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Plant meristems are responsible for producing all post-embryonic organs during
organogenesis. While the shoot apical meristem (SAM) maintains its meristematic
property throughout the life of a plant, the floral meristem (FM) undergoes precise
processes of initiation, maintenance and termination to ensure proper reproductive
development and metagenesis. Plant meristem maintenance and termination are
controlled by hierarchical genetic networks. While most of the genes in these networks
have specific roles in particular processes, some genes have dual roles in SAM
maintenance and FM termination through their interactions with different partners. Here,
we summarize the molecular mechanisms of these dual-function regulators important
for both SAM maintenance and FM termination and discuss the functions of WOX
genes mediated gene regulatory networks on meristem maintenance and termination
in different species.
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SHOOT APICAL MERISTEM AND FLORAL MERISTEM

Whereas animals complete the majority of organogenesis and body plan formation during
embryogenesis, plants establish the shoot apical meristem (SAM) and root apical meristem (RAM)
in the mature embryo (Jürgens, 2001; Lau et al., 2012; Bishopp and Bennett, 2014). During post-
embryonic development, the RAM establishes the entire root system, and the SAM gives rise
to the above-ground structures, such as leaves, stems and flowers (Miwa et al., 2009; Kaufmann
et al., 2010; Satbhai et al., 2015). After the transition from vegetative development to reproductive
development, the floral meristems (FMs) are produced in the axils of cryptic bracts at the flanking
regions of SAM that is also called Inflorescence Meristem (IM) after floral transition (Figures 1A–
C; Chandler, 2012). Therefore, the FM, IM and other secondary meristm such as axillary meristems
(AMs) are three types of SAM. Subsequently, FMs generate all of the floral organs, such as sepals,
petals, stamens and carpels in Arabidopsis (Figure 1D). Plant meristems consist of groups of
undifferentiated cells that continually initiate new organ primordia, and these undifferentiated cells
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FIGURE 1 | The shoot apical meristem (SAM) and floral meristems (FM) of Arabidopsis. (A) Top view of the inflorescence. The SAM is localized at the center and
marked by a red arrow. (B,C) Overhead view of the SAM and FM. Numbers indicate the developmental stage of flower (Smyth et al., 1990). The central zone (CZ)
and peripheral zone (PZ) are labeled by green and magenta color, respectively. The FMs are labeled by pale yellow color. The meristem–organ boundaries are
marked in blue. (D,E) The longitudinal sections of SAM and FM. The organizing center (OC), in which the WUS is expressed, is marked by the blue cycles. The CZ
that is marked by the expression of CLV3 detected by in situ hybridization is labeled by green circles. RZ, rib zone; L1, L1 cell layer; L2, L2 cell layer; Se, sepal; St,
stamen; Ca, carpel. (F) In situ assay to show prolonged WUS expression (marked by blue circle) in one indeterminate floral bud at stage 8 of ag-10, a weak
agamous allele, and the indeterminate meristem is marked by a red arrow. (D–F) Scale bar = 50 µm.

are produced from the limited number of stem cells within the
meristem (Groß-Hardt and Laux, 2003; Laux, 2003; Sozzani and
Iyer-Pascuzzi, 2014).

The SAM and FM of the model plant Arabidopsis (Figure 1A)
have similar dome-like structure characterized by the typical
tunica/corpus structure found in angiosperms (Figures 1B–
E). The outer tunica consists of two single cell layers, the
epidermal cells (L1) and subepidermal cells (L2), which divide
anticlinally to the surface of the meristem; the inner corpus
layer is a cluster of cells without clearly oriented divisions
(Figure 1D; Carles and Fletcher, 2003). From the center
outward, the tunica is divided into the central zone (CZ),
which harbors a group of stem cells expressing the stem cell
marker gene CLAVATA3 (CLV3) (Laux, 2003), and the peripheral
zone (PZ), where the descendants of stem cells are displaced
and recruited to generate new lateral organ primorida or FMs
(Figure 1E). Stem cells are a group of pluripotent undifferentiated
cells with two distinct capabilities: maintenance through self-
renewal and the steady production of precursor cells to form
differentiated tissues (Laux, 2003). The CZ is sustained by the
underlying organizing center (OC), a part of the rib zone (RZ)
underneath the CZ (Mayer et al., 1998; Alvarez-Buylla et al.,
2010). The OC cells are characterized by WUSCHEL (WUS) gene
expression (Figure 1D).

During development, successful initiation of lateral organ
primordia, in which cells are differentiated into specific cell-
type of distinct organ like leaf or flower, requires the formation
of meristem-to-organ boundary zone to separate the newly
formed entity from the rest of plan body (Aida and Tasaka,
2006). The boundary zone is morphologically visible as concave
groove with a saddle-shaped surface due to the local growth
repression (Figure 1C). Cells in the boundary have distinctive
property compared to the surrounding cells with reduced rates
of cell division, elongated shapes, and unique gene expression
program (Breuil-Broyer et al., 2004; Zadnikova and Simon, 2014).
Null mutants of boundary-specific genes often display organ
fusion, but also impaired organ development and phyllotaxis
patterning, indicating that the boundary zone acts as organizing
center to control adjacent organ development (Laufs et al., 2004;
Zadnikova and Simon, 2014; Wang et al., 2016). Therefore,
the dynamic maintenance of meristem depends on the balance
between meristem self-renewal and lateral organ formation.

In Arabidopsis, IM, a type of SAM, is indeterminate with
its ability to generate new organ throughout the life of a
plant, while FM, another type of SAM, undergoes precise
processes of initiation, maintenance and termination to ensure
proper reproductive development and metagenesis (Sablowski,
2007). During the lifecycle, once a certain number of fruits
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are produced, all meristem activity arrests coordinately (termed
global proliferative arrest, or GPA) to promote subsequent fruit
filling and plant death. Studies showed that both signals from
seeds/flowers and the age pathway regulate the GPA of SAM
(Hensel et al., 1994; Wuest et al., 2016; Balanzà et al., 2018). After
floral transition, the FMs are produced and specified from the
flanking of IM under the control of cascaded gene regulatory
networks (GRNs) mediated by the FM identity genes, LEAFY
(LFY) and APETALA1 (AP1) (Liu C. et al., 2009; Liu et al., 2013;
Chandler, 2012). Subsequently, the FM identity genes, LFY and
AP1, induce the expression of floral organ identity genes that act
in a combinatorial manner, termed ABC model, to control floral
organ specification at differently developmental stages (Smyth
et al., 1990; Coen and Meyerowitz, 1991; Weigel and Meyerowitz,
1994). Briefly, A class genes specify sepals, and A together with B
class genes specify petals, while B and C class genes act together
leading to stamen development, and C function alone controls
carpel formation. In addition, A and C class genes act in an
antagonistic manner (Coen and Meyerowitz, 1991). At last, the
formation of the innermost carpel primordia is followed by
the genetically programmed termination of FMs, termed floral
determinacy: it ensures the production of a fixed number of floral
organs and subsequent gametogenesis.

Prolonged or enhanced FM activity results in an increased
number of floral organs, increased whorls and even extra organs
borne on supernumerary whorls due to prolonged stem cell
activity (Lenhard et al., 2001; Prunet et al., 2009; Sun et al., 2009;
Liu et al., 2011; Figure 1F). Genetic analysis showed that the
termination of FM is not simple via the differentiation meristem
cells into carpel cells since the mutants with 4th whorl carpels
are still indeterminate with additional tissue growing inside (Sun
et al., 2009; Ji et al., 2011; Liu et al., 2011). Moreover, unlike the
GPA of SAM, the temporally precise regulation of the FM ensures
that it is terminated at a particular developmental stage (e.g., stage
6 in Arabidopsis) under the control of complex GRNs (Cao et al.,
2015; Xu et al., 2019). Therefore, the SAM maintenance and FM
determinacy are two distinctly developmental processes.

GENETIC REGULATION OF SAM
MAINTENANCE AND FM DETERMINACY

Using forward genetics approaches, researchers have
characterized numerous genes that are components of the
regulatory networks that maintain SAM activity or terminate FM
activity (Cao et al., 2015; Gaillochet and Lohmann, 2015; Soyars
et al., 2016; Lee et al., 2019). Since meristems rely on stem cells as
their source, FM have similar mechanisms to maintain the stem
cell pool as other types of SAM. Similar to animal stem cells,
plant stem cells are maintained by stem cell niches (Sablowski,
2004; Zheng and Liu, 2019). WUS encodes a homeodomain-
containing transcription factor (TF) that is essential for the stem
cells maintenance (Mayer et al., 1998; Figure 1D). In the wus
mutant, the SAM fails to properly generate leaf primordia, and
the FM is depleted before the production of carpel primordia,
due to the rapid consumption of the stem cells contained therein
(Laux et al., 1996). In contrast, ectopic WUS expression can

endow somatic cells with stem cell properties (Zuo et al., 2002;
Gallois et al., 2004; Xu et al., 2005). These findings demonstrate
that WUS is critical for the establishment and maintenance of
meristems. Further mechanistic analysis uncovered that WUS
moves to the overlying stem cells in the CZ to directly induce
CLV3, which encodes a secreted peptide (Yadav et al., 2011;
Daum et al., 2014; Figure 1E). CLV3 subsequently binds to the
plasma membrane-localized CLV1 or CLV2/CORYNE(CRN)
receptor complex to inhibit WUS expression (Soyars et al., 2016).
Thus, the WUS/CLV3 negative feedback loop fine-tunes the stem
cell pool of the SAM and FM.

Dynamic SAM maintenance is determined by the rates of
stem cell proliferation and organ primordia formation. The
boundary cells express a set of distinctive TFs that play
important roles to locally repress cell proliferation and cell
division through crosstalk with the meristem genes and organ
primordia specific genes (Heisler and Ohno, 2014; Zadnikova and
Simon, 2014). To date, numbers of meristem-to-organ boundary-
specific regulators are well studied including NAC family TFs
such as CUP-SHAPED COTYLEDON1/2/3 (CUC1/2/3), MYC-
domain TFs such as LATERAL ORGAN FUSION1/2 (LOF1/2),
and LATERAL ORGAN BOUNDARIES DOMAIN (LBD)
family TFs such as JAGGED LATERAL ORGANS (JLO) and
LATERAL ORGAN BOUNDARIES (LOB) (Wang et al., 2016).
They modulate the boundary establishment as well as organ
primordia specification and meristem maintenance through
genetic interaction with meristem-specific genes such as SHOOT
MERISTEMLESS (STM) andWUS, and organ primordial-specific
genes like ASYMMETRIC LEAVES1/2 (AS1/2) and TEOSINTE
BRANCHED1/CYCLOIDEA/PCF1 (TCP) genes (Zadnikova and
Simon, 2014). However, the molecular mechanisms by which
these regulators control cell proliferation and differentiation in
the boundaries are still not understood.

At the early stages of flower development, the maintenance
and termination of FM activity are highly coordinated with
the formation and specification of floral organ to ensure the
successful flower development (Smyth et al., 1990; Alvarez-Buylla
et al., 2010). Spatially expanded FM activity associated with
an increased stem cell population leads to the production of
extra floral organs. Temporally enhanced FM activity due to
prolonged stem cell maintenance, known as FM indeterminacy,
gives rise to supernumerary whorls with extra organs (Prunet
et al., 2009; Figure 1F). The WUS/CLV feedback loop maintain
the FM similarly to the way they maintain the SAM, but the
regulatory loop alone is incompetent to precisely terminate the
FM. AGAMOUS (AG), a C-class MADS domain-containing TF,
is a central positive regulator of FM determinacy. The null
ag mutant displays a flower-in-flower phenotype: the entire
fourth whorl of the primary flower is replaced by a new flower
bud that in turn produces a new abnormal flower due to the
continuous maintenance of stem cells in the FM center (Bowman
et al., 1989, 1991; Lenhard et al., 2001). This demonstrated that
AG has dual-function in the flower development: floral organ
(stamen and carpal) identity and FM termination. At stage 3
of floral development (Smyth et al., 1990), AG expression is
induced by WUS and LFY at the center of the FM, and WUS
expression is turned off at stage 6, resulting in FM determinacy
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(Lohmann et al., 2001). AG indirectly represses WUS expression
through KNUCKLES (Sun et al., 2009, 2019), and AG also directly
represses WUS through the TERMINAL FLOWER2 (TFL2)-AG
complex that triggers chromatin loop formation at theWUS locus
(Liu et al., 2011; Guo et al., 2018). As a central hub in this network,
AG is regulated by numerous factors at the transcriptional, post-
transcriptional and protein level through genetic and epigenetic
mechanisms (Cao et al., 2015; Xu et al., 2019).

To date, many genes have been characterized in terms of
their functions in either SAM maintenance or FM determinacy,
while other genes have dual roles in both processes through their
genetic interactions with different partners. The following section
summarizes recent findings on these dual-function genes with
different roles in SAM maintenance and FM determinacy.

INDIVIDUAL FACTORS INVOLVED IN
BOTH SAM MAINTENANCE AND FM
DETERMINACY

MicroRNA172 (miR172) – APETALA2
(AP2) Module
MicroRNAs (miRNAs) are a class of endogenous 20–24 nt
non-coding RNAs. They are encoded by miRNA genes
(MIR) and processed by DICER-LIKE (DCL) RNase III
endonucleases (Margis et al., 2006; Nozawa et al., 2012).
Through complementary base pairing, miRNAs guide post-
transcriptional regulation of their targets, by either transcript
cleavage or translational inhibition, and many of these targets
are TFs (D’Ario et al., 2017; Yu et al., 2017b; Liu et al.,
2018). Accordingly, miRNAs play dominant roles in plant
development and growth. The five MIR172 genes in Arabidopsis
produce three unique mature miR172 species that accumulate
in different organs during plant development. When plants are
transferred from short-day to long-day to induce flowering,
miR172 abundance increases in the SAM (Wollmann et al., 2010),
where SQUAMOSA PROMOTER BINDING PROTEIN-LIKE
(SPL) proteins, the targets of miR156, promote the expression
of miR172 (Wu et al., 2009). In turn, miR172 represses a
family of AP2-like TFs, including APETALA2 (AP2), TARGET
OF EAT 1 (TOE1), TOE2, TOE3, SCHLAFMÜTZE (SMZ),
and SCHNARCHZAPFEN (SNZ), to regulate phase transitions
and SAM activity (Aukerman and Sakai, 2003; Chen, 2004;
Mathieu et al., 2009). It was well studied that the miR156/SPLs
module controls the juvenile-to-adult transition by fine-tuning
the miR172/AP2 module (Wang et al., 2009; Wu et al., 2009).
At the same time, AP2 directly binds to individual MIR156 and
MIR172 loci to promote MIR156 expression and repress MIR172
expression (Yant et al., 2010; Figure 2A). miR172 abundance is
high during early floral development then gradually decreases
from stage 3 onward. In these later stages, it is mainly detected
in the fourth whorl, with the highest levels in the center of
the FM, where it represses its target genes AP2 and TOE3 to
maintain FM activity (Chen, 2004; Wollmann et al., 2010; Jung
et al., 2014). Mutations in genes affecting miR172 biosynthesis
or accumulation, such as HUA ENHANCER 1 (HEN1) and

CARPEL FACTORY (CAF), result in increased AP2 protein levels
and loss of FM termination (Jacobsen et al., 1999; Chen et al.,
2002). Additionally, a mutation in POWERDRESS (PWR) could
enhance the weakly indeterminate ag-10 allele. PWR promotes
the expression of MIR172a, b, and c, but not MIR172d and
e, while a mutation in mature miR172d could enhance the
determinacy defects of ag-10 in an AP2-dependent manner,
showing that the transcriptional diversification of the MIR172
family may make the floral determinacy regulatory network more
robust (Yumul et al., 2013; Figure 2B).

AP2 has numerous roles in floral transition, floral organ
patterning, stem cell maintenance and seed development
(Bowman et al., 1989; Ohto et al., 2005; Wurschum et al., 2006;
Yant et al., 2010). At vegetative stage, AP2 is highly expressed in
incipient leaf primordia, but its transcript levels are low in the
SAM and the center of the FM after stage 2 (Wurschum et al.,
2006; Wollmann et al., 2010). In early floral development, AP2
transcripts are concentrated in the sepal and petal primordia and
partially overlap with MIR172 transcript in the third whorl. At
later stages, AP2 is abundant in the developing petals, stamen
filaments and the gynoecium, consistent with its multiple roles
in floral development (Wollmann et al., 2010).

The semi-dominant I28 mutant, which harbors a dominant-
negative AP2 allele, exhibits reduced SAM size, premature
termination of the SAM and differentiation of the stem cells as
in the wus mutant. At the early seedling stage, WUS and CLV3
expression are disrupted in the SAM of I28. Functional and
genetic analysis revealed that AP2 promotes SAM maintenance
either by repressing CLVs signaling or by promoting WUS
expression independently of the AG pathway (Wurschum et al.,
2006). Meanwhile, a recent study showed that the MADS-
box gene FRUITFULL (FUL) promotes meristem arrest through
direct AP2 repression. ful and ap2-170, in which the microRNA
binding site of miR172 is mutated, have delayed coordinated
arrest of all meristems, or GPA, that correlates with the repression
of WUS expression. Induction of the miR172-resistant version of
AP2, AP2170, in arrested plants reactivated the SAM and normal
flower development, highlighting the important role of AP2 in
SAM maintenance (Balanzà et al., 2018; Figure 2A). Since AP2
is clearly expressed in the emerging leaf primordia but hard to
be detected in the SAM, how AP2 regulate WUS expression is
unclear. A possibility is that AP2 could regulate WUS expression
non-cell-autonomously.

In the ABC model of flower development (Weigel and
Meyerowitz, 1994), AP2 functions as an A-class gene that acts
antagonistically with AG, specifies the perianth organs and
restricts AG expression to the inner two whorls (Drews et al.,
1991). Specifically, AP2 directly binds to the second intron of
AG to repress AG expression in the outer two whorls (Wollmann
et al., 2010; Yant et al., 2010; Dinh et al., 2012). In the ag
mutant, AP2 does not expand to the center of the FM, and
miR172 accumulation is unaffected, indicating that AP2 is mainly
regulated by miR172, however, another study showed that AG
misexpression with the 35S promoter counteracted AP2 in the
outer two whorls (Zhao et al., 2007; Wollmann et al., 2010).
Transgenic lines expressing miR172-resistant versions of AP2
and TOE3 were found to exhibit floral organ identity defects
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FIGURE 2 | Genetic pathways in the SAM maintenance (A) and FM determinacy (B). The arrows represent the activation of gene expression, while the flat arrows
represent its repression. The OC is shown in magenta. The genetic interactions are introduced in the text.

and severe FM indeterminacy phenotypes (Zhao et al., 2007;
Jung et al., 2014). In addition, AP2 physically interacts with
TOE3 in vivo, and it inhibits both KNU and AG expression to
promote WUS expression and FM activity (Zhao et al., 2007;
Yant et al., 2010; Huang et al., 2017). At the same time, AP2 also
directly represses the expression ofAUXINRESPONSE FACTOR3
(ARF3) to regulate WUS expression (see below) (Liu et al.,
2014; Figure 2B).

ARGONAUTE1 (AGO1) AND
ARGONAUTE10 (AGO10)

Through sequence complementarity with their target transcripts,
mature miRNAs that are loaded into the RNA-induced silencing
complex (RISC) direct the repression of their targets (Rogers
and Chen, 2013). The PAZ and PIWI domain–containing AGO
proteins are the central component of the RISC complex.
miRNAs are sorted into different AGO proteins according
to their 5′-nucleotide (Mi et al., 2008). Of the 10 AGO
proteins in Arabidopsis, AGO1 is required for the functions
of most miRNAs, and AGO1 deficiency results in pleiotropic
developmental phenotypes (Bohmert et al., 1998; Vaucheret et al.,
2004; Mallory and Vaucheret, 2010). AGO10, also known as
ZWILLE (ZLL)/PINHEAD (PNH), is the closet paralog of AGO1
and is specifically required for SAM maintenance (Moussian
et al., 1998; Vaucheret, 2008). While AGO1 is ubiquitously
expressed (Bohmert et al., 1998), AGO10 expression is restricted
to the provasculature underneath the SAM and the adaxial
side of lateral organ primordia, where AGO10 and AGO1 have
overlapping functions (Moussian et al., 1998; Lynn et al., 1999).
While ago1 mutants display pleiotropic defects of general plant
architecture including single stem and rare axillary meristems
(Bohmert et al., 1998), ago10 seedlings have an empty apex,
a pinhead-like structure or a solitary leaf, and these mutant
phenotypes clearly indicate the importance of AGO10 in SAM
establishment and maintenance (Moussian et al., 1998; Tucker
et al., 2008).

In the SAM, five class III homeodomain-leucine zipper
(HD-ZIP III) TF genes are expressed: PHABULOSA (PHB),
PHAVOLUTA (PHV), REVOLUTA (REV), CORONA (CNA),

and ATHB8. These genes are targeted by miR165/166 and
play important roles in organ polarity, SAM establishment and
maintenance as well as FM termination. rev phb and rev phb phv
mutants fail to establish a SAM and often produce single pin-
like cotyledons, while gain-of-function phb-D and rev-D mutants
have enlarged meristems (Talbert et al., 1995; Byrne, 2006). The
transcripts of HD-ZIP III genes are targets of miR165/166 that
is restricted to the abaxial side of organ primordia and excluded
from the SAM (Liu Q. et al., 2009). miR165/166 overexpression
dramatically reduces the transcript levels of all five HD-ZIP III
genes, resulting in a range of phenotypes from an enlarged SAM
to loss of the SAM (Jung and Park, 2007; Zhou et al., 2007).
Thus, fine-tuning of the miR165/166–HD-ZIP III module by
AGO1 and AGO10 is important for SAM maintenance. While
miR165/166 are mainly loaded into AGO1 to repress HD-ZIP III
gene expression and several genetic analyses showed that AGO1
and AGO10 have complementary functions in SAM maintenance
(Tucker et al., 2008; Mallory et al., 2009), AGO10 misexpression
leads to increased levels of HD-ZIP III mRNAs that are degraded
by AGO1 (Liu Q. et al., 2009). Subsequently, the detailed
biochemical studies revealed that AGO10 binds miR165/6 with
higher affinity than AGO1 and promotes miR165/6 degradation
in its restricted expressing tissue (Yu et al., 2017a). Thus, acting as
a decoy AGO1 protein, AGO10 competitively binds miR165/166
to protect the HD-ZIP III transcripts from post-transcriptional
regulation, thereby maintaining SAM activity, in line with the
predominant distribution patterns of AGO10 in the SAM (Zhu
et al., 2011; Aichinger et al., 2012; Zhang and Zhang, 2012).

Genetic analysis showed that AGO10 activity in the FM
contrasts its positive role in SAM maintenance. Mutations in
AGO1 and AGO10 enhance the FM indeterminacy of ag-10
indicate that AGO1 and AGO10 functional redundantly promote
stem cell termination in the FM (Ji et al., 2011), and both
AGO1 and AGO10 can bind miR172 and miR165/166 to regulate
AP2 and HD-ZIP III gene expression, respectively. While AGO1
mainly mediates the activities of miR165/166, AGO10 sequesters
miR165/6 and represses its accumulation to fine-tune HD-ZIP
III gene expression (Yu et al., 2017a). Correspondingly, reduced
HD-ZIP III expression and increased AP2 expression result in
prolonged floral stem cell activity in the ago10 mutant (Ji et al.,
2011). The expression of HD-Zip III genes needs to be precisely
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controlled to achieve successful FM determinacy since both of
HD-ZIP III reduction by over-expression of miR165/166 and
mis-expression of HD-Zip III overexpression by rendering them
resistant to miR165/166 led to prolonged floral stem cell activity
(Ji et al., 2011). Thus, both AGO1 and AGO10 are required for
SAM establishment and maintenance as well as FM determinacy,
with distinct roles in these processes (Figure 2).

SHOOT MERISTEMLESS (STM)

STM, a class-I KNOX gene, encodes a mobile TALE
homeodomain TF that is essential for SAM establishment and
maintenance (Long et al., 1996). Unlike WUS, STM is expressed
throughout the SAM, where it suppresses cell differentiation, but
is down-regulated in incipient organ primordial (Scofield et al.,
2018). Loss-of-function stm mutants have compromised SAM
formation and defective SAM organization, as evidenced by the
fused cotyledon phenotype, due to the rapid consumption of the
entire SAM (Clark et al., 1996; Endrizzi et al., 1996).

Ectopic expression of STM at leaf primordia suppresses cell
differentiation and maintains the potential to form additional
lateral outgrowths (Lenhard et al., 2002). Genetic analysis has
revealed that ectopic expression of STM and WUS could trigger
ectopic organogenesis, while they function in different pathway
in meristem regulation (Byrne et al., 2002; Lenhard et al., 2002).
Although the stm and wus mutants display similar developmental
defects of SAM organization, the meristem arrest phenotypes
of them differ from each other, in which meristematic cells
are consumed into developing organs in stm mutants but are
retained in a non-meristematic state in wus (Endrizzi et al., 1996;
Laux et al., 1996), indicating that STM function is required to
prevent meristematic cells from adopting organ-specific cell fates,
whereas WUS is critical for the stem cell pool maintenance.

In the SAM, STM represses the expression of one target gene
encoding GA20 oxidase (G20ox) enzyme that is required for
phytohormone giberellic acid (GA) biosynthesis, to maintain
low level of GA that stimulates growth by promote cell
expansion. Exogenous GA treatment and constitutive GA
signaling suppress STM gain-of-function phenotypes, whilst
constitutive GA signaling mutant enhances the defects of
weak stm mutants (Hay et al., 2002). At the same time,
over-expression of cytokinin (CK), another phytohormone,
biosynthetic ISOPENTENYL TRANSFERASE (IPT) genes and
the exogenous application of CK can partially rescue the
meristem defects of stm mutants, indicating that CK mediates the
function of STM on meristem regulation. Further study showed
that STM promotes IPT7 expression to increase CK activity in
SAM, which contributes to the homeostasis of CK and WUS
expression (see below) (Leibfried et al., 2005; Yanai et al., 2005).
Therefore, STM may functions on both SAM organization and
stem cell maintenance.

At the boundary zone, CUC1 is required for the boundary
specification and restricted to express at boundary (Aida et al.,
1999). STM binds and activates CUC1 expression, and CUC1
can directly activate STM expression to comprise a direct
positive-feedback loop, which is attenuated by STM-induced

miR164c (Hibara et al., 2003; Spinelli et al., 2011; Scofield
et al., 2018). In the regulatory interactions, the movement of
STM is important for the meristem function and the correct
expression patterns of CUC1 and CUC2 at the boundary zone
(Lucas et al., 1995; Kim et al., 2003; Balkunde et al., 2017). In
the organ primordia, primordium identity factors (PrIFs) specify
primordium identity and promote expression of TCP family
genes, which repress the expression of KNOX genes in primordia
by direct interaction with primordium-specific AS1/AS2 complex
and CUC1 expression through miR164a/b, whilst STM represses
T in the SAM (Byrne et al., 2002; Li et al., 2012; Scofield et al.,
2018; Figure 2A). Therefore, the genetic interactions among
these genes ensure the precise gene expression pattern and the
boundary formation.

During flower development, STM is not expressed in FM
founder cells or incipient FMs at the flanks of the SAM. However,
STM is reactivated expression throughout the apical region of
the FM proper but not in the basal domain that corresponds to
the cryptic bract prior to floral patterning, shortly after the FM
becomes distinct from the SAM, and then restricted to whorl
4 at late stages (Long and Barton, 2000). Ectopic expression
of STM results in the formation of ectopic carpels, carpelloid
organs and the conversion of ovules to carpels (Scofield et al.,
2007). In the mild stm-2 mutant, the SAM terminates in flowers
that lack a central gynoecium (Clark et al., 1996; Scofield et al.,
2007). These findings indicated that STM is required for whorl
4 and/or carpel development in FMs. Recent study showed that
STM is also required for the FM competence. Genetic analysis has
revealed that STM and UNUSUAL FLORAL ORGANS (UFO), but
in depend of AP1, genetically interact to specify FM identity and
initiate the floral program by regulation of flower identity genes
(Roth et al., 2018). These findings demonstrated the multiple-
functions of STM on organ identity and meristem activity.

AUXIN RESPONSE FACTOR3 (ARF3)

The phytohormone auxin and CK are critical for many plant
growth and developmental processes including establishment,
maintenance and termination of meristem (Schaller et al.,
2015). Auxin is biosynthesized by YUCCA gene family and
its signaling is mediated by two protein families: auxin
response factors (ARFs) and Aux/IAA proteins, which induce
global auxin response by regulate the expression of target
genes (Reinhardt et al., 2000; Liscum and Reed, 2002; Cheng
et al., 2006; Guilfoyle and Hagen, 2007; Vanneste and Friml,
2009). CK biosynthesis depends on the IPT gene family and
LONELY GUY (LOG) gene family, respectively. After perceived
by its receptors ARABIDOPSIS HISTIDINE KINASE2/3/4
(AHK2/3/4), CKs trigger the CK transcriptional response
through B-type ARABIDOPSIS RESPONSEREGULATORs
(ARRs) that are the TFs activated through phosphorylation
by CK signaling, while A-types ARRs are negative regulators
of CK signaling whose expression is induced by CK (Kieber
and Schaller, 2014). In the SAM, auxin maxima are found
at locations of primordia formation where it induces cellular
differentiation and organ outgrowth, while CK maximum is
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found at the OC to promote the proliferation of undifferentiated
cells (Schaller et al., 2015). CK is required for the activation
of WUS expression in an AHK2/AHK4-dependent manner,
while WUS represses the expression of several A-type ARR
genes, such as ARR5/7/15, resulting in increased CK activity
in the OC (Leibfried et al., 2005; Gordon et al., 2009; Zhao
et al., 2010). ARF5/MONOPTEROS (MP) mediates the crosstalk
between auxin and CK signaling required for SAM maintenance.
Specifically, auxin induces the expression of ARF5/MP to repress
ARR7/15 to fine tune CK activity and WUS expression (Zhao
et al., 2010). Recent study showed that WUS, in turn, maintains
low auxin signaling output in stem cells by reducing target genes
expression through regulating the histone acetylation status of
target loci (Ma et al., 2019). Thus, WUS keeps stem cell pool
from auxin induced differentiation, while enhancing CK activity
to sustain its expression.

ARF3, also known as ETTIN, is one of the 23 ARF family
members in Arabidopsis (Guilfoyle and Hagen, 2007). ARF3
has numerous roles in plant development, including gynoecium
morphogenesis, de novo organ regeneration, organ polarity and
FM determinacy (Sessions et al., 1997; Nemhauser et al., 2000;
Cheng et al., 2013; Liu et al., 2014). During de novo organ
regeneration, ARF3 is highly expressed in the emerging SAM at
early stage of SAM formation, but is ubiquitously expressed in
the SAM at later stage of SAM formation, where ARF3 mediates
the auxin response and directly represses the expression of the
CK biosynthesis gene AtIPT5. Mutations in ARF3 lead to ectopic
CK biosynthesis as well as disrupted stem cell initiation and
meristem formation (Cheng et al., 2013). ARF3 protein is evenly
distributed throughout the SAM and early FM, while ARF3
mRNA is abaxially distributed in the SAM and floral organ
primordia (Liu et al., 2014; Simonini et al., 2017). Thus, the
dynamic ARF3 distribution is required for its function on SAM
formation and maintenance. Genome-wide analysis revealed that
ARF3 interacts with its partners in an auxin-dependent manner
that determines its repressor or activator roles (Simonini et al.,
2017). At the flanking regions of the SAM, ARF3 may directly
activate the expression of LFY to specified floral primordium
fate, and YUC4 to induce auxin biosynthesis, and then promote
cell differentiation (Schultz and Haughn, 1991; Cheng et al.,
2006; Simonini et al., 2017). Simultaneously, ARF3 physically
interacts with FIL to directly repress STM expression, and the
resulting histone deacetylation promotes organogenesis (Chung
et al., 2019). In addition, given that STM promote CK activity,
ARF3 could fine-tune CK activity in SAM (Figure 2A).

Unlike the even distribution pattern of ARF3 observed in the
SAM, ARF3 is concentrated in the OC of the FM. It overlaps with
WUS and the CK receptor gene AHK4, indicating different roles
of ARF3 in the FM and SAM (Liu et al., 2014). Genetic analysis
showed that ARF3 promotes FM determinacy by repressing
WUS expression. In this context, ARF3 is repressed by AP2
to mediate the functions of AP2 and AG in FM maintenance
and termination (Liu et al., 2014). Detailed analysis of the
underlying molecular mechanism revealed that during early
FM development (stages 3–5), AG transiently represses ARF3
expression to de-repress the expression of IPT3/5/7 and cell cycle
genes, which helps to maintain FM activity. At later FM stages

(stages 5–6), AG and auxin increase ARF3 expression, while
AP2 represses ARF3 expression. ARF3 directly inhibits IPT3/5/7
and AHK4 expression and indirectly inhibits the expression
of LOG genes. This regulation by ARF3 represses CK activity
in the OC and ensures proper temporal termination of WUS
expression (Zhang et al., 2018). Moreover, ARF3 can bind to
the WUS promotor in an AG-dependent manner to fine-tune
WUS expression (Liu et al., 2014; Figure 2B). Recent studies
showed that fine-tuning of auxin homeostasis is required for the
FM determinacy and gynoecium formation. Locally increased
auxin production rescued the FM indeterminacy phenotype of
knu crc (crabs claw), which is supposed to be mediated by ARF3
(Yamaguchi et al., 2017, 2018).

FAR-RED ELONGATED HYPOCOTYL3
(FHY3)

Coordination of internal developmental cues, nutrients,
hormones, and external environmental signals is important for
the meristem maintenance and organogenesis in shoots and roots
(Li et al., 2017). Light is one of the most important environmental
signals for plant development and growth (Arsovski et al., 2012).
In addition, light activates photosynthesis to provide energy by
sucrose production. Recent studies found that Glucose energy
signaling is essential to activate SAM and RM activity through
activating target of rapamycin (TOR) kinase, while light induces
auxin synthesis to promote SAM activity (Pfeiffer et al., 2016;
Li et al., 2017).

At same time, plants have evolved a family of photoreceptors
to perceive the light signal. Phytochrome A (phyA) is a key
member with both specific and shared functions (Li et al., 2011).
Light exposure triggers the transformation of phyA from the
inactive Pr form to the active Pfr form, and it translocates
into the nucleus with the help of FAR-RED ELONGATED
HYPOCOTYL1 (FHY1) and its homolog FHY1-LIKE (FHL)
(Casal et al., 2014). In Arabidopsis, FAR-RED ELONGATED
HYPOCOTYLS3 (FHY3) directly actives the expression of
FHY1 and FHL to promote phyA signaling (Lin et al.,
2007). Additionally, FHY3 plays diverse roles in different plant
developmental and physiological processes, such as circadian
signaling, chloroplast biogenesis, chlorophyll biosynthesis and
programmed cell death (Wang and Wang, 2015). Genome-
wide gene expression profiling showed that under far-red (FR)
light conditions, FHY3 mainly acts as a transcriptional activator
to promote photomorphogenesis during the vegetative stage
(Ouyang et al., 2011), but it acts primarily as transcriptional
repressor in flower development (Li et al., 2016).

A genetic analysis uncovered the dual roles of FHY3 in SAM
maintenance and FM determinacy (Li et al., 2016). Specifically, a
mutation in FHY3 led to a smaller SAM size, and fhy3 enhanced
the indeterminacy of ag-10, a weak ag allele. Additionally, wus
was found to be epistatic to fhy3. Molecular analysis revealed
that FHY3 directly represses CLV3 expression to regulate WUS
expression in the SAM. When seedlings transition from dark
to light conditions, CLV3 expression decreases in WT plants
but not in the fhy3 and phyA mutants, indicating that FHY3
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mediates the repressive effect of light on CLV3 expression (Li
et al., 2016). The de-repressed expression of CLV3 in the fhy3
mutant results in reduced WUS expression and a small SAM size.
On the other hand, during flower development, FHY3 directly
actives SEPALLATA1 (SEP1) and SEP2 expression, in parallel
to the FHY3-CLV3 pathway, to repress WUS expression and to
promote FM determinacy (Li et al., 2016; Figure 2).

CONCLUSION AND FUTURE
PERSPECTIVES

All postembryonic organs in plants develop from the stem cells
that reside in the meristems. A key similarity between animal
and plant stem cells is that the stem cell niche is critical for the
maintenance of their activity (Heidstra and Sabatini, 2014; Zheng
and Liu, 2019). The WUS homeobox (HB) TF belongs to the
plant-specific WUS homeobox (WOX) protein family, one of a
number of plant HB TF families that are characterized by the
presence of a homeodomain. More broadly, this DNA-binding
domain is important for developmental decisions in eukaryotes
(van der Graaff et al., 2009). Phylogenetic and functional analyses
have shown that WOX genes are conserved in euphyllophytes
with distinct functions in a wide range of processes, particularly
in the establishment, maintenance and termination of different
types of meristems (Dodsworth, 2009; van der Graaff et al., 2009;
Zhang et al., 2010; Costanzo et al., 2014; Liu and Xu, 2018). WUS
homologs with conserved functions among angiosperms act in
diverse and intricate regulatory networks (Dodsworth, 2009) in
which some key players have dual roles in SAM maintenance and
FM termination through their interactions with different partners
(this review). However, there are many unanswered questions
about how WOX members have come to function in diverse
developmental processes over the course of evolution.

Poaceae (also called grasses) is one of the largest families
of angiosperms containing many agriculturally important crops,
such as rice, wheat, barley and maize (Grass Phylogeny
Working Group et al., 2001). All grasses have a complex
inflorescence composed of one, a few, or many spikelets
produced by different type meristems. The IM of Arabidopsis
is indeterminate and form two types meristems: indeterminate
branch meristem and determinate FM. While the IM of wheat
is determinate but the IMs of rice and maize are indeterminate,

they produce determinate FMs (Zhang and Yuan, 2014).
Therefore, the WOX genes mediated GRNs that are composed
of homologs of key players in different species have distinct
functions on meristem maintenance and FM determinacy
through different molecular mechanisms. Phylogenetic analysis
indicated, for example, that FHY3-like genes, encoding Mutator-
like transposase-derived TFs, are widespread in angiosperms
but not in other organisms (Lin et al., 2007), indicating that
FHY3 is probably linked to the adaptive evolution of phyA
(Mathews et al., 2003). Interestingly, although close orthologs
of FHY3 are widespread in dicots, they are missing in monocot
genomes (Lin et al., 2007). Thus, moving forward, comparative
analyses of the functions of meristem-related genes in diverse
plant species, particularly genes involved in SAM establishment
and maintenance as well as FM determinacy, will be critical for an
improved understanding of meristem evolution and conductive
to agricultural production.
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