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Mammalian heterotherms, species that employ short or long periods of torpor, are found

in many different climatic regions. Although the underlying physiological mechanisms of

heterothermy in species from lower latitudes (i.e., the tropics and southern hemisphere)

appear analogous to those of temperate and arctic heterotherms, the ultimate triggers

and resulting patterns of energy expenditure and body temperature are often noticeably

different. Phenotypic flexibility in the patterns of thermoregulation in non-Holarctic species

can be extensive (depending on body condition, environmental parameters and species

competition) and the factors responsible for inducing heterothermy are more variable in

non-Holarctic species. As well as being a regular adaptation to seasonality, heterothermy

can also be employed as a response to unpredictability in environmental parameters

and as a response to emergency situations. Non-Holarctic heterotherms also challenge

the notion that regular inter-bout arousals during hibernation are obligatory and suggest

all that is necessary to maintain proper functioning during hibernation is an occasional

passive return to—or maintenance of—a relatively high body temperature. The study

of non-Holarctic heterotherms has led to the conclusion that heterothermy must be

defined on the basis of mechanistic, physiological parameters, and not solely by

body temperature; yet we are still limited in our abilities to record such mechanistic

parameters in the field. It is now believed that homeothermy in mammals evolved

in hot climates via an ancestral heterothermic state. Similar to extant warm-climate

heterotherms, early mammals could have relied mainly on passive body temperature

regulation with a capacity for short- to longer-term up-regulation of metabolism when

needed. Hibernation, as seen in temperate and arctic species may then be a derived

state of this ancestral heterothermy, and the study of torpor in warm climates can provide

potential models for the energetics of early mammals.
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Nowack et al. “Weird” Mammalian Torpor

INTRODUCTION

Torpor in heterothermic endotherms is a controlled, reversible
depression of metabolic rate, and active thermoregulation, well
below the usual daily cycle (sensu Geiser and Ruf, 1995). Over the
last two to three decades, it has become apparent that torpid states
in endotherms are employed in a wide range of ecological and
physiological settings and under contrasting conditions (Cossins
and Barnes, 1996; Geiser and Brigham, 2012; Boyles et al., 2013;
Levesque et al., 2016; Nowack et al., 2017). This challenges
the “traditional” view of torpor as essentially an adaptation to
mismatches between energy supply and demand during cold
seasonal northern hemisphere winters (Geiser, 2004b; Heldmaier
et al., 2004; McKechnie and Mzilikazi, 2011). Understanding
the different underlying causes and initiators of heterothermy
is essential if we are to understand how homeothermy evolved
(Grigg and Beard, 2000; Lovegrove, 2012). Torpor use in
temperate and arctic species is traditionally differentiated into
“daily torpor” and “long-term hibernation.” Daily torpor consists
of hypometabolic phases of less than 24 h, with regular, euthermic
behavior during the usual active phase, whereas hibernation
consists of a series of hypometabolic phases (multiday torpor
bouts) over several months that are interspersed with regular
euthermic arousals. In “classic” hibernators periodic, or inter-
bout, arousals occur about once every 1 or 2 weeks and are
presumably needed to sustain mammalian life during long-
term torpor. Importantly, however, arousals are energetically
expensive phases of active rewarming during hibernation (Carey
et al., 2003; Murray et al., 2003) and are associated with increased
production of reactive oxygen species and cellular damage (Carey
et al., 2000; Brown and Staples, 2011; Nowack et al., 2019).
Energy savings during hibernation are more pronounced than
during daily torpor, but in contrast to daily torpor, hibernation
usually requires preparation (e.g., accumulation of fat stores,
modifications of the reproductive and digestive system Barnes
et al., 1986; Hume et al., 2002; Sheriff et al., 2013 (but see Liu
and Karasov (2011) for an example of a subtropical bat species
without pre-fattening) and reliably favorable conditions to allow
for a quick recovery when animals terminate hibernation with
a reduced body condition. Despite the differentiation between
daily heterotherms and hibernators, the extent to which species
use torpor can vary substantially as we will detail below.

A Global Perspective of Torpor in
Mammals: A Continuum of Physiological
Responses
Extant non-Holarctic heterotherms, often living in warm,
tropical or subtropical climates, are also capable of conserving
energy by reducing metabolism. Although temperate and arctic
heterotherms usually employ torpor in a seasonal manner to
escape unfavorable winter conditions, the responses reported
to date for non-Holarctic heterotherms fall on a continuum
(Boyles et al., 2013; Levesque et al., 2016). One extreme is
represented by largely heterothermic species that have a highly
labile body temperature (Tb; i.e., large daily fluctuations of Tb

without actively depressed metabolic rate) and employ torpor

(large daily amplitudes in Tb and depressed metabolic rate) at
any time of the year, with longer bouts during the hibernation
season (Grigg and Beard, 2000; Turbill et al., 2003; Lovegrove
and Génin, 2008; Levesque and Lovegrove, 2014; Lovegrove et al.,
2014a,b; Dausmann et al., submitted). At the opposite end of
the continuum are species that are physiologically able to exhibit
torpor but do so only rarely (and usually in form of short bouts
of torpor) in emergencies when immediate survival is at risk
(Nowack et al., 2010; Dausmann et al., 2012). An intermediate
form between heterothermy on a very frequent basis throughout
the year or only rare torpor use under extreme circumstances,
would be the “classical,” seasonal use of torpor. In this case, Tb

is kept rather constant outside of the hibernation season and
animals show a regular adjustment of energy balance to seasonal
unfavorable conditions (such as low temperature, high rainfall,
low food availability, see Table 1).

The number and phylogenetic diversity of non-Holarctic
species with documented torpor use is steadily increasing,
with the number doubling in some taxonomic orders since
2011 (Table 1, Figures 1A,B) (McKechnie and Mzilikazi, 2011).
Also, thanks to technological advancements, more physiological
data can be obtained in the field, enabling functional insights
into heterothermic responses of free-ranging animals with
their full physiological potential (Chmura et al., 2018). The
purpose of our review is to summarize what is known
about torpor use in mammals living outside the Holarctic,
including what is traditionally termed sub-tropics and tropics,
and the more temperate zones of the southern hemisphere
(Figure 1A). Therefore, we have synthesized information about
the occurrence, the length, minimum Tb and metabolic rate
during torpor, as well as the ultimate triggers of torpor use
(season, weather, etc.) in heterothermic species outside of the
north temperate and arctic zones. We used data from the
comprehensive review by Ruf and Geiser (2015) with the
addition of more recent descriptions of torpor use in non-
Holarctic heterotherms (Table 1, Figures 1A,B). We focus on
the proximate factors influencing torpor use, as well as the
physiological similarities and differences between mammals
using torpor in diverse habitats. Following on previous syntheses
(Grigg, 2004; Grigg et al., 2004; Lovegrove, 2012), we further
discuss how knowledge of these proximate, and the ultimate
causes of torpor use in extant tropical heterotherms can provide
insight into the ancestral mammal condition.

DO NON-HOLARCTIC HETEROTHERMS
FALL INTO THE
DAILY-HETEROTHERM—HIBERNATOR
DICHOTOMY?

Daily torpor and hibernation patterns in non-Holarctic species
are similar to those observed in temperate/arctic animals, albeit
with some distinctive differences. As far as it is known, the
physiological basis seems analogous: metabolism (and other
physiological variables, such as heart rate, respiration rate, etc.)
is actively depressed to a fraction of euthermic levels, usually
during the daily resting phase or at the end of the activity phase,
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TABLE 1 | Non-Holarctic heterotherms, including species distribution, patterns of heterothermy and potential factors inducing torpor where known.

Species Common name Distribution Mb (g) DT/PT/HIB Tmin (◦C) TMR (mLO2

h−1 g−1)

Lab/Field References Potential torpor

triggers

Afrosoricida

Chrysochloridae

Amblysomus

hottentotus

Hottentot golden

mole

Africa Sub/-tropical 71 SB/HIB 8.6 NA Field Scantlebury et al., 2008 Opportunistic, not

triggered by

temperature, HIB in

spring and summer

Eremitalpa granti Namib desert

golden mole

Africa Sub/-tropical 26 DT 19.3 0.12F Tb: Field,

TMR: LabW

Fielden et al., 1990 n.d.

Macroscelidae

Elephantulus myurus Eastern rock

elephant shrew

Africa Sub/-tropical 57 SB/PT 7.5 0.078 LabW
Lovegrove et al., 2001;

Mzilikazi et al., 2002

Torpor in summer and

winter; triggered by

cold and food

reduction

Elephantulus rupestris Western rock

elephant shrew

Africa Sub/-tropical 53–61 DT 11.9 NA Field Oelkrug et al., 2012 Torpor in summer and

winter; triggered by

cold and high air

humidity

Elephantulus edwardii Cape rock

elephant shrew

Africa Subtropical/

temperate

42–48 SB/PT 9.2 NA LabW Geiser and Mzilikazi,

2011

n.d.

Macroscelides

proboscideus

Round-eared

elephant shrew

Africa Sub/-tropical 46 DT 9.4 NA LabW Lovegrove et al., 1999 Only when food

deprived

Tenrecidae

Echinops telfairi Lesser hedgehog

tenrec

Madagascar Subtropical 132 SB/PT 12.5 0.026 Lab Lovegrove and Génin,

2008; Wein, 2010

Year-round,

independent of season,

temperature and food

supply

Geogale aurita Large-eared

tenrec

Madagascar Subtropical 7 n.d. 24.9 0.15 Lab Gould and Eisenberg,

1966

n.d.

Hemicentetes nigriceps Highland streaked

tenrec

Madagascar Subtropical 102 HIB? NA NA LabW Gould and Eisenberg,

1966; Stephenson and

Racey, 1994

n.d.

Hemicentetes

semispinosus

Lowland streaked

tenrec

Madagascar Subtropical 133 HIB 22 NA LabW Gould and Eisenberg,

1966; Stephenson and

Racey, 1994

n.d.

Microgale dobsoni Dobson’s shrew

tenrec

Madagascar Subtropical 45 n.d. 24.2 0.22 LabW Stephenson and

Racey, 1993

n.d.

Microgale talazaci Talazac’s shrew

tenrec

Madagascar Subtropical 44 n.d. 27.4 NA LabW Stephenson and

Racey, 1993

n.d.

(Continued)
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TABLE 1 | Continued

Species Common name Distribution Mb (g) DT/PT/HIB Tmin (◦C) TMR (mLO2

h−1 g−1)

Lab/Field References Potential torpor

triggers

Setifer setosus Greater hedgehog

tenrec

Madagascar Subtropical 270 SB/HIB 16.5 0.07 Tb: Field,

TMR:LabW

Levesque et al., 2013,

2014; Lovegrove et al.,

2014a

SB: triggered by cold

year-round; HIB:

triggered by seasonal

dry/food shortage

Tenrec ecaudatus Tailless tenrec Madagascar Subtropical 1500–

2500

SB/HIB 16.5 0.027 LabW Gould and Eisenberg,

1966; Nicoll, 1986

reviewed in Geiser

(2004b), Lovegrove

et al. (2014b), Treat

et al. (2018)

SB: triggered by cold

year-round; HIB:

circannual rhythms

Carnivora

Hyaenidae

Proteles cristata Aardwolf Africa Sub-/tropical 8000–

14000

DT 31.2 NA Field Anderson, 2004 Possibly water

availability

Chiroptera

Emballonuridae

Peropteryx macrotis Dog-faced bat America Tropical 5 n.d. 24.2 1.13F LabW Genoud et al., 1990 n.d.

Taphozous australis Coastal sheath-tail

bat

Australia Tropical 23 n.d. 16 NA LabW Kulzer et al., 1970 n.d.

Taphozous

melanopogon

Tomb bat Asia Tropical 26 n.d. 27 NA Lab Kulzer, 1965 n.d.

Hipposideridae

Hipposideros

terasensis

Formosan

Leaf-nosed Bat

Asia Subtropical 58 HIB 13.8 0.046 LabW Liu and Karasov, 2011,

2012

HIB in winter; triggers:

n.d.

Macronycteris

commersoni

Commerson’s

Leaf-nosed Bat

Madagascar Sub-/tropical 54 SB, PT,

HIB

27.2 0.026 Field Reher et al., 2018 HIB and PT in winter,

PT and DT in summer,

triggers: n.d.

Rhinonicteris aurantia Orange leaf-nosed

bat

Australia Tropical 7 n.d. 23.6 NA LabW Kulzer et al., 1970 n.d.

Megadermidae

Macroderma gigas Ghost bat Australia Tropical 100 n.d. 32 NA Lab Geiser et al., unpub.

Data in: Geiser and

Stawski, 2011

n.d.

Megaderma lyra Asian false

vampire bat

Asia Tropical 26 n.d. 30 NA Lab Kulzer, 1965 Trigger: n.d. but torpor

at high ambient

temperatures

(Continued)
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TABLE 1 | Continued

Species Common name Distribution Mb (g) DT/PT/HIB Tmin (◦C) TMR (mLO2

h−1 g−1)

Lab/Field References Potential torpor

triggers

Molossidae

Molossus molossus Pallas’ mastiff bats South

America,

North

America

Tropical 10–12 DT 25.3 0.519 Tb: Field;

TMR: LabW

O’Mara et al., 2017 Food availability

Mormopterus loriae Little northern

freetail bat

Australia Tropical 9 n.d. 10 NA LabW Kulzer et al., 1970 n.d.

Ozimops petersi (in

paper stillMormopterus

species 3)

Inland free-tailed

bat

Australia Subtropical 9 SB/PT 21.3 NA Field Bondarenco et al.,

2013

Torpor in summer;

water saving?

Tadarida aegyptiaca Egyptian

free-tailed bat

Africa Sub/-tropical 16 SB/PT 6.2 NA Field Cory Toussaint et al.,

2010

PT at lower ambient

temperatures

Tadarida brasiliensis Brazilian free-tailed

bat

Central and

South

America

Sub/-tropical 11 DT ∼15F 0.06 LabW Soriano et al., 2002 Cold (facultative)

Tadarida condylurus

(formerly Mops

condylurus)

Angolan free-tailed

bat

Africa Sub/-tropical 28–34 DT 12 NA Field Maloney et al., 1999;

Vivier and van der

Merwe, 2007

Year-round use of

torpor triggered by food

reduction and cold

Tadarida teniotis European

free-tailed Bat

Africa, Asia,

Europe

Subtropical 32 n.d. 16–17 0.04F LabW Marom et al., 2006 Cold

Natalidae

Natalus tumidirostris Funnel-eared bat America Tropical 5 n.d. 23.6 0.67F LabW Genoud et al., 1990 n.d.

Nycteridae

Nycteris thebaica Egyptian slit-faced

bat

Africa Sub/-tropical 11 n.d. 28.4 NA LabW Unpublished data, Cory

Toussaint, McKechnie,

Brigham in: McKechnie

and Mzilikazi, 2011;

Cory Toussaint et al.,

2013

n.d.; No torpor use

found in wild

Phyllostomidae

Carollia perspicillata Leaf-nosed bat America Sub/-tropical 20 n.d. 22 1.01 LabW Audet and Thomas,

1997

Food restriction

Glossophaga soricina Long-tongued bat America Sub/-tropical 10 DT 21 0.23 Lab Kelm and Helversen,

2007

Food restriction

Sturnira erythromos Hairy

yellow-shouldered

bat

South

America

Tropical 16 DT ∼15F 0.2F LabW Soriano et al., 2002 Cold (facultative)

(Continued)
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TABLE 1 | Continued

Species Common name Distribution Mb (g) DT/PT/HIB Tmin (◦C) TMR (mLO2

h−1 g−1)

Lab/Field References Potential torpor

triggers

Sturnira lilium Yellow-shouldered

bat

America Sub/-tropical 17 n.d. 23 0.5 LabW Audet and Thomas,

1997

Food restriction

Vampyrops

(Platyrrhinus) helleri

Heller’s

broad-nosed bat

America Sub/-tropical 15 n.d. 28.5 NA Lab Rasweiler, 1973 Food deprivation

Pteropodidae

Dobsonia minor Bare-backed fruit

bat

Asia Tropical 74 n.d. 26 0.75F LabW McNab and

Bonaccorso, 2001

n.d.

Macroglossus minimus Northern

blossom-bat

Asia, Australia Tropical 16 DT 23.1 0.52 LabW Bartels et al., 1998 Cold

Megaloglossus

woermanni

Long-tongued fruit

bat

Africa Tropical 12 n.d. 26.2 0.80 Lab Kulzer and Storf, 1980 n.d.

Nyctimene albiventer Tube-nosed bat Asia Tropical 28 DT 25.5 0.67 LabW Bartholomew et al.,

1970

n.d.

Nyctimene robinsoni Eastern tube

nosed bat

Australia Sub/-tropical 50 n.d. n.d. NA Lab Hall and Pettigrew,

1995

n.d.

Syconycteris australis Common blossom

bat

Australia Subtropical 18 DT 17.2 0.47 Lab Coburn and Geiser,

1998

Food and water

deprivation; longer and

deeper bouts in

summer

Rhinolophidae

Rhinolophus

megaphyllus

Eastern horseshoe

bat

Asia, Australia Sub/-tropical 8 n.d. 16 NA LabW Kulzer et al., 1970 n.d.

Rhinopomatidae

Rhinopoma cystops Egyptian

mouse-tailed bat

Africa, Asia Sub/-tropical 12 HIB 1 0.16 Field (Tb)

and LabW

(MR)

Levin et al., 2012, 2015 HIB in winter; cold, or

food shortages

Rhinopoma

microphyllum

Greater

mouse-tailed bat

Africa, Asia Sub/-tropical 25 SB/HIB 21F 0.14 LabW Kulzer, 1965; Levin

et al., 2015

SB? for males and

non-lactating females

in summer, HIB in

winter. Cold or food

shortages during winter

Vespertilionidae

Chalinolobus gouldii Gould’s wattled

bat

Australia Wide distribution,

tropical

17.5 n.d. 12 0.05 Lab Hosken and Withers,

1997

n.d.

Chalinolobus morio Chocolate wattled

bats

Australia Subtropical/

temperate

8.1 SB/PT/HIB 3.4 NA Field Turbill, 2006 SB? in summer, PT

(males) and HIB

(females) in winter;

trigger: cold

(Continued)
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TABLE 1 | Continued

Species Common name Distribution Mb (g) DT/PT/HIB Tmin (◦C) TMR (mLO2

h−1 g−1)

Lab/Field References Potential torpor

triggers

Lasiurus cinereus Hoary bat America Wide distribution,

tropical

33 SB/PT* 2 0.37 LabW Cryan and Wolf, 2003;

Willis et al., 2006

Reproduction, storm

Myotis adversus Large-footed

myotis

Asia Tropical 8 PT 8 NA LabW Kulzer et al., 1970 n.d.

Miniopterus schreibersii Large

bentwing/Schreiber’s

long-fingered bat

Africa Tropical 15 n.d. 5 0.24 LabW Brown (1999) Torpor in summer and

winter, trigger: n.d.

Neoromicia

(Pipistrellus) tenuipinnis

White-winged

serotine

Africa Tropical 5 HIB n.d. NA Anecdotal

field

evidence

Eisentraut (1956) n.d.

Nyctophilus bifax Northern

long-eared bat

Australia Tropical 9 SB/PT 9.4 0.046 LabW Stawski et al., 2009 SB? in summer, PT

during winter; triggered

by cold, weather

condition

Nyctophilus geoffroyi Lesser long-eared

bat

Australia Wide distribution,

tropical

8 SB/HIB 1.4 0.037 LabW Geiser and Brigham,

2000; Turbill and

Geiser, 2008; Geiser

et al., 2011

Seasonal, independent

of ambient temperature

Nyctophilus gouldi Gould’s

long-eared bat

Australia, Asia Wide distribution,

tropical

10 SB/HIB 2.3 0.052 LabW Geiser and Brigham,

2000; Turbill and

Geiser, 2008

HIB in winter,

SB?during the rest of

the year Trigger: cold

Otonycteris hemprichii Desert long-eared

bat

Africa, Asia Subtropical 26 n.d. 20–23 0.209F LabW Marom et al., 2006 Cold

Scotophilus dinganii African yellow bat Africa Sub/-tropical 29 DT 18.5 NA Field Jacobs et al., 2007 n.d.

Scotophilus mhlanganii recently described Africa Sub/-tropical 28 DT 18.2 NA Field Jacobs et al., 2007 n.d.

Scotorepens balstoni Inland

broad-nosed bat

Australia Subtropical 10 DT 15.1 0.044 Field Geiser and Brigham,

2000; Bondarenco

et al., 2016

Torpor in summer;

Trigger: n.d.

Scotorepens greyii Little broad-nosed

bat

Australia Subtropical 6 DT 15.3 NA Field Bondarenco et al.,

2016

Torpor in summer;

Trigger: n.d.

Vespadelus vulturnus Little forest bat Australia Subtropical 4 DT 5 0.014 LabW Willis et al., 2005 Food withdrawal

Cingulata

Chlamyphoridae

Zaedyus pichiy Dwarf armadillo America Subtropical/

temperate

700–

1500

SB/HIB 12.5 NA Lab Superina and Boily,

2007

n.d.

Eulipothyphla

Erinaceidae

Atelerix frontalis Southern African

hedgehog

Africa Sub/-tropical 394–797 SB/HIB 1 NA Field Hallam and Mzilikazi,

2011

Seasonal, individuals

with high body mass

hibernate

(Continued)
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TABLE 1 | Continued

Species Common name Distribution Mb (g) DT/PT/HIB Tmin (◦C) TMR (mLO2

h−1 g−1)

Lab/Field References Potential torpor

triggers

Sorcidae

Crocidura flavescens Greater red musk

shrew

Africa Temperate 31.5 DT n.d. NA LabW Baxter, 1996 n.d.

Marsupialia

Dasyuromorphia

Dasyuridae

Antechinomys laniger Kultarr Australia Wide distribution,

tropical

27.4 DT 11 0.14 Lab Geiser, 1986 Spontaneous torpor at

low temperature; torpor

induced by food

withdrawal at higher

temperature.

Antechinus flavipes Yellow-footed

antechinus

Australia Wide distribution,

tropical

30–70 DT 17.8 0.48 LabW Geiser, 1988; Rojas

et al., 2014

Body mass effects

torpor stronger than

season, frequency

increases with age,

torpor in response to

fires

Antechinus stuartii Brown antechinus Australia Subtropical/

temperate

26 DT 18.1 0.66 Field (Tb)

and LabW

(MR)

Geiser, 1988; Hume

et al., 2019

Torpor in response to

fires

Dasycercus blythi Brush-tailed

mulgara

Australia Sub/-tropical 70 DT 10.8 NA Field Körtner et al., 2008,

2016

Independent of

resource availability;

linked to reproduction

Dasycercus cristicauda Crest-tailed

mulgara

Australia Sub/-tropical 100 DT 13.2 0.12 LabW Geiser and Masters,

1994; Körtner et al.,

2016

Independent of

resource availability;

linked to reproduction

Dasykaluta

rosamondae

Little red kaluta Australia Semi-arid 35.5 DT 18F 0.33 Lab Withers and Cooper,

2009

Food withdrawal

Dasyuroides byrnei Kowari Australia Tropical/subtropical 120 DT 20.4 0.4 Lab Geiser and Baudinette,

1987

Spontaneous DT,

trigger: cold.

Dasyurus geoffroii Western quoll Australia Subtropical/

temperate

1000 DT 23.1 NA Not known Arnold, 1976 n.d.

Dasyurus hallucatus Northern quoll Australia Tropical 516 DT 28.4 NA LabW Cooper and Withers,

2010

n.d.

Dasyurus viverrinus Eastern quoll Australia Temperate 1000 DT 25 NA Not known Moyle, 1999 n.d.

Myrmecobius fasciatus Numbat Australia Subtropical/

temperate

n.d. DT 19.1 NA Field Cooper and Withers,

2004

Spontaneous DT, in

winter more frequent,

deeper and longer;

trigger: cold

Ningaui yvonneae Southern ningaui Australia Subtropical/

temperate

11.6 DT 15.3 0.3 Lab Geiser and Baudinette,

1988

Spontaneous DT,

trigger: cold. Frequency

increased with food

withdrawal

(Continued)
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TABLE 1 | Continued

Species Common name Distribution Mb (g) DT/PT/HIB Tmin (◦C) TMR (mLO2

h−1 g−1)

Lab/Field References Potential torpor

triggers

Planigale gilesi Giles’ planigale Australia Subtropical 8.3 DT 14.3 0.36 Lab Geiser and Baudinette,

1988

Spontaneous DT,

trigger: cold. Frequency

increased with food

withdrawal

Planigale ingrami Long-tailed

planigale

Australia Tropical 6–9 DT n.d. 0.48 Lab Dawson and Wolfers,

1978

n.d.

Planigale maculata Common planigale Australia Tropical 10–16 DT 19.6 0.4 Lab Morton and Lee, 1978 Triggered by cold,

independent of food

availability

Planigale tenuirostris Narrow-nosed

planigale

Australia Wide

distribution/tropical

6.6–7.3 DT n.d. 0.48 LabW Dawson and Wolfers,

1978

n.d.

Pseudantechinus

macdonnellensis

Fat-tailed false

antechinus

Australia Arid-zone 18–33 DT 15.7 NA Field Geiser and Pavey,

2007

n.d.

Sminthopsis

crassicautata

Fat-tailed dunnart Australia Arid-zone 10 DT 10.8 0.27 Lab Geiser and Baudinette,

1987; Warnecke et al.,

2008

n.d.

Sminthopsis douglasi Julia Creek

dunnart

Australia Tropical 60 DT 16.9 0.43 not known Muller, 1996 n.d.

Sminthopsis macroura Stripe-faced

dunnart

Australia Wide distribution,

tropical

20–28 DT 11.3 0.3 Lab Geiser and Baudinette,

1987; Song et al.,

1998; Körtner and

Geiser, 2008

Independent of season;

triggered by

temperature and

food/water restriction;

deeper at lower

temperatures and

without food

Sminthopsis murina Common dunnart Australia Wide distribution,

tropical

18 DT 15 0.25 Lab Geiser et al., 1984 n.d.

Sminthopsis ooldea Ooldea dunnart Australia Arid-zone 11 DT n.d. 0.77 LabW Tomlinson et al., 2012 n.d.

Microbiotheriidae

Dromiciops gliroides Monito del monte America Subtropical/

temperate

38.9 SB/PT 7.1 0.03 LabW Grant and

Temple-Smith, 1987;

Nespolo et al., 2010

Ambient temperature;

food availability, but

torpor use even when

food available

Didelphimorphia

Didelphidae

Gracilinanus agilis Agile gracile

opossum

America Tropical 12–43.6 DT 20 0.3 LabW Cooper et al., 2009 Lab study only.

Capable of torpor at

high ambient

temperatures

(Continued)
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TABLE 1 | Continued

Species Common name Distribution Mb (g) DT/PT/HIB Tmin (◦C) TMR (mLO2

h−1 g−1)

Lab/Field References Potential torpor

triggers

Gracilinanus

microtarsus

Brazilian gracile

opossum

America Tropical 13 DT 16 NA LabW Morrison and McNab,

1962

Lab study only (n = 1).

Capable of torpor at

high ambient

temperatures

Lestodelphys halli Patagonian

opossum

America Subtropical/

temperate

48 SB/PT* 7.7 NA LabW Geiser and Martin,

2013

Cold exposure, food

withdrawal, but also

torpor use when food

available

Marmosa robinsoni Robinson’s mouse

opossum

America Tropical 122 DT? 23 NA LabW McNab, 1978 n.d.

Monodelphis

brevicaudata

Red-legged

short-tailed

opossum

America Tropical 40–111 DT? 27 NA LabW McNab, 1978 n.d.

Monodelphis

domestica

Gray short-tailed

opossum

America Tropical 93 DT 28.6 0.365 Lab Busse et al., 2014 n.d. but enters torpor

at high ambient

temperatures

Thylamys elegans Elegant fat-tailed

opossum

America Wide distribution,

tropical

32.1 DT 11F 0.4 LabW Opazo et al., 1999;

Bozinovic et al., 2007

Food reduction

Diprotodontia

Acrobatidae

Acrobates pygmaeus Feathertail glider Australia Wide distribution,

tropical

14 SB/PT 2 0.042 LabW Jones and Geiser,

1992; Geiser and

Ferguson, 2001

PT in emergency

situations

Burramyidae

Burramys parvus Mountain pygmy

possums

Australia Temperate 40 HIB 1.8 0.025 LabW Geiser and Broome,

1991

Seasonal

Cercartetus caudatus Long-tailed pygmy

possum

Australia Tropical 30 SB/HIB? n.d. NA Lab Atherton and

Haffenden, 1982

n.d.

Cercartetus concinnus Western pygmy

possum

Australia Temperate/semi-

arid

18 HIB 4.7 0.046 Lab Geiser, 1987 n.d.

Cercartetus lepidus Tasmanian pygmy

possum

Australia Temperate 12 SB/PT* 5.9 0.052 Lab Geiser, 1987 n.d.

Cercartetus nanus Eastern pygmy

possum

Australia Subtropical 20 SB/HIB 1.3 0.018 LabW Geiser, 1993; Song

et al., 1997; Turner

et al., 2012

Food withdrawal;

opportunistic

Petauridae

Petaurus breviceps Sugar glider Australia Wide distribution,

tropical

130 DT 10.4 0.03 Field (Tb)

and LabW

(MR)

Fleming, 1980; Körtner

and Geiser, 2000;

Christian and Geiser,

2007

Reluctant to enter

torpor; triggered by rain

and cold

(Continued)

F
ro
n
tie
rs

in
E
c
o
lo
g
y
a
n
d
E
vo

lu
tio

n
|
w
w
w
.fro

n
tie
rsin

.o
rg

1
0

M
a
rc
h
2
0
2
0
|
V
o
lu
m
e
8
|
A
rtic

le
6
0

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


N
o
w
a
c
k
e
t
a
l.

“W
e
ird

”
M
a
m
m
a
lia
n
To

rp
o
r

TABLE 1 | Continued

Species Common name Distribution Mb (g) DT/PT/HIB Tmin (◦C) TMR (mLO2

h−1 g−1)

Lab/Field References Potential torpor

triggers

Tarsipedidae

Tarsipes rostratus Honey possum Australia Wide distribution 5–15 DT 5.4 0.15 LabW Collins et al., 1987 Triggered by food

shortage and low

temperature

Monotremata

Tachyglossidae

Tachyglossus aculeatus Short-beaked

echidna

Australia Wide distribution,

tropical

2800 SB/HIB/PT 4 0.03 Field (Tb)

and LabW

(MR)

Augee and Ealy, 1968;

Grigg et al., 1989

Seasonal HIB

year-round use of SB?-

food withdrawal, cold

PRIMATES

Lemuridae

Allocebus trichotis Hairy-eared dwarf

lemur

Madagascar Tropical 70 SB/HIB? n.d. NA Anecdotal

field

evidence

Dausmann, 2014 n.d.

Cheirogaleus crossleyi Furry-eared dwarf

lemur

Madagascar Tropical 350 HIB 9 NA Field Blanco and

Rahalinarivo, 2010

Seasonal

Cheirogaleus major Greater dwarf

lemur

Madagascar Tropical 300 HIB n.d. NA Field Lahann, 2007 Seasonal

Cheirogaleus medius Fat-tailed dwarf

lemur

Madagascar Tropical 130 HIB 9.3 0.044 Field Dausmann et al., 2005 Seasonal

Cheirogaleus sibreei Sibree’s dwarf

lemur

Madagascar Tropical 250 HIB n.d. NA Field Blanco et al., 2013 Seasonal

Microcebus berthae Madame Berthe’s

mouse lemur

Madagascar Tropical 31 DT 6.8 0.09 Field Ortmann et al., 1997;

Schmid et al., 2000

Seasonal

Microcebus griseorufus Reddish-gray

mouse lemur

Madagascar Tropical 50 SB/PT/HIB 6.5 0.15 Field Kobbe and Dausmann,

2009; Kobbe et al.,

2011, 2014

Seasonal, hibernation

depending on body

mass

Microcebus murinus Gray mouse lemur Madagascar Tropical 70 SB/PT?/HIB 7.8 0.16 Field Schmid, 2000; Schmid

and Speakman, 2000

Seasonal, hibernation

depending on body

mass and sex

Microcebus ravelobensis Golden-brown

mouse lemur

Madagascar Tropical 63 DT 25F NA Field Lovegrove et al., 2014a Seasonal

Microcebus rufus Brown mouse

lemur

Madagascar Tropical 40 SB/PT?/HIB? n.d. NA Field Atsalis, 1999;

Randrianambinina

et al., 2003

Seasonal

Mirza coquereli Coquerel’s mouse

lemur

Madagascar Tropical n.d. DT n.d. NA Anecdotal

field

evidence

Dausmann, 2008 Seasonal

(Continued)
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TABLE 1 | Continued

Species Common name Distribution Mb (g) DT/PT/HIB Tmin (◦C) TMR (mLO2

h−1 g−1)

Lab/Field References Potential torpor

triggers

Lorisidae

Galago moholi African lesser

bushbaby

Africa Sub/-tropical 100 DT 13.5 0.09 Field Nowack et al., 2010,

2013b

Emergency, low body

mass, food withdrawal

Loris

tardigradus tardigradus

Red slender loris Asia Tropical 85–369 DT n.d. NA Field pers. obs. KAI Nekaris n.d.

Nycticebus javanicus Javan slow loris Asia Tropical 600 DT n.d. NA Anecdotal

field

evidence

pers. obs. KAI Nekaris n.d.

Nycticebus pygmaeus Pygmy slow loris Asia Tropical 450 PT 11 NA LabW Streicher, 2004; Ruf

et al., 2015

Seasonal

RODENTIA

Bathergidae

Cryptomys

hottentotus darlingi

Mashona mole rat Africa Sub/-tropical 60 DT 26.8 NA Lab Bennett et al., 1993 Cold

Fukomys damarensis Damaraland mole

rat

Africa Sub/-tropical 88–202 n.d. 28.5 NA Lab Streicher, 2010; Boyles

et al., 2012

Seasonal?

Cricetidae

Calomys musculinus Drylands vesper

mouse

America Sub/-tropical 20 DT 28 0.52 LabW Bozinovic and

Rosenmann, 1988

Aridity? Spontaneous

torpor when food

supplied

Calomys venustus Córdoba vesper

mouse

America Sub/-tropical 49.5 DT 16.4 0.96 LabW Caviedes-Vidal et al.,

1990

n.d.

Phyllotis darwini Darwin’s

leaf-eared mouse

America Temperate 35.9 DT 17.5 0.19 LabW Bozinovic and Marquet,

1991

Food withdrawal

Muridae

Acomys russatus Golden spiny

mouse

Africa/Middle

East

Sub/-tropical 50–72 SB/HIB 24 0.25 Lab Grimpo et al., 2013;

Barak et al., 2019

Torpor use at high

temperature and

increased during food

restriction

Aethomys namaquensis Namaqua rock

mouse

Africa Sub/-tropical 46 n.d. 19.8 NA Field Withers et al., 1980 n.d.

Gerbillus pusillus Least gerbil Africa Tropical 13 DT 16.7 0.38 LabW Buffenstein, 1984 Food deprivation

Mus musculus House mouse Worldwide Wide distribution,

tropical

13 DT 20.5 0.7 Lab Hudson and Scott,

1979; Tomlinson et al.,

2007; Schubert et al.,

2010

Cold, food deprivation

(Continued)
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TABLE 1 | Continued

Species Common name Distribution Mb (g) DT/PT/HIB Tmin (◦C) TMR (mLO2

h−1 g−1)

Lab/Field References Potential torpor

triggers

Saccostomus campestris Pouched mouse Africa Sub/-tropical 60–87 DT 21 0.35 Lab Lovegrove and Raman,

1998; Mzilikazi and

Lovegrove, 2002

Year-round, triggered

by cold and in females

also by food restriction

Steatomys pratensis Fat mouse Africa Tropical 16 DT 13 0.3 Lab Ellison, 1995 Cold

Petromyscus collinus Pygmy rock

mouse

Africa Sub-tropical 19 n.d. 15.6 NA Field Withers et al., 1980 n.d.

Pseudomys albocinereus Ash-grey mouse Australia Wide distribution,

subtropical

28 DT 24.5 1.02 LabW Barker et al., 2012 Torpor use at 20/25◦C.

presumably triggered

by food withdrawal

Pseudomys

hermannsburgensis

Sandy inland

mouse

Australia Wide distribution,

tropical

12 DT 17.3 0.85F LabW Tomlinson et al., 2007 Hypothermia in

response to cold, no

spontaneous arousal

Rattus fuscipes Bush rat Australia Wide distribution,

subtropical

119–151 DT 23.8 NA Field Nowack and Turbill,

unpublished data

Torpor use in response

to hindered foraging

activity

Gliridae (Myoxidae)

Graphiurus murinus Woodland

dormouse

Africa Sub/-tropical 45 PT 1.5 NA Field Mzilikazi et al., 2012 n.d.

Graphiurus ocularis Spectacled

dormouse

Africa Subtropical/

temperate

67.8 n.d. <31 NA LabW Perrin and Ridgard,

1999

n.d.

Species are chosen on basis of Ruf and Geiser (2015); distributions are based on the IUCN distribution maps. HIB, hibernation (several months); PT, prolonged torpor (several days); DT, daily torpor (<24 h); SB, short torpor bouts

undergone by hibernators; n.d., no data; Mb, body mass; Tmin, minimal body temperature during torpor; TMR, torpid metabolic rate, Lab/Field: Field, evidence from field studies or from wild animals (captured from the field and usually

measured within 24 h to a few days) in a field laboratory under natural light and temperature conditions; Lab, evidence from laboratory measurements; LabW, evidence from laboratory measurements on wild animals, i.e., captured from

the field and usually measured within 24 h to a few days.

*Termed “hibernation” in the publication, but we further differentiate multiday torpor bouts into prolonged torpor and hibernation based on length.
FNumber estimated from figure.
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Nowack et al. “Weird” Mammalian Torpor

FIGURE 1 | (A) The minimum torpid body temperature (Tbmin) and phylogenetic relationship of non-Holarctic heterotherms, and (B) their geographical distribution.

The phylogeny, including estimated ancestral states for Tbmin was plotted using “contMap” in the R library “phytools” (Revell, 2012) and the latest mammalian

phylogeny by Upham et al. (2019). Geographical locations were taken as the latitude and longitude at the middle of the species range provided by the PanTHERIA

dataset (Jones et al., 2009).
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Nowack et al. “Weird” Mammalian Torpor

and Tb adjusts accordingly (Carey et al., 2003; Geiser, 2004a;
Heldmaier et al., 2004). Additionally to active depression of
metabolic rate, the abandoning of the differential between Tb and
ambient temperature contributes substantially to energy savings
during torpor bouts, especially in small species. Usually this
results in a drop in Tb, the degree of which depends on ambient
temperature (and the degree of daily fluctuations thereof), the
insulative capacity of the resting site (see below), and the duration
of the torpor bout (Hallam and Mzilikazi, 2011; Kobbe et al.,
2011).

Although we can still differentiate daily heterotherms and
hibernators in the non-Holarctic dataset, the distinction becomes
a bit more blurry. Notably, it is more common for non-Holarctic
hibernators to also use short bouts of torpor that typically last
less than 24 h but during which metabolic rate is lowered to
levels comparable to those during hibernation phases, e.g., seen in
Nyctophilus spp. (Geiser and Brigham, 2000; Geiser and Stawski,
2011). To differentiate these from daily torpor use by daily
heterotherms, we will refer to those by using the term “short
bouts”. Furthermore, many non-Holarctic hibernators do not
only use short bouts or hibernation, but often also show an
intermediate length of torpor, i.e., “prolonged torpor” lasting up
to several days with regular activity (several hours to many days)
between torpor bouts (Kobbe et al., 2011; Dausmann, 2014).

HETEROTHERMY AS THE NORM,
HOMEOTHERMY AS THE EXCEPTION

Although Holarctic heterotherms usually maintain a high and
stable Tb during part of the year, examples from the southern
hemisphere show us that this is not the case for all heterotherms.
At the extreme end of thermolabililty in heterotherms are
the eutherian Tenrecidae, a family of mammals found on
Madagascar and the surrounding islands, which have been
isolated from the mainstream of mammalian evolution for about
30–56 Myr (Crompton et al., 1978; Everson et al., 2016). They
are members of the superorder Afrotheria, a group of mammals
whose extant members live predominantly in Africa or are
of African origin (Poux et al., 2005). The ecology, behavior
and thermoregulatory physiology of these “basoendothermic”
mammals have been proposed to be similar to those of the early
mammalian endotherms (Lovegrove and Génin, 2008; Levesque
and Lovegrove, 2014). All members of this group investigated to
date exhibit a generally low basal metabolic rate and highly labile
Tb, often closely tracking environmental temperature (Table 1).
Even so, the lesser hedgehog tenrec, Echinops telfairi (and likely
other species of tenrec as well), has functional brown adipose
tissue, enabling non-shivering thermogenesis (Oelkrug et al.,
2013). In addition to low basal metabolic rates, many species
of tenrecs also enter short daily bouts of torpor and long-
term hibernation (Table 1). Some species (E. telfairi, Setifer
setosus) seem to maintain euthermy (higher and less variable
Tb in the resting-phase) only during reproduction (gestation
and/or lactation) (Poppitt et al., 1994; Wein, 2010; Levesque and
Lovegrove, 2014; Lovegrove et al., 2014b) presumably to enhance
embryonic development and milk production. For males, the

occasional rise of Tb above 30◦C might be sufficient to allow
sperm production (Fietz et al., 2004).

Outside of the hibernation season (during the austral winter),
torpor in E. telfairi and S. setosus seems to be independent of
external stimuli and is employed frequently not in response
to seasonality or a scarcity of food or water, but throughout
the active season (see Figure 2; Lovegrove and Génin, 2008;
Wein, 2010; Levesque et al., 2013, 2014; Dausmann et al.,
submitted). Interestingly, the thermolability shown by many
tenrec species is mirrored by another basoendotherm (dubbed
“protoendotherm” by Grigg et al., 2004), the short-beaked
echidna, Tachyglossus aculeatus (Order Monotremata). Echidnas
have a wide distribution in Australia and Tasmania, from cold-
temperate to desert habitats, and also occur in tropical areas.
They exhibit daily fluctuations in Tb (up to 5◦C) and use torpor
flexibly (Kuchel, 2003; Grigg et al., 2004; Nicol and Andersen,
2006). Depending on their habitat they increase torpor use during
the cold period and either show long-term hibernation (e.g.,
Tasmania or Australian Alps: Augee and Ealy, 1968; Grigg et al.,
1989; Nicol and Andersen, 2002) or prolonged torpor lasting for
a few days (Brice et al., 2002; Kuchel, 2003; Western Australian
Wheatbelt: Nowack et al., 2016).

Although this form of continuous heterothermy, either via
torpor or highly variable Tb, has to date predominantly been
found in spiny, terrestrial insectivores such as tenrecs and
echidnas, it may possibly exist in other groups. For example,
another tropical species that uses torpor on a regular day-to-day
basis is the Angolan free-tailed bat, Tadarida aegyptiaca. This
species uses daily torpor throughout the year and continuously
maintains its Tb close to ambient temperatures when at rest
(Vivier and van der Merwe, 2007). Given the large phylogenetic
range covered by these three groups and the small number of
studies investigating thermophysiology in the field, it is likely
that there are other species of mammals with similar levels of
thermolability that will be revealed with further study.

SEASONAL HETEROTHERMIC
RESPONSES

Strictly seasonal use of torpor seems to be less common in
lower latitude heterotherms than in their northern counterparts
(Table 1). Furthermore, although most species show regular,
seasonal use of daily or prolonged torpor, the use of hibernation,
in the classical sense of animals disappearing for months at
a time, is not as widespread in non-Holarctic species as it
is in temperate/arctic mammalian lineages (Heldmaier et al.,
2004; McKechnie and Mzilikazi, 2011; Ruf and Geiser, 2015). In
contrast to those tenrec species highlighted above that use some
form of heterothermic response during most of the year, other
species, such as the tailless tenrec, Tenrec ecaudatus, are generally
believed to only hibernate seasonally (Nicoll, 1986). Although
based on more recent studies, it is highly likely that they can
also use short bouts of torpor outside of the regular hibernation
period (Lovegrove et al., 2014b; Treat et al., 2018).

Interestingly, the most strictly seasonal hibernators in the
tropics are concentrated in one family of small, nocturnal
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FIGURE 2 | Top panel: Body temperature (black), ambient temperature (dashed gray) and temperature from a nearby nest site (dotted black) of a free ranging greater

hedgehog tenrec (Setifer setosus) during the Austral winter (dry season). Redrawn from Lovegrove et al. (2014a) and Levesque et al. (2014). Middle and lower panel:

Body temperature (black), ambient temperature (dashed gray) and tree-hole temperature (dotted black) of a free ranging fat-tailed dwarf lemur (Cheirogaleus medius)

during the Austral winter (dry season) in a poorly insulated (middle) or moderately well insulated (lower panel) tree-hole.

Malagasy lemurs, the Cheirogaleidae (Table 1). It is likely that
all species of this family (i.e., the genera Allocebus, Cheirogaleus,
Microcebus, Mirza) are heterotherms, with the exception of
members of one genus (Phaner, which has a very specific feeding
regime that does not change seasonally) and most species of
this family studied to date become torpid during the austral
winter under free-ranging conditions (Dausmann, 2008, 2014).
Thus, heterothermy in lemurs is a seasonal response, decreasing
energy andwater demands drastically thereby facilitating survival
during the harsh (cold and dry) conditions of the Malagasy
winter (Schmid and Speakman, 2000; Schmid et al., 2000).
During the dry season in winter, temperatures decline across
all habitats of Madagascar, although the extent varies. All dwarf
lemurs (Cheirogaleus) are obligate hibernators in their natural
environments (Petter, 1978; Hladik et al., 1980; Dausmann, 2008,
2014), from the eastern rainforests to the western dry forests.
They hibernate either in tree hollows or buried underground

between 3.5 and 8 months, depending on the seasonality of
their habitats (Blanco et al., 2013; Dausmann, 2013; Dausmann
and Blanco, 2016). As applies to most hibernators, this strategy
requires preparation as well as sufficiently favorable conditions
for recovery when hibernation is terminated, and reproduction
needs to commence promptly. Thus, it can only be expressed
in fairly predictable habitats. More flexible responses are shown
by the mouse lemurs (Microcebus- over 20 species at present
count). Most likely, all species are heterotherms and every
mouse lemur species studied up to date has shown some
form of seasonal torpor (Table 1). Some of these species
have also shown months-long hibernation, however, in each
case, only some individuals in a population did so, and
individuals alternated between occasional torpor, short bouts
of torpor, prolonged torpor and months-long hibernation both
within and between winter seasons (Schmid and Ganzhorn,
2009; Kobbe et al., 2011). Allocebus and Mirza species have

Frontiers in Ecology and Evolution | www.frontiersin.org 16 March 2020 | Volume 8 | Article 60

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Nowack et al. “Weird” Mammalian Torpor

been reported or presumed to exhibit daily torpor during
winter, albeit at different and flexible frequencies, however
data have yet to be recorded (Dausmann and Warnecke, 2016;
Table 1).

Most lower latitude hibernators, such as many bat species (see
Table 1), short-beaked echidnas, Tachyglossus aculeatus (Grigg
et al., 1989), and eastern pygmy-possums, Cercartetus nanus
(Turner et al., 2012), are not strictly seasonal in their use
of torpor and though they will use hibernation in winter,
they also undergo shorter bouts of torpor during the rest
of the year (see Opportunistic Torpor below). However, like
the lemurs mentioned above, there are some species, which
show a strict seasonal use of torpor (either daily or prolonged
torpor) such as the Southern African hedgehog, Atelerix frontalis
(Hallam and Mzilikazi, 2011), the African lesser bushbaby,
Galago moholi (Nowack et al., 2010, 2013b), pygmy slow loris,
Nycticebus pygmaeus (Streicher, 2004; Ruf et al., 2015), the
Damaraland mole-rat, Fukomys damarensis (Streicher, 2010),
and the Mountain pygmy possum, Burramys parvus (Geiser and
Broome, 1991). However, it has to be noted that sufficient data
on year round torpor use are lacking for most species with most
measurements restricted to the winter when torpor is expected
(Levesque et al., 2016).

OPPORTUNISTIC TORPOR

Similar to the tenrecs and echidnas mentioned above, a number
seasonal heterotherms also employ torpor independent of
season, if the conditions are sufficiently challenging (Table 1).
Opportunistic torpor enables these species to respond promptly
to unpredictable environmental changes, such as prolonged
droughts or cold spells, as well as to an unusual shortage
of food. For example, the eastern and rock elephant shrews,
Elephantulus myurus and E. rupestris, routinely show short daily
bouts of torpor during the winter, but also use daily torpor
opportunistically throughout the year, presumably triggered
by low temperatures and high air humidity (Mzilikazi and
Lovegrove, 2004; Oelkrug et al., 2012). Furthermore, echidnas
and marsupial antechinus (Antechinus spp.) have recently been
reported to intensify torpor use in response to the threats of
and the reduced food availability after fires (Stawski et al.,
2015; Nowack et al., 2016). Other species, such as sugar gliders,
Petaurus breviceps, or golden spiny mice, Acomys russatus, have
been observed to use or intensify torpor in response to storms or
floods (Nowack et al., 2015; Barak et al., 2019). Similarly, many
non-Holarctic bat species exhibit prolonged torpor during winter
(up to several days; reviewed by Geiser and Stawski, 2011) while
also using opportunistic short bouts of torpor in other seasons.
For example, the Northern long eared bat,Nyctophilus bifax, uses
prolonged torpor (up to 5.4 days) during winter, but short bouts
of torpor in response to cold weather conditions during summer
(Stawski et al., 2009). Another, only recently studied, example is
the Malagasy bat, Macronycteris commersoni. This species roosts
in hot caves (≥32◦C year-round) and displays a whole spectrum
of different torpor responses during summer and winter (Reher
et al., 2018). In summer, individuals may remain euthermic or

enter torpor bouts lasting up to 6 days (sometimes coinciding
with cyclones), while in winter their responses range from short
torpor bouts, over prolonged torpor to hibernation with single
bouts lasting up to 16 days; the triggers for the duration of torpor
use remain unknown (Reher et al., unpublished data).

Other species also show opportunistic torpor independent
of season, but in response to ambient conditions or food and
water supply (Table 1). Amongst those are the pouched mouse,
Saccostomus campestris, which entered torpor in the laboratory
over a wide range of ambient temperatures and independent
on photoperiod (Lovegrove and Raman, 1998; Mzilikazi and
Lovegrove, 2002), the pichi, Zaedyus pichiy, which has been
reported to use short bouts of torpor in spring after the
hibernation season (Superina and Boily, 2007), the monito
del monte, Dromiciops gliroides that entered torpor in the
laboratory when kept under long photoperiod and relatively
warm temperatures (20◦C) (Bozinovic et al., 2004; Nespolo et al.,
2010), and the striped faced dunnart, Sminthopsis macroura
(Geiser and Baudinette, 1987; Song et al., 1997). In contrast,
opportunistic use of heterothermy has been observed in only a
handful of Holarctic species. The edible dormouse, Glis glis, for
example, has been shown to re-enter hibernation already in July
and to remain torpid until the following year (up to 11 months
in total) in non-mast years when reproduction is skipped (Bieber
and Ruf, 2009; Hoelzl et al., 2015).

RARE USE OF TORPOR

Not all heterotherms use torpor on a regular basis. A few species
are known to be physiologically capable of employing torpor
but do so only under adverse conditions and instead remain
homeothermic whenever possible. A well-studied example is the
African lesser bushbaby, Galago moholi. This species was long
thought to be strictly homeothermic, despite cool environmental
temperatures and a lack of food present in its habitat during
winter. However, Nowack et al. (2010) detected sporadic daily
torpor in a small fraction of the population. Since even these few
(primarily juvenile and subadult) individuals became torpid only
on single occasions, this suggests an unusual or specific trigger
and is clearly not a regular seasonal response (Nowack et al.,
2010, 2013b). Instead, behavioral and nutritional strategies are
used by G. moholi to facilitate survival in winter, including larger
sleeping groups, better insulated sleeping places, and changes
in diet (Nowack et al., 2013c). In G. moholi, heterothermic
phases are always shorter than 24 h and individuals have unusual
difficulties rewarming to euthermic levels on cold days. The fact
that G. moholi possess brown adipose tissue and the ability to
use non-shivering thermogenesis suggests that individuals only
enter torpor when their internal energy stores are depleted and
that they have to rely on exogenous heat to return to active Tb

(Nowack et al., 2013a).
Other heterothermic species which have been found to use

torpor only rarely are the sugar glider, Petaurus breviceps
(Christian and Geiser, 2007) and the feathertail glider, Acrobates
pygmaeus (Jones and Geiser, 1992). Torpor use in P. breviceps
seems to be triggered by especially cold and rainy days when
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animals remain in their nests instead of foraging (Körtner
and Geiser, 2000; Nowack et al., 2015), enabling them to
occur over a wide range of climatic conditions and even in
cold temperate areas (snow and freezing conditions overnight).
A. pygmaeus commonly exhibit bouts of short torpor but
seem to be able to extend torpor use and undergo prolonged
bouts when cold stressed (8–12◦C; Jones and Geiser, 1992).
Further examples of reluctant use of torpor are found in
the rodent family. Although most Australian ash-gray mice,
Pseudomys albocinereus, remained euthermic over a range of
ambient temperatures when studied in the laboratory, one
individual became torpid at 20 and 25◦C (Barker et al.,
2012). Body temperature recordings also suggest that Australian
bush rats (Rattus fuscipes), which have a large geographical
distribution, including tropical moist forests, can use torpor
to compensate for lost feeding opportunities (unpublished
data Nowack and Turbill). On the other hand, sandy inland
mice (Pseudomys hermannsburgensis), who are also endemic
to Australia, responded to food deprivation and low ambient
temperature by becoming hypothermic without being able to
arouse spontaneously (Tomlinson et al., 2007). More in-depth
studies of species with large latitudinal ranges will provide better
understanding of the flexibility of these responses.

Heterothermy as a singular response to acute emergency
situations has to our knowledge not been reported for Holarctic
mammals. This strategy, however, could be conceivable for
members of the Sciuridae, which includes the classic hibernators
(ground squirrels and chipmunks in the clade Marmotini).
Interestingly, tree squirrels (sub-family Sciurinae) including
European red squirrels (Sciurus vulgaris), have not been observed
to enter torpid states (Dausmann et al., 2013), although it appears
likely that closely-related flying squirrels are capable of shallow
torpor (Olson et al., 2017). Tropical and sub-tropical sciurids
have not been studied and more field studies are clearly needed
to elucidate the potential for rare use of torpor in otherwise
homeothermic mammals.

Differences in Body Temperature Are
Related to Climate
One could assume that the clearest difference between tropical
and Holarctic heterotherms is that Tb does not fall to extremely
low levels. Indeed, with the exception of higher elevation habitats,
ambient temperature rarely falls to life-threating temperatures
below 0◦C in the tropics even during winter, and thus individuals
should not need mechanisms to avoid freezing. The record
holders, in terms of low Tb, amongst mammals are the Arctic
ground squirrel, Spermophilus parryii, and the European hazel
dormice,Muscardinus avellanarius, both regulating a decrease in
Tb down to as low as−2.9◦C during hibernation without freezing
(Barnes, 1989; Pretzlaff and Dausmann, 2012). Nonetheless,
heterotherms from non-temperate or arctic areas can sometimes
approach this temperature, and the southern African hedgehog,
Atelerix frontalis, which is also one of the largest of all subtropical
heterotherms (400–800 g), has been observed to hibernate with a
Tb as low as 1◦C (Hallam and Mzilikazi, 2011). In lemurs and
tenrecs, the lowest Tb during hibernation recorded to date is

6.5◦C in M. griseorufus (Table 1; Kobbe et al., 2011), but more
commonly Tb is higher between 10◦C and 30◦C. Indeed, lemurs
and tenrecs continue to hibernate even at Tbs >30◦C (Figure 2).
Similarly, eastern pygmy-possums (Cercartetus nanus) become
torpid within their thermo-neutral zone and golden spiny mice
(Acomys russatus) even use torpor at ambient temperatures as
high as 35◦C (Song et al., 1997; Grimpo et al., 2013).

To imperically test for differences in minimal torpid
Tb and torpid metabolic rates between Holarctic and non-
Holarctic species we used the “plgs” function in the R package
“caper”[R version 3.6.2 (Orme et al., 2013; R Development
Core Team, 2019)] on data from species in Table 1 and
Holarctic species from Ruf and Geiser (2015) and controlled
for phylogenetic relatedness using the mammal phylogeny
by Upham et al. (2019). We tested for differences between
torpor Tb using “tbmin∼distribution” and in metabolic rate
using “torpidMR∼mass+distribution.” Holarctic species had
significantly lower minimum torpid Tb (p = 0.001), and torpid
metabolic rates (p < 0.0001) than non-Holarctic species, despite
a high degree of overlap in both values between the two groups
(Figure 3). However, in most, if not all, of these examples from
non-Holarctic species the lowest Tb measured was bounded
at the lower end by the coldest ambient temperatures, it is
therefore difficult to predict if torpor patterns in non-Holarctic
species would be similar at colder temperatures. The study of
tropical heterotherms emphasizes that heterothermy must be
defined on the basis of mechanistic, physiological parameters,
such as significantly decreased metabolic rate (or heart rate), and
not solely by Tb (Dausmann et al., 2004; Kobbe et al., 2011;
McKechnie and Mzilikazi, 2011; Canale et al., 2012). However,
our analysis has shown that we only have metabolic rate data
from about half of the studied species (52% Holarctic and 57% of
Non-Holarctic). Furthermore, the metabolic rate data in Table 1

do not necessarily represent minimum torpid metabolic rate for
a species as they might have been taken in one study while
longer/deeper torpor bouts have been recorded in another study
in which only Tb has been measured (as in the case of Acomys
russatus) or because metabolic rate data have been obtained
under a (field-)laboratory setup while Tb has been obtained from
free-ranging animals; in fact only eight studies that report torpor
metabolic rates of non-Holoractic species have been measuring
metabolic rates of animals in the field.

The low risk of freezing in most tropical heterotherms has
consequences for several aspects of their physiology including fat
metabolism. In the fat-tailed dwarf lemur, C. medius, the main
fuel during hibernation is monounsaturated oleic acid, which is
synthesized preferentially from dietary carbohydrates obtained
before food supply diminishes (sugary fruits; Fietz et al., 2003).
This fat is stored in large quantities in the tails as triglycerides,
resulting in an almost doubling of body mass (Fietz and
Dausmann, 2007). Temperate hibernators, on the other hand,
profit from a high content of polyunsaturated fatty acids (PUFAs)
during hibernation. A diet rich in n-6 PUFAs has been shown to
lead to longer and deeper torpor bouts (Geiser and Kenagy, 1987;
Giroud et al., 2013) and thus higher energy savings during winter
as they increase the activity of the sarcoplasmic reticulum Ca2+

ATPase (SERCA) and thus counteract the suppressed enzymatic
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FIGURE 3 | Boxplots (representing the minimum, maximum, median, first quartile and third quartile) of minimal torpid body temperatures (Tb;
◦C) and minimal torpid

metabolic rate Tbmin for the non-Holarctic species with additional Holarctic species described by Ruf and Geiser (2015). Values for both were, on average,

significantly higher in non-Holarctic species (see text).

activity and allow for greater fluidity of cell membranes at low
temperature. Interestingly, n-3 PUFAs have a so far unexplained
negative effect on torpor use (Giroud et al., 2013, 2018) and a diet
rich in n-3 PUFAs has been shown to not only significantly reduce
torpor use in temperate zone heterotherms but also in the tropical
daily heterotherm, Microcebus murinus (Vuarin et al., 2016).
However, the amount of n-6 and n-3 PUFAs in the diet is unlikely
to be critical for tropical heterotherms as they usually do not
hibernate at Tbs close to freezing (Goldman, 1975; Frank, 1991;
Vuarin et al., 2016). They may thus avoid autoxidation and the
production of toxic fatty acids peroxides, which are by-products
of the metabolism of essential fatty acids.

Different Triggers of Torpor Use
Although torpor use in temperate and arctic regions is usually
triggered by photoperiod, low temperatures, and limited food
ability, the data summarized in Table 1 clearly shows the variety
of factors that are triggering torpor in non-Holarctic species. As
mentioned above, even during wintermonths, cold does not seem
to be a necessity for tropical and subtropical hibernators and
torpor bouts are often caused by seasonal low water availability
instead of low food availability. Interestingly, mouse-tailed bats
(Rhinopoma) are even considered incapable of entering torpor
during cold periods (Kulzer, 1965). Levin et al. (2015) found
that two species of mouse-tailed bats (Rhinopoma cystops,
Rhinopoma microphyllum) hibernated in a geothermally heated

cave in winter with a stable ambient temperature of 19–23.8◦C
although colder caves were available. Both species showed the
lowest torpor metabolic rate at ∼20◦C and aroused at ambient
temperature below 16◦C (Levin et al., 2015). Thus, the availability
of warm caves has allowed them to expand their subtropical
distribution range from semi-arid and warm regions in Asia and
Africa into southern Israel, the northern edge of their distribution
(Levin et al., 2008, 2015). Similarly, the lesser long-eared bat
(Nyctophilus geoffroyi) uses short bouts of torpor in tropical
northern Australia in winter where ambient temperatures do not
drop below 16.5◦C (Geiser et al., 2011). Opportunistic torpor is
often triggered by unpredictability in environmental parameters,
such as unseasonal food or water shortages (e.g., droughts or
fires), conditions that are less frequently encountered on an
unpredictable basis in temperate and arctic regions.

The Advantages of Passive Arousals
Torpor at relatively high ambient temperatures still offers
energetic savings, but without some of the major disadvantages.
Many vital bodily functions can continue to operate at the
comparatively high torpid Tb of non-Holarctic heterotherms and
warming to euthermic levels is relatively inexpensive because
animals can mostly rely on energy-saving, passive rewarming
(Dausmann et al., 2009). An Australian desert bat, the inland
free-tailed bat Ozimops petersi (former Mormopterus species 3;
Lumsden, 2019), for example, can arouse from torpor without
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an obvious active thermogenic support (Bondarenco et al., 2013).
Moreover, individuals can start being active at relatively low Tb,
and then activity itself can be used as a means of heat production.
Ortmann et al. (1997) first observed the so-called two-step
arousal in a species of mouse lemur (M. murinus). Individuals
rewarming from torpor initially use passive means via exogenous
heat sources to raise their Tb to about 27◦C before employing
endogenous heat production, which keeps metabolic rate (and
energy expenditure) during the rewarming process low. Since
then, this mechanism has been verified in many other tropical
heterotherms that closely synchronize their arousal times with
the onset of rising environmental temperature which they may
supplement by basking (Lovegrove et al., 1999; Schmid, 2000;
Geiser et al., 2002; Mzilikazi et al., 2002; Geiser and Drury, 2003;
Dausmann et al., 2005; Lovegrove and Génin, 2008; Warnecke
et al., 2008; Kobbe et al., 2011; McKechnie and Mzilikazi, 2011;
Nowack et al., 2013b; Dausmann et al., submitted). Although
mostly observed in species inhabiting relatively warm habitats,
a recent study found that Djungarian hamsters (Phodopus
sungorus), originally inhabiting Asian steppes, actively seek the
heat of a basking lamp when rewarming from torpor under
laboratory conditions (Geiser et al., 2016). This finding suggests
that the use of passive rewarming might also be common in
Holarctic heterotherms.

Perhaps one of the most surprising discoveries from warm
climate hibernators is that periodic arousals, thought to be
essential to proper functioning during hibernation, are not
necessarily needed (Dausmann et al., 2005; Lovegrove et al.,
2014b). Depending on the nature of the hibernaculum (insulative
capacities) and ambient temperature, the Tb of tropical species
can fluctuate widely during hibernation (daily fluctuations of
Tb can exceed 25◦C per day). Under these conditions, when
Tb occasionally rises passively above about 30◦C, the expensive
arousals are abandoned in Cheirogaleus (Figure 2). In contrast,
individuals hibernating in better insulated sites (large trees
or underground), which have a lower but more stable Tb,
show regular periodic arousals, just like their temperate or
arctic counterparts (Dausmann et al., 2004, 2005). Similarly, the
common tenrec (Tenrec ecaudatus) forgoes arousal completely
while hibernating in an underground burrow where Tbs
remain above 25◦C for the winter (Lovegrove et al., 2014b).
Although the ultimate factors necessitating periodic arousals in
hibernators remain enigmatic (proposed explanations include
reduction of oxidative stress and sleep debt, production of
gene products, activation of the immune system, limitation of
neurophysiological damage; Carey et al., 2003), it seems clear that
the capacity to attain a high Tb passively determines whether or
not arousals are required (Dausmann, 2014). For example, arctic
ground squirrels, S. parryii, consistently sleep during arousals
(Daan et al., 1991). Their electroencephalography shows the
decrease in slow wave activity as would be expected when sleep
debt had increased during the preceding phase of torpor. Thus, it
has been postulated that the need for sleep slowly accumulates
during torpor and that returning to euthermy is periodically
required to sleep (Daan et al., 1991; Trachsel et al., 1991).
Indeed, C. medius display aspects of sleep (rapid eye movement
sleep) during the phases of passively heated warmer Tb during

hibernation (in contrast to phases of low Tb), possibly preventing
the accumulation of sleep debt, and ensuring brain function and
memory consolidation in individuals with highly fluctuating Tb

(Krystal et al., 2013). To date, the only other mammal to not
exhibit periodic arousals besides hibernating lemurs and tenrecs
(Dausmann et al., 2004; Lovegrove et al., 2014b) are black bears,
Ursus americanus, hibernating at Tb of >30◦C (Tøien et al.,
2011). The opportunity to abandon periodic arousals not only
saves energy, but also limits the damaging high level of oxidative
stress resulting from the increased production of reactive oxygen
species during active rewarming (Carey et al., 2003; Giroud et al.,
2009).

INTER- AND INTRASPECIFIC
PHENOTYPIC FLEXIBILITY OF TORPOR
USE IN THE TROPICS

Most interestingly, the distinction between the use of short
torpor bouts and hibernation is less clear-cut in non-Holarctic
heterotherms (Mzilikazi and Lovegrove, 2004; Cory Toussaint
et al., 2010; Kobbe et al., 2011; Canale et al., 2012). Whereas,
most Holarctic species usually either hibernate or use daily
torpor, warmer climate species often show a mixed use of
shorter and longer bouts. In the tropics, there is more variation
between closely related species at the same site, between
populations of the same species at different sites, between
individuals within a population, and even in individuals between
years (Dausmann, 2014). As outlined above, some species
can switch between hibernation (several months), prolonged
torpor over several days, becoming torpid for a few hours
sporadically or daily (opportunistic) use of short torpor bouts,
or remaining homeothermic. As the best examples of this
phenotypic flexibility come from southernMadagascar, the driest
and least predictable habitat of the island, we suggest that this
flexibilitymay enable tropical species to inhabit not only seasonal,
but also unpredictable habitats. It enables species to respond
to the context of specific environmental parameters and their
own body condition. For example, in the lemur Microcebus
griseorufus and the bat Macronycteris commersoni all of these
responses have been observed in different individuals in the
same population at the same site (Kobbe and Dausmann, 2009;
Kobbe et al., 2011; Reher et al., 2018). Similarly, western rock
elephant shrews, E. rupestris, are highly heterothermic in South
Africa, whereas the closely-related cape rock elephant shrews,
E. edwardii, at the same site remain mostly homeothermic,
although the species is capable of short to prolonged bouts of
torpor (McKechnie and Mzilikazi, 2011; Boyles et al., 2012).
Hottentot golden moles, Amblysomus hottentotus longiceps, and
southern African hedgehogs, A. frontalis, seem to be capable
of diverse thermoregulatory responses at the same site, and
under the same conditions in captivity (Scantlebury et al.,
2008; Hallam and Mzilikazi, 2011). Despite hibernation being a
more fixed response, there is also variation in thermoregulatory
patterns during hibernation, such as in dwarf lemurs and tenrecs,
where the insulative properties of the hibernacula determine the

Frontiers in Ecology and Evolution | www.frontiersin.org 20 March 2020 | Volume 8 | Article 60

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Nowack et al. “Weird” Mammalian Torpor

occurrence and extent of daily Tb fluctuations and the occurrence
of periodic arousals.

Furthermore, the duration of hibernation can be flexible
between different populations of the same species, depending on
the duration of the period of scarceness in the particular habitat.
For example, C. medius hibernates up to 8 months in the western
dry forests of Madagascar, but only 3.5 months in the south-
western littoral forests, where the dry season is much shorter
(Lahann and Dausmann, 2011). Differences in thermoregulatory
patterns might also emerge as a result of competition with other,
closely related sympatric species. Only half as many individual
M. griseorufus entered hibernation in a habitat where the larger
M. murinus is present in the littoral forest in the south of
Madagascar, compared to where M. griseorufus occurs alone
the spiny forest of the south-west (Kobbe et al., unpublished
data). As hibernation is thought to be the more advantageous
strategy in Microcebus species (higher energy savings; predation
avoidance), M. griseorufus could be outcompeted for access to
food before the hibernation period by the larger M. murinus,
limiting pre-hibernation fattening. If true, then M. griseorufus
may have to resort to short or prolonged torpor episodes to
cope with the Malagasy winter in areas where it occurs together
withM. murinus.

TROPICAL ORIGINS OF HETEROTHERMY,
AND ENDOTHERMY, IN MAMMALS

It now seems increasingly likely that endothermy in mammals
evolved from the ancestral ectothermic condition via a
heterothermic state (Grigg et al., 2004; Geiser and Stawski,
2011; Lovegrove, 2017). All extant mammals are capable of
metabolic heat production (Lovegrove, 2012), but the degree
to which they regulate their Tb, both in terms of absolute
temperature and level of variability, varies considerably (Boyles
et al., 2013; Clarke and O’Connor, 2014). Mammals evolved
under climatic conditions similar to modern day tropics, where
ambient temperature is high for most of the year, and the costs
of maintaining a comparatively high, stable Tb, especially at
a lower level (∼32◦C like in tenrecs and echidnas) would be
relatively low (Levesque et al., 2013). This notion is supported
by the fact that early mammalian ancestors had small body
masses, were nocturnal, and mostly insectivorous (McNab, 1978;
Kemp, 2006; O’Leary et al., 2013), similar to the hedgehog
tenrecs. Moreover, it has been postulated that small mammals in
particular cannot sustain the high rates of evaporation necessary

to maintain a Tb more than 2◦C below ambient for more than
a few hours (Crompton et al., 1978), because of substantial
water loss needed for evaporative cooling. Often, tropical and
subtropical heterotherms inhabit dry environments and water
savings might even be more essential for survival than energy
savings (Schmid and Speakman, 2000; Dausmann, 2014). Water
loss, however, could be avoided if Tb is regulated slightly
above ambient, and the outward flow of heat is varied by
insulation, therefore, a switch to a diurnal activity pattern in
some species would have necessitated higher Tbs (Crompton
et al., 1978), which in turn were only made possible with

the evolution of the scrotum (Lovegrove, 2019). The evolution
of endothermy in mammals is an emergent property of the
evolution of various characteristics that aid in either heat
production (e.g., thermogenesis, UCP1) and heat dissipation
(e.g., insulation, external scrotums) and happened to a different
degree across the mammalian lineage (Lovegrove, 2012, 2019;
Seebacher, 2018; Jastroch and Seebacher, 2020). By studying the
added level of variability in many thermoregulatory traits, torpor
use in particular, observed in species in the tropics and sub-
tropics can help shed further light on how endothermy evolved
in mammals.

Although advances in understanding the ecological and
physiological underpinnings of tropical heterothermy have
been substantial, many questions remain. For example, we need
to learn more about how blood parameters (lactate levels, as
a proxy for hypoxia in the tissue), immunocompetence and
sleeping patterns in tropical hibernators differ compared to
hibernators with continuously low Tb, especially if we wish to
disentangle hibernation specific and low Tb specific physiological
responses, which could help elucidating the evolution
of homeothermy.
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