites and 4 gamma site-rate
categories for the Mytilus DNA alignment, and the Variable
Time substitution model with invariant sites, a gamma site-
rate distribution and alignment-based estimation of amino-acid
frequency equilibrium for the mollusk protein alignment.

Population Structure Inference Based on
Mitochondrial DNA
For all samples positively identified through comparison with
the BOLD marker database and showing an average coverage
≥3×, a COI-5P consensus sequence was built as described for
complete mitochondrial genomes. The obtained consensus was
then compared to all the sequences available in the BOLD
database for the corresponding genus/species using Median
Joining Network (epsilon = 0) in POPART v1.7 (Leigh and
Bryant, 2015) and the vouchers’ geographical origin as curated
in the BOLD database metadata. When available, published
mitochondrial sequences from modern populations for species of
interest were retrieved for comparison to ancient sequences using
the same procedure. These comprised Mytilus trossulus (Breton
et al., 2006; Smietanka et al., 2010, 2013; Zbawicka et al., 2014b;
Śmietanka and Burzyński, 2017), A. islandica (Glöckner et al.,
2013), Ruditapes decussatus (Cordero et al., 2014; Sanna et al.,
2017), R. philippinarum (Cordero et al., 2017), and Crassostrea
angulata (Grade et al., 2016).

Population Structure Inference Based on
Nuclear DNA Data
The ≥100 kyr Tx101A Mytilus sample from the Taimyr
Peninsula could be compared to modern Mytilus populations
for which genomic data are publicly available (Fraïsse et al.,
2016, 2017). This comparative dataset was previously obtained
through capture-based enrichment sequencing targeting 4.3 Mb
DNA sequences assembled from M. edulis BAC clones and

Frontiers in Ecology and Evolution | www.frontiersin.org 4 March 2020 | Volume 8 | Article 37

http://www.boldsystems.org
http://broadinstitute.github.io/picard/
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-08-00037 February 28, 2020 Time: 20:28 # 5

Der Sarkissian et al. Ancient Mollusk Shell DNA

M. galloprovincialis cDNAs in 1,269 contigs (Fraïsse et al., 2016,
2017). It is composed of 80 individuals from ten populations:
M. trossulus from the Baltic Sea (N = 8) and the North American
Atlantic coast (N = 7), M. edulis from the North American
Atlantic coast (N = 11), as well as from the Wadden Sea
(N = 8) and the Bay of Biscay (N = 8; respectively, outside
and inside the Atlantic hybrid zone with M. galloprovincialis),
M. galloprovincialis from Portugal (N = 6) and Brittany (N = 8;
respectively, outside and inside the Atlantic hybrid zone with
M. edulis), as well from the Occidental (N = 8) and Oriental
Mediterranean basins (N = 8), and M. platensis from the
Kerguelen Islands (N = 8). In order to avoid computational
analysis biases, the raw data published in Fraïsse et al. (2016,
2017) were re-mapped to the contig reference sequence at the
same time as raw data for the Tx101A ancient sample and EBCs.
The same BWA mapping parameters were used as described
above for both ancient and modern samples, except that the
options for mismatch penalty (-M 2), gap open penalty (-O 3) and
minimum seed length (-k 10) were added as in Fraïsse et al. (2016,
2017), and that seeding was disabled for Tx101A and EBCs.

Low depth-of-coverage for Tx101A when mapped against the
Mytilus contigs precluding accurate genotype calling, subsequent
analyses where carried out using genotype likelihood in ANGSD
v.0.929 (Korneliussen et al., 2014). Genotype likelihoods were
estimated with the following options and filters: -doMajorMinor
1 -doMaf 1 -remove_bads 1 -uniqueOnly 1 -minMapQ 30 -C
50 -minQ 30 -baq 1 -skipTriallelic 1 -SNP_pval 1e-6 -doHWE
1 -maxHWEpval 0.05. All analyses were performed either
considering all substitution types, or excluding transitions (-
rmTrans 1). We used PCAngsd v.0.98 (Meisner and Albrechtsen,
2018) and the option -minMaf 0.05 to perform Principal
Component Analysis (PCA) and determine the optimal number
of principal components to describe the Mytilus population
structure using the minimum average partial (MAP) test.
Admixture proportions were estimated using NgsAdmix (Skotte
et al., 2013) for a number of clusters equal to the previously
determined optimal number of principal components +1
(Meisner and Albrechtsen, 2018), i.e., four, here.

Post-mortem DNA Damage
Characterization
We used mapDamage v2.0.1 (Jónsson et al., 2013) to characterize
ancient shell DNA in terms of fragmentation patterns, nucleotide
mis-incorporation and fragment size distributions. On the basis
of 100,000 Markov Chains Monte Carlo iterations, posterior
distributions were obtained for the following damage parameters:
rates of deamination in double strands (δD) and single strands
(δS), probability of reads not terminating in overhangs (λ,
transformed into 1/λ–1, a proxy for the length of overhanging
regions). Quality scores of bases likely to represent damaged read
positions were then rescaled using default parameters.

Assessing the Potential of Ancient
Mollusk DNA for Ecological Studies
We provided a summarizing visualization of the potential
for ecological studies of each mollusk genus investigated. In

genus-specific radar graphs, we represented: their molecular
preservation potential (oldest authenticated mollusk DNA data,
DNA recovery rate), the availability or unavailability (encoded
as 1 and 0, respectively) of comparative datasets (BOLD
barcodes, complete mitochondrial genomes, nuclear transcripts
and genome assemblies), and their relevance to ecological
questions with regards to the research themes “Environment,”
“Commercial” exploitation, and biological “Invasion” (assessed
on the basis of bibliography and encoded as 1, relevant and 0,
not relevant), and “Extinction.” An “extinction score” was given
for each vulnerability category defined by The IUCN Red List of
Threatened Species (2019): i.e., 1 = “least concerned,” 2 = “near
threatened,” 3 = “vulnerable,” 4 = “endangered,” 5 = “critically
endangered,” 6 = “extinct in the wild,” 7 = “extinct,” and a genus
extinction score was calculated as the average score across species
listed for each genus.

RESULTS

Mitochondrial DNA-Based Taxonomic
Identification of ≥100 kyr Mollusk Shells
We tested for long-term preservation of aDNA in marine
mollusk shells by constructing shotgun DNA libraries using
extracts from three mollusk shell samples (Tx100, Tx101A,
Tx103) dated to ≥100 kyr. For the three libraries, qPCR
showed copy-numbers compatible with HTS, which yielded
653,177–19,314,607 collapsed and non-collapsed pair-end mate
reads after trimming and quality filtering (Table 1 and
Supplementary Table S1).

Taxonomic identification was achieved by mapping against
the BOLD Mollusca mitochondrial COI-5P marker reference
sequences. No hit was obtained for Tx100, precluding any
classification for this specimen. On the basis of mitochondrial
DNA, Tx101A could be identified as M. trossulus since 98.6%
of the mapped nucleotides aligned to markers of this species,
plus 0.9 and 0.5% aligning to markers of the Mytilus genus and
the Mytilida order (Supplementary Table S4). Tx101A had been
previously identified as M. edulis on the basis of shell morphology
in Möller et al. (2019a,b), but M. trossulus and M. edulis can
be difficult to distinguish due to their similarity in shape and
size (Innes and Bates, 1999; Riginos and Cunningham, 2005).
The morphological assignment of the Tx103 sample to P. arctica
could be confirmed as 27.3% of the mapped nucleotides align
to markers of this species, and 72.7% to the Nuculanida order
(Supplementary Table S4).

We attempted to gain more confidence in our taxonomic
assignment, and retrieve more specific information about
genomic affinities of Tx101A and Tx103 with modern individuals
(e.g., at the population level), by comparing their COI-
5P sequences with M. trossulus and P. arctica sequences
available in the BOLD database. Median Joining Network
analyses, however, proved uninformative due to the limited
phylogenetic resolution of the COI-5P marker, the scarcity of
geographic information provided for BOLD vouchers (Tx101A),
and the lack of comparative P. arctica entries (Tx103)
(Supplementary Figure S1).
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TABLE 1 | Sample information and sequencing statistics.

Sample name Organism Geographical location Date/Age Niche #Reads #Retained

Tx100 unidentified Taimyr Peninsula, Russia ≥100 kyr1 marine 6,747,556 653,177

Tx101A Mytilus sp. 18,369,198 12,706,997

Tx103 Portlandia arctica 36,524,098 19,314,607

quahog1B Arctica islandica Unknown 1722 C.E. marine 30,050,698 14,592,438

onuA Önundarfjordur, Iceland 1893 C.E. 13,074,594 6,446,403

bakA Bakkaflöt, Iceland 1900 C.E. 56,559,606 30,000,220

ves4A Westman Islands, Iceland 1900 C.E. 17,287,016 7,073,491

flaA Flatey, Iceland 1903 C.E. 4,591,784 2,477,750

ran1 Vidarvik, Iceland 1903 C.E. 49,501,816 27,291,420

hel2A Hellebaek, Denmark 1910 C.E. 34,880,594 19,210,163

bai2 Bair- Ísafjör ∂̃ur, Iceland 1933 C.E. 28,668,834 13,621,176

ore2A Øresund, Denmark 1946 C.E. 47,382,554 26,878,824

cop1 Dreissena polymorpha Copenhagen, Denmark 1925 C.E. freshwater 11,970,824 11,112,715

tys1 Tystrup Lake, Denmark 1941 C.E. 15,009,888 7,731,530

cal4 Haliotis cracherodii Pacific, United States 1946 C.E. marine 19,342,648 12,741,676

cal1 Haliotis rufescens Pacific, United States Unknown marine 19,291,324 11,078,316

nyk1 Lymnaea stagnalis Nykøbing, Denmark 1906 C.E. freshwater 29,277,948 14,300,382

“kyr,” kilo years; “C.E.,” Common Era; 1Möller et al., 2019b.

Mitochondrial and Nuclear Genomic
Affinities of a ≥100 kyr Year-Old Mussel
In order to achieve a more robust identification and a
characterization of the Tx101A specimen with more resolution,
we performed phylogenetic and population structure analyses
based on HTS read alignments to all complete mitochondrial
genomes published to date, as well as to genome-wide contigs
for Mytilus. In absence of such public reference resources
for P. arctica, or any close relative taxon, further genomic
characterization of the Tx103 specimen was not achievable.
The analyses provided further evidence for the mitochondrial
identification of Tx101A as M. trossulus. The maximal coverage
of the mitochondrial genome was, indeed, obtained when
aligning HTS reads to the sequences of M. trossulus F-genomes
or recently masculinized F-genomes (24.7–25.7× maximum for
GenBank accession number GU936625; Supplementary Table
S5). Other Mytilus mitochondrial genomes led to 10–9,267-
fold lower coverage (Supplementary Table S5). This pattern
was robust to relaxing or strengthening mapping stringency (-n,
BWA edit distance option) (Supplementary Figure S2).

A Maximum-likelihood tree reconstructed from concatenated
mitochondrial genome sequence partitions confirmed the
phylogenetic placement of Tx101A within the clade of
M. trossulus (recently masculinized) F-genomes, where it
occupies a basal position (Figure 1A). Patterns of coverage are
consistent with the phylogenetic position of Tx101A, i.e., the
more distant to M. trossulus the mapping reference genome,
the lower the coverage (Figure 1B and Supplementary Table
S5). When only a 1,171 bp concatenated sequence partition
of mitochondrial genes and transfer RNAs from Tx101A was
compared to data from 187 present-day M. trossulus individuals
(Breton et al., 2006; Smietanka et al., 2010, 2013; Zbawicka
et al., 2014b; Śmietanka and Burzyński, 2017), the outlying
position of Tx101A was confirmed. Closest relatives equidistant

to the Tx101A haplotype were found in the broadly distributed
present-day populations of the Baltic, the eastern and western
coasts of the North Atlantic and the North Pacific (Figure 1C).

As hybridization can occur amongst members of the M. edulis
complex (M. trossulus, M. edulis, M. galloprovincialis), we
examined the nuclear genomic background of Tx101A in
order to validate its taxonomic identification and/or estimate
potential admixture proportions. PCA of 11,882 variable sites
(considering transversions only; 29,440 variable sites considering
all substitutions in Supplementary Figure S3) in 80 individuals
and along the optimal number of three components (as
determined by the MAP test in PCAngsd) confirmed that
Tx101A belongs to the M. trossulus population cluster, clearly
segregating from the other clusters of the M. edulis complex and
of the M. platensis outgroup (Figure 1D and Supplementary
Figure S3). This result was confirmed by clustering analyses
considering four ancestries, in which a genome-wide affinity of
Tx101A for M. trossulus modern populations and no admixture
with another M. edulis complex or outgroup population
were detected (considering transitions alone; Figure 1E and
Supplementary Figure S4).

Authentication of the DNA Data Obtained
From the ≥100 kyr Old Mollusk Shells
Considering that the age of the Tx101A and Tx103 samples
dramatically pushes back the limit of marine mollusk shell
DNA preservation from ∼7,000 years to ≥100 kyr, particular
attention was paid to the line of evidence supporting data
authenticity: (1) Tx101A and Tx103 were excavated at the
same site, but yielded DNA reads that were identified as
representative of different Bivalvia sub-classes; (2) our molecular
classification confirms previous morphological identification of
Tx101A as Mytilus and Tx103 as P. arctica (Möller et al.,
2019b,a); (3) the detection of M. trossulus and P. arctica at
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FIGURE 1 | Phylogenetic and population affinities of Tx101A within present-day Mytilus. (A) Maximum likelihood phylogenetic tree built from a concatenated
alignment of Mytilus mitochondrial sequences for 12 protein-coding genes, the 12S rRNA gene and 23 tRNAs (total length 14,277 bp). The sex and species of
modern individuals were determined based on morphology and nuclear DNA markers. Branch support ≥0.70 is shown as Shimodaira-Hasegawa approximate
Likelihood Ratio Test. *Recently masculinized mitochondrial genomes. (B) Average depth-of-coverage when mapping against each Mytilus mitochondrial reference
genome considering unique high-quality reads (≥30). (C) Median-Joining network built from a 1,171 bp concatenated alignment of mitochondrial genes (COX3,
ND2) and transfer RNA (Ser, Met) from 187 present-day M. trossulus individuals. (D) Principal Component Analyses of the top two principal components in a dataset
comprising 11,882 variable sites (considering transversions only) for 80 individuals. The proportion of the variance explained by each component is indicated for
each axis. (E) Ancestry proportions estimated considering four ancestral populations (transversions only). Individual color code is the same as in (D).
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the BBR 17A site was ecologically coherent with these being
considered as (sub-) arctic species of the littoral or deeper
marine environments (Möller et al., 2019b); (4) none of the HTS
datasets obtained for the extraction blank controls (EBCs) led to
the identification of M. trossulus or P. arctica DNA sequences.
Compared to those observed for Tx101A and Tx103, significantly
lower coverage were attained when mapping EBC reads against
reference sequences for: M. trossulus/P. arctica BOLD COI-5P
(no hit), Mytilus complete mitochondrial genomes (≥2,335-fold
coverage decrease), the M. galloprovincialis genome assembly
(≥16,563-fold coverage decrease), Mytilus sp. genome-wide
contigs (≥5,704-fold coverage decrease); (5) for both Tx101A and
Tx103, high-quality HTS reads aligned to the various reference
sequences displayed molecular signatures characteristic of post-
mortem DNA fragmentation and cytosine deamination-induced
mis-incorporation. When considering the COI-5P alignment,
Tx103 showed reads of ∼66.6 bp average length and a 9.4%
C-to-T mis-incorporation rate at the 5′-read extremities. As
for Tx101A, when considering mitochondrial genome/nuclear
contig alignments, HTS reads exhibited ∼82.8/78.5 bp reads,
maximum 3.9/6.4% C-to-T mis-incorporation rates, post-
mortem deamination rates in overhangs 4.9/5.2-larger than in
double stranded DNA, and overhanging ends of 3.0/2.0 bp (1/λ –
1), as expected. In addition, a 10–bp periodicity in the size
distribution was observed in the nuclear DNA of Tx101A, but not
in its mitochondrial DNA, a specific pattern that was previously
proposed to reflect nucleosome protection in authentic and
degraded ancient nuclear DNA (Pedersen et al., 2014; Figure 2
and Supplementary Table S6); and (6) all phylogenetic and
population structure analyses of mitochondrial and nuclear
DNA were consistent with Tx101A being part of M. trossulus.
Combined, these results provide compelling evidence that the
DNA obtained from ≥100 kyr mollusk shells is authentic.

Expanding the Exploration of Ancient
DNA Recovery From Mollusk Shells
We next extended the assessment of DNA recovery from ancient
mollusk shells to 39 new specimens, 14 of which led to shotgun
HTS datasets containing 2,477,750–30,000,220 quality-filtered
collapsed and non-collapsed pair-end mate DNA reads (Table 1
and Supplementary Table S1). In subsequent analyses, these
were added to 32 previously published ancient shell data (Der
Sarkissian et al., 2017) and the two ≥100 kyr Taimyr samples
described above to build a dataset comprising 48 specimens
from 13 species and 9 genera, with 73% of the samples dated
to the last 300 years of the post-industrial era (Figure 3 and
Supplementary Table S1). Success rates were variable across
genera, with the highest rates observed for Ruditapes/Venerupis
sp. (100%, N = 20), Haliotis sp. (70%, N = 7) and A. islandica
(57%, N = 12). No successful DNA recovery was achieved for the
Lottia gigantea (N = 1), Margaritifera margaritifera (N = 3), and
the terrestrial Cernuella virgata specimens (N = 2), thus limiting
investigations to marine (N = 13) and freshwater individuals
(N = 3) in this study. We found no indication that the overall
success rate depends on the amount of shell powder analyzed,
as specimens yielding successful and unsuccessful DNA recovery

did not show significant differences in input shell median weight
(Wilcoxon signed-rank test, p-value = 0.3).

Mitochondrial DNA-Based Taxonomic
Identification
Mapping to the Mollusca database of BOLD COI-5P markers
provided sufficient read alignments for taxonomic identification,
as all 48 samples, but the LEFB Pecten sp. shell, could be classified
at least to the genus level (Figure 4 and Supplementary Table
S4). A. islandica, C. angulata, Haliotis tuberculata, R. decussatus,
R. philippinarum, and Dreissena polymorpha specimens were
unambiguously identified at the species level, and even subspecies
level for H. tuberculata coccinea and H. tuberculata tuberculata.
We noted, however, 6–30% false positive rates for H. rufescens,
V. corrugata, and Lymnaea stagnalis at the genus level.
Through resequencing, we also assembled 29 additional complete
mitochondrial genomes with coverage ≥2.8-fold that were used
to reconstruct a maximum-likelihood tree of mitochondrial
genes. The L. stagnalis and V. corrugata specimens could not
be included in this analysis as no reference sequences are
available for these species. The obtained tree retraces known
phylogenetic relationships within gastropods and bivalves, but
also confirms the taxonomic identification based on COI-5P
sequences (Figure 5). Interestingly, with five new R. decussatus
mitochondrial genomes assembled here from ancient specimens,
we could confirm a previous hypothesis based on one modern
R. decussatus mitochondrial genome that R. decussatus is more
closely related to the Paphia sp. than to R. philippinarum despite
being named as members of the same genus (Ghiselli et al., 2017).

Population Affinities Between Ancient
and Present-Day Mollusks
Little information about affinities between ancient and modern
populations could be retrieved from the phylogenetic tree owing
to the limited number of published complete mitochondrial
genomes in mollusks. Although more mitochondrial COI-5P
sequences are available, analyses proved poorly informative
for most genera due to the paucity of sequenced present-day
individuals (Pecten maximus) and corresponding geographical
metadata (P. maximus, L. stagnalis). Additionally, many ancient
haplotypes were found similar to the most abundant and widely
distributed haplotypes in modern populations partly due to
the limited resolution of the COI-5P marker (C. angulata,
D. polymorpha, R. decussatus; Supplementary Figure S1).
The mitochondrial phylogenetic tree could, however, show a
segregation within R. decussatus between the ∼30 year BP
Adriatic Sea MURp individual from the 400–5,500 year BP
Atlantic Ocean auzay1B, auzay3B, lmc1B, and lmc3B individuals
(Figure 5). Within the other clam species R. philippinarum,
both the mitochondrial gene tree and the COI-5P network
showed a differentiation between the 1988 C.E. POSp French
specimen and the 1983–2012 C.E. LAN1p, LAN2p, LAN3p,
NEG, MATp, AKKp and KORp samples from France, Japan and
Korea (Figure 5 and Supplementary Figure S1). For A. islandica
quahogs, we compared our 73–297 year-old dataset to 24 COI-5P
sequences from the BOLD database (Supplementary Figure S1)
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FIGURE 2 | Post-mortem DNA damage patterns. (A) For Tx101A, rates of C-to-T nucleotide mis-incorporation at 5′-read ends, (B) rates of G-to-A at 3′ read-ends.
(C) Size distribution of reads mapping to mitochondrial, and (D) nuclear reference sequences. (E) For Tx103, rates of C-to-T nucleotide mis-incorporation at 5′-read
ends, (F) Rates of G-to-A at 3′ read-ends. (G) Size distribution of reads mapping to mitochondrial reference sequences. Only unique high-quality (MQ≥30) reads
were considered and mapDamage v.2 was run on the full alignment (100,000 iterations).
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FIGURE 3 | Geographical location and age of the shell samples screened for DNA. (A) Map showing the number and average age of specimens by geographical
location. (B) Chronology by genus (Supplementary Table S1). “kyr,” kilo years.

as well as to 3,029-bp long mitochondrial sequences for 20
modern individuals (Glöckner et al., 2013). Modern quahogs
belong to two main clades: one comprising individuals from
Iceland, the Baltic and the North Seas, and one composed of
individuals from Iceland and the Baltic Sea, with the Icelandic
and the Baltic Sea populations displaying a larger diversity than
the North Sea population (Glöckner et al., 2013). We found the
same pattern in the past as our sequences from ancient quahogs
fell within the two clades described previously (Supplementary
Figure S5). More present-day data in the form of complete
mitochondrial genome sequences are needed to rule out possible
sampling biases in both the number and geographical origin of
the sequenced individuals.

Authentication of Ancient Mollusk DNA
Data
Authenticity of the aDNA retrieved from the mollusk shells
was supported by: (1) congruent molecular and morphological
identification, at least at the genus level; (2) increased coverage
when mapping against the complete mitochondrial genome
reference sequence for the identified species (Supplementary
Figure S6); (3) phylogenetic placement of the COI-5P barcodes
and mitochondrial genes (Figures 4, 5 and Supplementary
Figure S1); and (4) the presence of typical molecular signatures
of mitochondrial DNA post-mortem damage in the form of
short fragment sizes (45.1–95.2 bp), increased rates of C-to-T
mis-incorporation rates at read 5′-ends (0.0–32.2%), increased
mis-incorporation rates in single- versus double-strand contexts

∂S/∂D (2.3–70.3), and decreased values for the overhang-
length proxy 1/λ – 1 (0.1–4.7). Similar patterns were observed
in reads mapping against nuclear reference sequences: DNA
fragmentation (41.9–107.8 bp), C-to-T mis-incorporation rates
at read 5′-ends (0.0–17.4%), ∂S/∂D (0.1–184.6), and 1/λ – 1
(0.2–16.3) (Supplementary Table S6).

DISCUSSION

Preservation of ≥100 kyr DNA From
Marine Mollusk Shells in Siberian
Permafrost Sediments
In this work, we broaden the assessment of mollusk DNA
recovery from ancient shells in terms of time scale, species, and
applications for ecological studies. The successful retrieval of
aDNA from ≥100 kyr shells significantly extends the temporal
scale of mollusk aDNA analyses, as the oldest specimens that
had previously yielded aDNA were ∼7,000 year-old Mytilus
shells collected from shell middens in Denmark (Der Sarkissian
et al., 2017). The constantly frozen Siberian permafrost marine
sediments from which the≥100 kyr shells were retrieved (Möller
et al., 2019b, a) may have provided exceptionally favorable DNA
preservation conditions minimizing damage induced by both
water and microbial activity (as reviewed in Pedersen et al.,
2015). As examples of long-term DNA preservation in similar
conditions, the oldest remains for which animal aDNA could be
recovered in Siberia were >63.5 kyr and∼50 kyr mammoth hair,
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FIGURE 4 | COI-5P barcode-based identification of Mollusca taxa from shell DNA. Proportion of total nucleotides mapped to each reference marker combining all
datasets for samples of the same genus and considering unique high quality (≥30) reads and reference markers covered by ≥150 bp (Supplementary Table S4).
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FIGURE 5 | Maximum likelihood phylogenetic tree of mollusk mitochondrial genes. Tree built from a 60-individual alignment of 12 concatenated gene sequences.
Sequences assembled from shell DNA in this study are highlighted in red and their coverage is indicated in the tip label, GenBank accession numbers are provided
for previously published sequences. Branch support ≥0.70 is shown as Shimodaira-Hasegawa approximate Likelihood Ratio Test. The subtrees for the
R. decussatus and R. philippinarum clades were enlarged and branches collapsed in order make branching order more apparent.

and tooth/femur (Gilbert et al., 2008; Pečnerová et al., 2017),
and, outside Siberia, a >560 kyr horse bone from the Yukon
Territories, Canada (Orlando et al., 2013). Although earlier
studies demonstrated permafrost as one of the best environments
for long-term preservation of animal DNA in keratin- and
calcium phosphate-based remains, we show here for the first time
that permafrost also preserves calcium carbonate-based remains
over significant timescales. Past marine diversity was formerly
recovered from <43 kyr sediments that yielded DNA from
protists, including haptophytes and foraminifera, which are other
organisms producing calcium carbonate exoskeletons surviving
or dissolving within sediments (Boere et al., 2009; Coolen et al.,
2013; Lejzerowicz et al., 2013; Pawłowska et al., 2014; Morard
et al., 2017; More et al., 2018; Armbrecht et al., 2019).

Recovery of Degraded Ancient Mollusk
DNA Molecules From 13 Marine and
Freshwater Species
Compared to the previous assessment of eight marine species
(Der Sarkissian et al., 2017), we demonstrate here that aDNA can
be recovered from an extra five species (P. arctica, H. rufescens,
H. cracherodii, D. polymorpha, and L. stagnalis), including two

freshwater species. Considering the relevance of mollusks to
ecological questions about the terrestrial niche (Lydeard et al.,
2004), aDNA content of terrestrial mollusk shells is worth
further investigation. In the summarizing visualization of the
potential of each mollusk genus investigated for ecological
studies, radar-plot maximal surface areas indicate Mytilus,
Haliotis, and Arctica as the three genera with the most potential
for ecological studies based on aDNA (Figure 6). Overall, we
observed a DNA recovery success rate of 61.25% for the 80
shells examined (Figure 6), and endogenous contents of 0.09–
33.26% for those genera with available reference nuclear genome
assemblies (Crassostrea, Dreissena, Haliotis, Lymnaea, Mytilus),
and we estimated that no less than 71,000 sequencing reads
were required here to obtain 1× coverage of 16,358–18,653 bp
mitochondrial genomes. In line with these results suggesting
low numbers of shotgun-sequenceable DNA templates in ancient
mollusk shell extracts, we were not successful at recovering DNA
from three 42–191 year BP M. margaritifera shells, although
positive nuclear Small Tandem Repeat (STR) PCR amplification
could be achieved from fresh dry shells of the same species by
Geist et al. (2008). Our negative results could be explained by the
particular storage conditions of the specimens, extensive post-
mortem DNA degradation and/or concentrations of recoverable
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FIGURE 6 | Radar plot summarizing application potential of ancient shell DNA for mollusk genera. Marine genera are represented in blue shades, freshwater genera
in green shades and the terrestrial genus Cernuella in purple. “Max. Age” refers the age of the oldest sample for which DNA could successfully be recovered; “kyr,”
kilo years; “year BP,” years Before Present.

DNA below the sensitivity threshold of our methodology. Target-
enrichment protocols may help circumventing these limitations
in the future. We, however, caution that such methods will
result in the loss of the vast majority of off-target DNA
molecules. Their benefits in terms of information gain should
be weighed against the risk of heritage loss for each (rare)
ancient specimen considered. In addition, the type of capture
should carefully be selected and designed to maximize the
overlap with datasets generated from comparative modern or
ancient populations. Importantly, neither capture nor shotgun

HTS aDNA data can, at this stage, provide much information
about population dynamics in cases where modern population
data available for comparison are nuclear STR genotypes. These
indeed typically encompass >100 bp regions (e.g., Knott et al.,
2003; Cruz et al., 2005; Gardeström et al., 2008; Feldheim
et al., 2011; Van Wormhoudt et al., 2011; Beldade et al., 2012;
Morvezen et al., 2013; Borrell et al., 2014; d’Auriac et al.,
2017; Jiang et al., 2018) that cannot reliably be typed from
aDNA extracts due to their characteristic high fragmentation
(here, 41.9–107.8 bp).
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Limits Associated With the Availability of
Modern Mollusk DNA Data for
Comparative Analyses
We observed a substantial heterogeneity among the examined
genera in the availability of comparative mitochondrial
sequences, complete mitochondrial genomes, nuclear transcripts
and genomes (Figure 6). As expected for mostly non-model
species, the present study highlights a general paucity of
published mitochondrial and nuclear genome assemblies,
population-scale data, as well as geographical metadata submitted
to barcode databases (BOLD, GenBank), with some mollusk
populations better described at the population genomic level, i.e.,
Crassostrea sp., Mytilus sp., Haliotis sp., and Pecten sp. (Zbawicka
et al., 2014a, 2018; Fraïsse et al., 2016; Mathiesen et al., 2016;
Wenne et al., 2016; Gutierrez et al., 2017; Harney et al., 2018;
Wilson et al., 2018; El Ayari et al., 2019; Masonbrink et al., 2019;
Paterno et al., 2019; Vendrami et al., 2019a,b). It is worth noting
that the phylogenetically robust data reported here significantly
increases the number of released complete mitochondrial
genome sequences by 6-fold for R. decussatus, five-fold for
R. philippinarum, three-fold for A. islandica, and D. polymorpha,
and finally two-fold for H. rufescens, H. tuberculata, and
P. maximus. Although mitochondrial DNA is very informative
for genus-level classification and investigating the evolution
of organellar genomes, it should be stressed that species-level
taxonomic identification and population affinity inference
should be confirmed by nuclear sequences for those mollusks
in which interspecies hybridization is observed, e.g., Crassostrea
and Mytilus. Importantly, as genomic data production is
expected to increase significantly in the near future, it is
crucial that appropriate metadata are made easily accessible
to the research community, so that published results can be
reproduced and future analyses can incorporate ever-growing
datasets. Despite limitations associated with the degraded
nature of mollusk shell aDNA and the occasional scarceness
of comparable modern population data, phylogenetic and
population structure signals could nevertheless be recovered, thus
emphasizing the promising potential of mollusk shell aDNA for
ecological studies.

Potential of Ancient Mollusk DNA for
Ecological Studies
Our results directly hint at taxonomic identification based
on mitochondrial barcoding, which could reveal helpful in
cases where morphological examination of fragmentary or
undiagnostic shell remains preclude classification. Mollusk
aDNA analyses are compatible with shotgun- or mitochondrial
metabarcoding-based (Bush et al., 2019) reconstructions of
past communities from bulk samples (e.g., Murray et al.,
2013; Grealy et al., 2015; Seersholm et al., 2018) or sediment
cores (e.g., Giguet-Covex et al., 2014; Pedersen et al., 2016),
which could be of relevance to the study of shell middens.
Temporal changes in ecosystems detected through such
approaches could reveal interesting insights into the timing
and impact of environmental changes, biological invasions
and extinctions.

Potential of Ancient Mollusk DNA for
Studying Environmental Changes
Time series DNA data from mollusk shells hold the potential
to illuminate patterns of species or population distribution
and diversity. These can be compared to past global and local
paleo-environments reconstructed through stable isotope, metal
or trace element analyses of the very same shells in order
to characterize the temporal and spatial scales of biological
responses to climatic events, in particular prior to access to
instrumental data or historical records (reviewed in Jones et al.,
2009). Marine bivalves such as A. islandica and P. maximus,
for which we reported successful aDNA recovery in this study,
have previously allowed sclerochronological reconstructions of
past seawater temperature and salinity changes at millennial-
length annual and seasonal resolutions, respectively (Surge et al.,
2003; Chauvaud et al., 2012; Vokhshoori and McCarthy, 2014;
Reynolds et al., 2016; Black et al., 2017). At a more local scale, the
freshwater L. stagnalis, for which we report shell aDNA recovery
here for the first time, is a model commonly used in ecotoxicology
(Amorim et al., 2019). Its abundant and widespread distribution
in temperate limnic systems and its low dispersal ability
can be leveraged to investigate the impact of pollutants
in freshwater systems, in particular pesticides, molluscicides,
algaecides or industrial (petro-) chemicals pollutants (Amorim
et al., 2019). Adding temporally sampled genomic data would
allow for controlling the genomic background of L. stagnalis
population subjected to toxic stress and provide baselines prior
to the use of pesticides and chemicals (Coutellec et al., 2013;
Bouétard et al., 2014).

Integrating aDNA and environmental information provides
new perspectives to better understand mollusk responses to
global and local changes. These are expected to be complex,
heterogeneous through time, space and across species. Many gaps
still remain in our knowledge of the principles and mechanisms
driving these responses; for example, the relative contribution of
migration (routes and speed) and in situ tolerance in the form
of phenotypic plasticity (morphology, behavior, ecophysiology,
reproductive strategies) or evolutionary adaptation (speciation,
selection) to the survival of species facing environmental changes
(e.g., climate, pollution) of varying magnitude and rate.

Potential of Ancient Mollusk DNA for
Studying Species of Commercial Interest
Mytilus, Haliotis, Crassostrea, and Ruditapes species represented
73% (8,816,367 tons) of the world marine mollusk production
in 2017 (FAO, 2017). Their production can be managed in
large-scale hatcheries and has resulted in massive translocation
across large geographical scales. For example, Haliotis were
commercially fished in Europe in the 19th century, which led
to drastic wild stock depletions and the implementation of
management plans and regulations for fishing and cultivation
(Huchette and Clavier, 2004). European Crassostrea has had
a distinct history, as the Portuguese oyster C. angulata was
first introduced unintentionally from Asia, probably in the
16th century, and cultivated until it underwent high mortalities
associated with iridovirus outbreaks in the 1960–1970s (Grizel
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and Héral, 1991). It was then substituted by the more resistant
Pacific cupped oyster sister species C. gigas with distributions
in Asia overlapping those of native C. angulata (Grizel and
Héral, 1991). Haliotis and Crassostrea in North America have
similar histories of overfishing and stock depletion across the
19 and 20th centuries (Braje et al., 2009, 2016; Rick et al.,
2016). As for the Manila clam R. philippinarum, it has a natural
distribution on the West coast of the Pacific from the Philippines
to Russia. According to historical records, R. philippinarum was
first unintentionally introduced from Japan to North America
through oyster “hitchhiking” in 1936 C.E. (Quayle, 1964), and
then imported from there into Europe partly to overcome
the over-exploitation, irregular yields, recruitment failures, and
outbreak of bacterial infections in the endemic R. decussatus in
1972–1974 C.E. (Flassch and Leborgne, 1992; Sanna et al., 2017).
Human-driven displacements, intense harvest, over-exploitation,
and controlled reproduction in hatchery are expected to have
impacted exploited mollusk species, in particular with regards to
genomic patterns of diversity (e.g., inbreeding) and/or admixture
(Astorga, 2014), as well as allele frequencies for loci associated
with economically important phenotypic traits (e.g., survival,
growth rate, body weight, and yield) (Gutierrez et al., 2018).
These could be tracked through time using the same mollusk shell
aDNA approach as applied here, which could also potentially
reveal the existence of undocumented transfers.

Additionally, as human-mediated transfers may subject
farmed mollusks to new pathogens, mollusk shell aDNA could
also help track and monitor the spread of infections. For example,
in R. philippinarum, high mortalities were observed in 1987 C.E.
in Brittany from the so-called “Brown Ring Disease” (BRD) for
which the bacteria Vibrio tapetis was identified as the etiological
agent (Paillard et al., 1989, 2008; Borrego et al., 1996; Allam
et al., 2000). DNA recovered from the shells of R. philippinarum
showing substantial brown conchiolin deposits diagnostic of
acute BRD (shells labeled as POSp and KORp in the present
study; Supplementary Figure S1) was previously found in Der
Sarkissian et al., 2017 to show highest affinity for the virulent
V. tapetis strain RP2-3, whereas DNA from shells displaying
weak BRD infection (LAN1p, LAN2p, and LAN3p) showed
highest affinity for the less virulent V. tapetis strain HH6087
(Der Sarkissian et al., 2017; Dias et al., 2018). Here, phylogenetic
analyses of the R. philippinarum COI mitochondrial gene in
specimens from Landéda, Brittany, reveal a segregation between
the 1988 C.E. acute BRD specimen POSp falling within the
mainly Asian diversity (China, Japan), and the 1983–1988 C.E.
asymptomatic or weak BRD specimens NEG, LAN1p, LAN2p,
and LAN3p closely related to mainly European and American
individuals (Supplementary Figure S1). These results are in line
with a tentative scenario, in which lower virulence V. tapetis
strains may have already been present in Brittany before the 1987
C.E. virulent BRD outbreak, which might have been triggered
by a second introduction of R. philippinarum stocks, possibly
of more recent Asian origin, containing highly virulent strains.
The presence of the 2003 C.E. KORp shell in Korea showing
acute BRD and a COI sequence closely related to European
and American clams could possibly reflect a later transfer from
Europe to Korea, where BRD was first identified by molecular

methods in 2006 C.E. (Park et al., 2006), and where stocks have
underwent severe reductions due to overexploitation and coastal
pollution (Cordero et al., 2017).

Potential of Ancient Mollusk DNA for
Studying Biological Invasions
In a context of global trade, human activities greatly facilitate
rapid species displacements over large geographical distances,
whether it be intentionally (e.g., for cultivation in hatcheries or
direct commercial purposes) or unintentionally (e.g., through
waterways, ship and seaplane hull fouling, ballast waters, fishing)
(Carlton, 1999). Thanks to a competitive advantage (e.g., long
larval phases, rapid growth, early sexual maturity, high fecundity,
broad salinity, and temperature tolerance), newly introduced
species can proliferate from a point of introduction into new
ecosystems in which they become dominant as invasive species
(Valéry et al., 2008). Biological invasions are recognized as
the second most important threat to biodiversity after habitat
destruction due to their substantial negative ecological (e.g.,
food web alteration and extirpation of native species) and
economic impacts [e.g., biofouling, blocking of water pipes
(McCarthy et al., 1997)].

Belonging to the mollusk genera examined here, C. gigas and
R. philippinarum threaten the European native species of Ostrea
edulis and R. decussatus, respectively, and M. galloprovincialis has
been listed as one of the “100 world’s worst invasive alien species”
(Lowe et al., 2004). D. polymorpha is another well-identified
invasive species for which shell aDNA could be retrieved. Today,
D. polymorpha has a worldwide distribution and its invasive
status is a recognized threat (Lowe et al., 2004). It initially spread
from the Ponto-Caspian Basin to Europe in the mid 1800s (or
before), and then reached North America from Europe in the
mid 1980s (Kinzelbach, 1986; Carlton, 1999). Although it is one
of the most studied invasive species with regards to ecological,
toxicological and physiological aspects, population genomic data
are currently scarce. Early detection of invasive species is of
foremost importance in efforts to eradicate them, or at least slow
their spread down (Williams et al., 2017). Designing management
plans for the control of invasions can greatly benefit from the
reconstruction of their history: geographical origin, number, and
timing of the introduction(s), as well as dispersal and connectivity
patterns. This can be informed by phylogeography in both the
native and invaded areas. The timing of invasions, however, can
be difficult to estimate with precision. One reason for this is that
some mollusk (cryptic) invasive and native species show similar
shell morphology due to their close relationships and phenotypic
plasticity (Morais and Reichard, 2018). Some of the local species
may also be impacted by hybridization with invasive sister species
in semi-reproductive isolation (Harrison and Larson, 2014),
which is facilitated by high fecundity and dispersal potential in
broadcast-spawning aquatic mollusks Dreissena, Crassostrea, and
Mytilus species (Voroshilova et al., 2010; Fraïsse et al., 2016;
Gagnaire et al., 2018). Mollusk shell DNA is a useful tool to assess
the presence and genomic landscape of invaders at given points in
time and space. Considering the dynamic and stochastic nature of
biological invasions, shell aDNA could help evaluate their impact
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on native populations and ecosystems, thus showing potential for
future studies in ecology and conservation.

Potential of Ancient Mollusk DNA for
Studying Extinctions
A total of 1,526 species of gastropods and bivalves are classified as
threatened by The IUCN Red List of Threatened Species (2019).
Among them, two species of Haliotis abalones of the North
American Pacific coast have been classed as “endangered,” i.e.,
H. kamtschatkana, and “critically endangered,” i.e., H. cracherodii
or black abalone. The latter was shown here to be amenable
to aDNA analyses, similarly to another Pacific abalone species,
H. rufescens or red abalone. Both species were found in shell
middens and in artifacts at prehistoric Native American sites
(Erlandson and Rick, 2008; Braje et al., 2009). H. cracherodii
experienced critical population declines following intensive
fishing in the 1850-1900s and then again after the peak in
abalone farming of the 1950–1960s, which severely affected
all abalone populations in the Pacific, including H. rufescens
(Rogers-Bennett et al., 2002). Abalone population declines were
aggravated by the recovery of sea otters (Enhydra lutris nereis
and E. l. kenyoni) in the 20th century, abalone predators that had
nearly gone extinct following overexploitation by the historical
fur trade (Lee et al., 2016). High mortalities due to infections
by the bacterium Candidatus xenohaliotis responsible for the
Withering syndrome devastated abalone populations (Crosson
et al., 2014) and contributed to the low genetic diversities
and population differentiations observed in H. cracherodii and
H. rufescens today (Gaffney et al., 1996; Burton and Tegner, 2000;
Hamm and Burton, 2000). Conservation efforts are focused in
restoring and protecting abalones in the Pacific: shore picking
of H. rufescens is allowed only under strict rules, and fishing of
H. cracherodii (commercial or recreational) have been suspended
(Haas et al., 2019). Management and conservation plans would
greatly benefit from shell aDNA analyses that could help better
understand the dynamics of genomic diversity and distribution
for the two species, the effects of exploitation, infection and
predator recovery, and complement archeological studies aimed
at helping in abalone restoration (Braje et al., 2009, 2016;
Hofman et al., 2015).

CONCLUSION

In this study, we illustrate the potential of ancient mollusk
shell mitochondrial and nuclear DNA analyses using geological,
archeological and museum specimens from 13 species, spanning
≥100 kyr. Ancient mollusk DNA is of growing relevance for
ecological studies as present-day societies are increasingly
concerned by on-going global environmental changes (e.g.,
warming, pollution, sea level rise, ocean acidification,
eutrophication) and associated biodiversity loss (Cardinale
et al., 2012) continue to increase at an alarming pace. Some
environmental stressors are expected to influence directly shell-
producing mollusks in their ability to calcify, and hence, their
integrity and vulnerability to predators (Kroeker et al., 2013),
with some of the affected species playing the role of keystone

species with large impacts on ecosystems. Our work highlights
the importance of mollusk shell aDNA as a powerful and novel
tool for ecological studies.
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