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Modeling landscape use (i.e., estimating the probability or relative probability of use,
occurrence, or selection in a given area and time) by ungulates is an increasingly
common and important practice in research and management. Models of occupancy,
distribution, movement, habitat use, and resource selection are formal approaches by
which landscape use has been characterized and results published for a myriad of
ungulate species. Understanding landscape use has benefited from a growing volume
of data on animal locations and model covariates, and the ease of modeling with
automated software. These models are particularly noteworthy in their potential to
estimate use at multiple scales, characterize individual and population distributions, and
predict spatiotemporal responses to environmental change. Despite these advantages,
ecological processes can be secondary or forgotten. Models without a strong ecological
foundation may perform well in case studies but fail to advance our understanding of a
species’ habitat requirements and response to habitat change across a broad inference
space. In response, we describe criteria, synthesized from the ecological literature, of
direct relevance to modeling landscape use for advancing the ecological understanding
and effective management of ungulates. Criteria include (1) a knowledge coproduction
framework for scientist-manager collaborations; (2) an explicit inference space with
supporting replication for broad inference; (3) process covariates and their ecological
scaling to address habitat requirements; (4) ecologically plausible sets of competing
models; (5) model evaluation to address objectives and hypotheses of ecological
importance; (6) assessment of relationships with animal and population performance;
and (7) reliable interpretations for ecological understanding and management uses.
Contemporary modeling of landscape use has been challenged by large, disparate data
sources and an emphasis on statistical methods. However, advances in knowledge and
conservation of ungulates based on tenets of ecology, management, and inference are
achievable with careful consideration of these criteria.

Keywords: habitat use, model development, covariates, evaluation, inference space, occupancy modeling,
resource selection, ungulate management
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INTRODUCTION

Modeling landscape use, based on estimates of occupancy (Royle
et al., 2012), distributions (Jarnevich et al., 2015), movement
(Horne et al., 2007), frequency of use (Nielson and Sawyer, 2013),
or resource selection (Boyce et al., 2002), is a common practice
in contemporary ungulate research and management. While
statistical assumptions and intended applications vary, models of
landscape use estimate the probability or relative probability of
species use, occurrence, or selection of a given area and time (per
details by Lele et al., 2013), and provide valuable knowledge about
animal behavior that presumably reflects a species’ habitat needs
(Gaillard et al., 2010). These models are particularly appealing
because they are highly flexible, employing a multivariate
framework of potential covariates and interactions that can
include predation, nutrition, human disturbance, vegetation,
climate, weather, topography, and myriad other biotic and abiotic
factors (Boyce et al., 2016). Well-designed models of landscape
use provide a means to evaluate and predict how populations
respond to habitat change from a variety of anthropogenic
activities, management strategies, and ecological processes (e.g.,
Sawyer et al., 2006, 2019; White et al., 2018; Briscoe et al., 2019;
Reinking et al., 2019).

Spatial data readily available from geographic information
systems (GIS) provide continuous coverage, open-source layers
for deriving many covariates (Turner et al., 2015), and current
technologies provide voluminous data on animal use across
large areas (Hebblewhite and Haydon, 2010; Burton et al.,
2015; Middleton et al., 2019). Development and evaluation of
landscape-use models can now be accomplished efficiently with
canned statistical analysis routines in freely available software
packages.

Landscape-use modeling, however, often is focused on
statistical methods rather than on ecological processes (Wisdom
et al., 2018a,b; Briscoe et al., 2019). Without a strong ecological
framework, critics have argued that models of landscape use
are not process-based (Morris, 2003; Gaillard et al., 2010), not
developed with ecological rationale (McLoughlin et al., 2010;
Laforge et al., 2015), fail to identify a clear inference space
with appropriate replication (Nielsen et al., 2010; Wisdom et al.,
2018a,b; Briscoe et al., 2019), not evaluated with independent
data (Roberts et al., 2017) of ecological importance (Rykiel,
1996; Johnson, 2001), and lack connections with demographic
consequences (Gaillard et al., 2010; Matthiopoulos et al., 2015,
2019). Without considering these issues, it has been argued
that patterns of landscape use simply reflect animal behavior
(Garshelis, 2000). And, if patterns of landscape use are not
replicated over large areas and long time periods, robust
predictions to variation in space and time are unknown.

Critics have voiced particular concerns about the use of model
covariates that may not reflect ecological processes (Morris,
2003). Covariates often are assumed to index specific processes
or habitat requirements (i.e., surrogate variables), but evidence
for linkages to processes often is absent or unclear (Nielsen
et al., 2010). Many vegetation and abiotic covariates, for example,
are readily available in open-source formats world-wide (Chen
et al., 2015; Shean et al., 2016). By contrast, covariates of

nutrition, predation, and human disturbance, which explicitly
reflect processes of energy acquisition and loss, typically require
extensive field sampling (e.g., Cook et al., 2016; Proffitt et al.,
2016, 2019). Consequently these process covariates are less
likely to be considered (Wisdom et al., 2018a), in contrast to
more available “convenience covariates” requiring little or no
fieldwork. Uncritical use of convenience covariates for modeling,
akin to “convenience sampling” in ecological studies, poses
hidden problems that can unknowingly bias or inhibit knowledge
gain (Anderson, 2001).

Ecological scaling of covariates to match scales of different life-
history characteristics also is frequently ignored during model
development and selection (McGarigal et al., 2016), and can result
in models that are ecologically misleading or irrelevant (Mateo
Sánchez et al., 2014). Explicit rationale for how covariates of
energy acquisition (e.g., nutrition) and energy loss (e.g., human
disturbance, predation, climatic stressors) are considered in
modeling often is unstated or secondary to statistical paradigms
that conventionally govern model development and selection
(e.g., Burnham and Anderson, 2002; Hooten and Hobbs, 2015).

Finally, the level of spatial and temporal replication used to
develop and evaluate models dictates an explicit inference space,
yet often is undefined or not quantified for mapping (Yates et al.,
2018). Most landscape-use models are based on case studies (one
place, one time) with limited inference (Johnson, 2002; Yates
et al., 2018). A growing suite of large but disparate datasets on
ungulate landscape use, however, provides new opportunities for
model replication across multiple study areas and time periods
as a form of ecological meta-analysis (Gurevitch et al., 2018).
Opportunistic use of disparate data sources poses new challenges
for modeling because data are not collected under an a priori,
unified sampling design, and problematic sources of variability
must be addressed (Gurevitch et al., 2018).

These are daunting challenges for species with broad
distributions, seasonal habitat needs, and diverse behavioral and
evolutionary strategies, combined with complex management
issues. These challenges necessitate modeling landscape use with
a variety of covariates that address multiple spatiotemporal
scales, ecological processes, and land uses (Apollonio et al.,
2017). Many ungulates are migratory (Bolger et al., 2008; Sawyer
et al., 2009; Barker et al., 2019), for example, requiring models
that address seasonal ranges and multiple land ownerships.
Their relatively large body size and dietary preferences also
have led to human–wildlife conflicts (Gill, 1992; Sekhar, 1998;
Ward et al., 2004), warranting models that accurately predict
occurrence. Ungulates often are hunted, and harvest regulations
depend on knowledge of landscape use (Krausman and Bleich,
2013). Many ungulates also respond negatively to anthropogenic
disturbance by increasing movement rates (Spitz et al., 2019),
shifting distributions (Sawyer et al., 2006), or even abandoning
ranges (Hebblewhite, 2008). Models of landscape use that include
covariates of human disturbance thus are essential to land-use
planning (Proffitt et al., 2010; Dwinnell et al., 2019).

In response, we describe a landscape-use modeling framework
for ungulates and other species that explicitly considers ecological
and management criteria to frame and guide model design,
development, and utility. We do not delve into statistical methods
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of modeling landscape use, which have been reviewed extensively
(Boyce and McDonald, 1999; Boyce et al., 2002; Gillies et al., 2006;
Lele et al., 2013; Muff et al., 2019). Instead, we provide ecological
and management justification for modeling criteria, describe
benefits of their consideration, and highlight examples of their
use for ungulates, with obvious relevance to other vertebrate taxa.

ECOLOGICAL AND MANAGEMENT
CRITERIA FOR MODELING LANDSCAPE
USE

We identified seven criteria from the literature as tenets
for modeling landscape use by ungulates (Table 1 and
Figure 1). Similar criteria have been broadly described in the
literature on sampling and experimental design for ecological
and management studies, but have not been synthesized for
modeling applications for ungulates or other vertebrates in one
comprehensive source. We considered this need and integrated
research and management considerations in each criterion.

We present the criteria as a linear process for modeling
in three phases: (1) design, (2) development; and (3) utility
(Figure 1). Model design includes all aspects of planning:
establishing and using effective partnerships among scientists,
managers, and stakeholders to define model purpose, objectives,
and ecological hypotheses and expectations for testing (see the
section “Knowledge Coproduction Framework”); and identifying
the targeted geographic area, environmental conditions, and
populations for inference (see the section “Explicit Inference
Space with Supporting Replication”). Model development
builds on design to address how covariates representing
ecological relationships and habitat requirements are identified
and scaled to match targeted life-history and seasonal-use
activities (see the section “Process Covariates and Their
Ecological Scaling”); and using these covariates in ecologically
plausible, competing models that reflect life-history traits,
habitat requirements, and evolutionary behavior (see the section
“Ecological Model Development and Selection”). Model utility
encompasses the final, critical phase that provides measures
and interpretations of the ecological and management worth
of a selected model. Criteria also include the evaluation of
a model in relation to a priori hypotheses and expectations
(see the section “Model Evaluation to Address Objectives”);
identifying whether model predictions or components further
relate to demographic performance of targeted populations
(see the section “Relationships With Animal and Population
Performance”); and the interpretations and uses of a model
that provide essential context and direction for how results can
advance ecological understanding and benefit management (see
the section “Reliable Interpretations and Uses”).

The relevance of each criterion depends on objectives
and associated hypotheses. Models developed for ecological
understanding but not for explicit management applications,
for example, do not require a large investment in knowledge
coproduction with managers. Other models may have narrowly
defined objectives for management, such as characterizing
ungulate distributions by land ownership, without resources or

need to expand inference space, formally evaluate the model, or
relate predictions to demography. In that context, we consider
the criteria as aspirational standards by which modelers of
landscape use could evaluate the ecological and management
worth of their work, not edicts to blindly follow. We offer the
criteria to complement the well-developed and justified focus on
statistically based modeling, to improve ecological understanding
and management utility.

Knowledge Coproduction Framework
Knowledge coproduction is defined as the “process of producing
usable, or actionable, science through collaboration between
scientists and those that use science to make policy and
management decisions” (Meadow et al., 2015). Coproduction
is highly relevant to landscape-use modeling for meeting
the dual purpose of improving ecological understanding of
a species’ habitat requirements and using this knowledge to
meet societal needs. Models created with this dual purpose are
most effective when designed and implemented collaboratively
among scientists, managers, and stakeholders (Irvine et al., 2009;
Canfield et al., 2013; Wisdom et al., 2018b).

For ungulates, these collaborations are particularly important
because complex management issues, potential for property
damage and human conflicts, and important recreational values
require scientists and managers to work closely with a diversity
of stakeholders. Coproduction is a natural extension of the types
of interactions among scientists, managers, and stakeholders on
issues of harvest management, which are relevant to a high
percentage of ungulates that are hunted (Heffelfinger et al., 2013;
Krausman and Bleich, 2013).

Examples of effective coproduction modeling in ecology
are growing (e.g., Davies and White, 2012; Reyers et al.,
2015; Nel et al., 2016) but not currently standard practice
(Addison et al., 2013; Meadow et al., 2015). The benefits
of formal adoption of coproduction methods for modeling
include: (1) better articulation of knowledge gaps impeding
ecological understanding and management; (2) improved
communication of modeling results, inference space, and
proper application; and (3) increased acceptance and use of
models in management. Coproduction as applied to landscape-
use modeling involves collaboration in all phases of the
scientific process: defining objectives and inference space,
describing ecological and management hypotheses for testing,
identifying analysis scales and potential covariates, developing
and implementing appropriate modeling methods, interpreting
results, and careful inference (Table 1 and Figure 1).

While deceptively simple, coproduction can be daunting
and time-consuming (Voinov et al., 2016), requiring more
resources than traditional research. However, by establishing a
formal process of collaboration among scientists, managers, and
stakeholders, ownership in the process and successful outcomes
become more likely compared to traditional approaches led
by scientists (Voinov et al., 2016; Merkle et al., 2019).
Coproduction requires both researchers and managers to make
a genuine, long-term commitment to thoughtfully consider each
other’s viewpoints and objectives, and to work collaboratively
for mutual benefit.
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TABLE 1 | Criteria to frame and guide the design, development, utility of landscape-use models for ungulates, and associated description and rationale with example
supporting citations.

Criteria Description and rationale Example supporting citations

Knowledge
coproduction
framework

A shared modeling process among scientists, managers, and stakeholders to meet mutually
established objectives will ensure effective model uses that are scientifically credible and of high
management utility.

Canfield et al. (2013), Wisdom et al.
(2018a)

Explicit inference space
with supporting
replication

Quantifying and mapping the conditions in which inferences from model predictions can be
reliably made defines the ecological interpretations and management applications that are
possible. Models developed from multiple areas and time periods provide inferences that are
robust to environmental variation in the associated space and time.

Rowland et al. (2018a), Salas et al.
(2018), Briscoe et al. (2019), Lula
et al. (2020)

Process covariates and
their ecological scaling

Model covariates that embody ecological relationships and associated habitat requirements,
scaled to match life-history traits and seasonal activities of interest, provide clear ecological
understanding and predictable characterization of landscape use for management.

Laforge et al. (2015), Wisdom et al.
(2018b), Briscoe et al. (2019)

Ecological model
development and
selection

Model development and selection based on ecological rationale, such as with model suites
composed of covariates related to energy gain, conservation, or loss, explicitly addresses
habitat requirements of a species, providing a causal basis for patterns of landscape use and
credible uses in management.

Long et al. (2014), Rowland et al.
(2018b), Eckrich et al. (2019), Lula
et al. (2020)

Model evaluation to
address objectives

Models can be evaluated with a variety of methods identified as part of objectives and a priori
hypotheses and expectations. Conventional methods that correlate predictions of landscape
use with observed use are ideally based on independent data. Conclusions are limited to the
environmental variation modeled.

Rykiel (1996), Johnson (2001),
Roberts et al. (2017), Rowland et al.
(2018b)

Relationships with
animal and population
performance

Predictions from models of landscape use - or specific habitat components - that are correlated
with animal or population performance reflect the fitness consequences of landscape use, and
thus extend utility beyond traditional predictions of use.

Nilsen et al. (2004), Gaillard et al.
(2010), Losier et al. (2015),
Matthiopoulos et al. (2015, 2019)

Reliable interpretations
and uses

Results from modeling require interpretation to determine how well findings support objectives,
hypotheses, inference space, and intended uses. Results that do not support expected model
utility can inform new studies and modeling to address model deficiencies through adaptive
management.

Walters (1986), Yates et al. (2018)

Examples
A long-term collaboration to model elk (Cervus canadensis)
habitat used principles of knowledge coproduction from
development (Canfield et al., 2013) to application (Ranglack et al.,
2017; DeVoe et al., 2019; Lowrey et al., 2020). Following a series
of stakeholder and legal challenges to elk habitat management
in western Montana, wildlife scientists and managers from
the U.S. Forest Service and Montana Fish, Wildlife and Parks
formed a committee to discuss and compile recommendations
for collective improvement of elk habitat. The committee spent
3 years sharing knowledge, discussing uncertainties in current
science, and identifying modeling needed to improve elk habitat
management in the region.

The resulting recommendations (Canfield et al., 2013)
prompted a series of research and modeling projects to address
management needs of both agencies. Ranglack et al. (2017)
evaluated attributes of security areas used by nine elk populations
and developed new management definitions for optimal canopy
cover and distance from motorized routes that substantially
improved elk security. Definitions are now used to inform
management of vegetation and motorized access during archery
and rifle elk seasons on public lands.

DeVoe et al. (2019) built on these definitions to evaluate
the nutritional consequences of archery hunting on elk. Results
included recommendations to integrate management of forage
and security (i.e., canopy cover and motorized routes) to improve
habitat and encourage elk to remain on public lands throughout
the rifle season, the traditional period and method of population

management. Lowrey et al. (2020) addressed an additional
knowledge gap regarding elk responses to dramatic changes
in forest structure and elk security brought about by severe
infestations of mountain pine beetle (Dendroctonus ponderosae).
Authors used their findings to define management thresholds for
canopy cover and distance from motorized routes to maintain
elk use during hunting seasons in areas experiencing severe
conifer mortality from beetle infestations. Results are being
used to inform management of elk security on public forests
impacted by beetle-kill.

Explicit Inference Space With Supporting
Replication
Clearly defining an inference space during model design ensures
that sampling replication is appropriate for inference across
the selected spatial and temporal extents (Hobbs, 2003). We
define “inference space,” also referred to as the “target system”
(Yates et al., 2018), as the geographic area and associated
environmental conditions and their temporal variability to which
interpretations, conclusions, and predictions of landscape use
or other ecological relationships are made (also see Garton
et al., 2001; Morrison, 2001, 2012). In spite of the importance
of a clearly defined inference space, we noted few cases in
the ecological literature where a target system was purposely
identified and quantified for model applications (Yates et al.,
2018). And yet, every model has its predictive limits, which
have been well-defined for statistical inference (Chatfield,
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FIGURE 1 | Modeling phases (left boxes) and associated design criteria (right boxes) that outline an ecological and management process (downward arrows) for
model design, development, evaluation, and interpretation of landscape use models for ungulates. The primary feedback loop (upward arrows) is generated from
interpretation of results from model development, selection, and evaluation, and relationships to performance to determine how well findings support objectives,
hypotheses, inference space, and intended uses. Results that do not support model expectations can guide additional studies and modeling to address model
deficiencies, using concepts of adaptive management (Walters, 1986).

1995). Understanding inferential limits from ecological and
management perspectives reduces misapplication of the model
(Garton et al., 2001).

A challenge in addressing inference space is the reliance on
models of landscape use developed and evaluated with data from
one study area as a case study lacking replication. By definition,
case studies are based on local conditions, which limit knowledge
gain and management utility to those specific conditions. As
the number of study areas or similar units of spatial replication
increases, the inference space for model predictions expands to
an area larger than the replicates themselves (Yates et al., 2018).
Inference space then represents conditions across the larger
landscape, encompassing like variation among study areas. Broad
scales of inference are possible, such as to habitats within an
entire ecoregion or biome for widely distributed ungulate species
[e.g., Acevedo et al., 2011 for landscape-use modeling of wild
boar (Sus scrofa), red deer (Cervus elaphus), Iberian wild goat
(Capra pyrenaica), and roe deer (Capreolus capreolus) in Spain;
and Kanagaraj et al., 2019 for the sub-ungulate Asian elephant
(Elephas maximus) in India and Nepal].

Inference space for modeling landscape use can be done in
two ways, a priori or a posteriori. In the first, an explicit target
system is identified when developing modeling objectives and
hypotheses for testing. A formal sampling design is developed,
with focus on the spatial and temporal replication needed
for desired inference. If objectives call for development and

validation of a landscape-use model across an extensive area, such
as an ecoregion [e.g., Salas et al., 2018 for Marco Polo Sheep
(Ovis ammon polii) across 4.1 million ha in eastern Tajikistan],
the geographic extent of sample replicates needed for modeling
will be substantially larger than those for a local population [e.g.,
Lula et al., 2020 for bighorn sheep (Ovis canadensis) restoration
in the Madison Range of southwest Montana, United States]. The
number and type of replicates needed will largely depend on the
environmental variation considered in modeling (Figure 2), and
classic methods of sampling design can be used to allocate units of
replication to address the environmental variation in the defined
inference space (Krebs, 1989).

Explicitly defining the inference space and units of replication
before data collection and modeling under an a priori design
can help avoid the “Modifiable Areal Unit Problem” (MAUP;
Openshaw, 1984), in which the size and distribution of sampling
(replication) units, and their aggregation, can lead to different
results depending on how the units are combined for analysis
(Jelinski and Wu, 1996; Bissonette, 2017). Study areas or other
spatial replicates (polygons) are modifiable and setting arbitrary
study extents based on mapping boundaries (e.g., ownership) can
dramatically affect response variables. Thus, establishing spatial
extents of these areas a priori to encompass variation of interest
helps avoid the MAUP (Bissonette, 2017).

The a posteriori approach involves modeling landscape use
opportunistically with available data and adapts inference space
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FIGURE 2 | Sampling and inference hierarchy for landscape-use modeling. Model training and testing, including estimates of precision, should replicate this order.
When making inference at one level (e.g., a population), the next level in the hierarchy is the appropriate unit of replication (e.g., individual animals) for estimating
precision. Estimates of precision for a single study area should consider blocking at the next available level where replication occurs. For example, if within one study
area (1), multiple years are studied (2), then model evaluation should use years (2), populations (3), or individual animals (4) for blocking, depending on the available
sample size at each level. Estimates for a broader landscape require a sample (n > 1) of study areas.

and related objectives and hypotheses to observed conditions
[e.g., Rowland et al., 2018a for elk; Coe et al., 2018 and Eckrich
et al., 2019 for mule deer (Odocoileus hemionus)]. Given the lack
of a unified, consistent sampling design, this “default” inference
space can be more limited than that under a priori allocation
of replicates to match a desired target system. Despite these
challenges, the emergence of large data sets on animal locations
has provided new opportunities for expanding inference space.
However, it is not always clear how well landscape-use models
can be developed opportunistically a posteriori, with data from
multiple replicate areas, as a form of spatially explicit meta-
analysis (Gurevitch et al., 2018). Telemetry data collected across
different areas and times, for example, often differ in number of
animals collared, relocation frequency, fix success, and reasons
for animal collaring (Rowland et al., 2018b). Moreover, few
telemetry-based studies of landscape use explain how their
capture protocols result in a set of collared animals that are
representative of the population to which inferences will be made
(Garton et al., 2001).

Differences in resource availability across time and space
may also result in different patterns of landscape use, resulting
in spurious conclusions (Holbrook et al., 2019), given the
plethora of problems introduced by the MAUP (Bissonette,
2017). In addition, ungulate patterns of landscape use are
typically density-dependent (McLoughlin et al., 2006; Godvik
et al., 2009). Replication across increasingly large spatial extents
and longer time periods may capture a variety of ungulate
patterns of landscape use not otherwise revealed by accounting

for functional responses in relation to population density (van
Beest et al., 2012). At a minimum, basic knowledge of whether
population density varies across replicates is needed to interpret
potential variation in landscape use (McLoughlin et al., 2010).
Otherwise, deriving a global model of landscape use, such as
by averaging model coefficients among replicates, may result
in an “average” model that represents none of the underlying
areas (e.g., Russell et al., 2015). The same challenge exists
for successfully building global models where management of
ungulate harvest and predator complexes varies markedly across
the inference space.

Despite these challenges, a combination of disparate sources of
data used as replicates, both published and unpublished, has been
integrated successfully in ecological meta-analysis (Gurevitch
et al., 2018). Opportunistic syntheses of these data require
clear ecological hypotheses to direct modeling efforts (Morrison,
2001, 2012). Opportunistic analyses further rely on integration
of spatially and temporally replicated data that accounts for
inherent data imprecision, and that constrains limits of inference
accordingly (Johnson, 1999, 2002; Yates et al., 2018), rather than
routinely rejecting the approach for lack of a unified, a priori
design (Romesburg, 1981; Hurlbert, 1984).

We emphasize use of study areas as spatial replicates
because they represent the most obvious and traditional
form of replication that is geographically extensive and thus
can encompass appropriate extents or targeted populations
(Figure 2)—in contrast to more traditional use of animals as
sample units and their locations as subsamples in case studies.
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A noteworthy example of spatial replication was the habitat-
use model for mule deer developed by Coe et al. (2018), in
which nine study areas were used as replicates for inference
across three million ha of the sagebrush biome (Figure 3).
Sampling designs, however, are evolving, and different forms
of spatial and temporal replication can be used to support the
associated inference space (Figure 2). New technologies have the
potential for systematic sampling over broad areas of a species
range, such as with geographically extensive camera traps arrays
(Ahumada et al., 2011; Menkham et al., 2019) or broad-scale
aerial sampling (Nielsen et al., 2010; Bristow et al., 2019). Species
distribution modeling is a specific example of landscape-use
modeling designed to address broad-scale patterns of occurrence
and covariates accounting for those patterns, often without
classical use of replicated study areas, but instead systematically
sampling across the entire inference space (e.g., Zimmermann
et al., 2010; Jarnevich et al., 2015).

Consideration of an explicit inference space deserves much
greater attention as part of landscape-use modeling, and is
essential to robust predictions. Regardless of approach, the key
steps are to identify the targeted area and conditions for desired
inference, define the spatial and temporal replicates needed
to support the range of conditions, and account for a variety
of sources of sampling and environmental variation to enable
robust predictions.

Examples
Modeling with an explicit inference space is particularly useful
when evaluating future or potential conditions, such as projected
effects of climate change (Salas et al., 2018), wildfire (Proffitt
et al., 2019), or other disturbances on ungulate landscape
use (Riggs et al., 2015). One exemplary study that defined
an explicit inference space used resource selection functions
(RSFs) to evaluate restoration potential for bighorn sheep in
southwest Montana, United States (Figure 4) (Lula et al.,
2020). Inference space was identified a priori as the historic
sheep distribution across the Madison Range, with current
sheep populations occupying the southwestern and northeastern
portions (Figure 4). Model design included sampling in both
populations, with the southwestern population used for model
development, internal validation, and predictions and the
northeastern population for external model validation. The
authors carefully assessed the range of environmental variation
within modeling areas, compared conditions to the targeted
prediction area (i.e., the Madison Range), and limited predictions
to areas with conditions similar to those used for model
development and validation. Accordingly, the northern portion
of the Madison Range was omitted from predictions because
conditions differed from model development and validation
areas, leading to potential for invalid predictions beyond the
appropriate inference space.

Process Covariates and Their Ecological
Scaling
Model covariates that embody ecological processes and the
associated habitat requirements of a species have been referred
to as process covariates (Nielsen et al., 2010). Examples in

ungulate landscape-use modeling include nutrition (Rowland
et al., 2018a,b, 2000; DeVoe et al., 2019); predation (Kittle et al.,
2008; Ciuti et al., 2012); human disturbance (Jiang et al., 2008;
Bonnot et al., 2013); land-use change (Acevedo et al., 2011;
Schuette et al., 2016); climate change (Ciach and Pęksa, 2018;
Salas et al., 2018); and weather (van Beest et al., 2012; Long
et al., 2014). Many process covariates can also be managed to
affect landscape use (Wisdom et al., 2018a,b). Because process
covariates are drivers of ecological patterns, their emphasis in
modeling is more likely to result in predictions of landscape use
that are robust to spatiotemporal variation in the environment
(Gaillard et al., 2010).

Other model covariates may provide important
environmental context to enhance model predictions but
may not represent explicit ecological processes, nor can they
be actively managed. Examples of these contextual covariates
include vegetation type, topography, soils, and geology. The
specific role of contextual covariates in modeling can be unclear
without empirical support. For example, ungulate selection for
cool, mesic aspects during hot summers could indicate selection
for areas of higher forage productivity, increased thermal relief,
or both (e.g., Beck et al., 2013). Without knowledge of the
specific role that aspect plays, understanding its relation to other
covariates and processes is difficult.

Some covariates may also be used as surrogates for process
covariates. Remotely sensed greenness metrics (Meier and
Brown, 2014), for example, often are used as surrogates for
ungulate nutrition (Pettorelli et al., 2007, 2011; Borowik et al.,
2013). How these metrics index nutrition (e.g., forage quantity,
quality) or animal productivity (e.g., pregnancy rates, first-year
survival), however, is often unstated and implicitly assumed
(Villamuelas et al., 2016). As with contextual covariates, the worth
of a surrogate covariate relies on its documented relationship
with a process covariate (Nielsen et al., 2010; Gautam et al., 2019).

Rationale for the types of covariates considered in landscape-
use modeling—process, contextual, and surrogate—requires
consideration of how such covariates are scaled (Wiens, 1989;
McGarigal et al., 2016). Covariate scaling is the process of
defining the spatial and temporal grain and extent (area or time)
over which a covariate is derived, quantified, mapped, and used
in model development and selection (Wheatley and Johnson,
2009; McGarigal et al., 2016). A related concept is that of the
minimum mapping unit, which is the “minimum dimension of
an element that can be displayed and analyzed” (Corsi et al., 2000,
p. 410) and should be explicitly recognized when interpreting
model results. Unfortunately, inconsistent use of scale-related
terms permeates the ecological literature (Wheatley and Johnson,
2009). McGarigal et al. (2016) provide a comprehensive
assessment of spatial and temporal scaling of covariates.

The scale used to derive spatial covariates can dramatically
affect predicted landscape use by ungulates (e.g., Laforge et al.,
2015, 2016), but often is not reported (McGarigal et al., 2016).
One example of scale in this context is greenness metrics such
as Normalized Difference Vegetation Index, currently delivered
for 16-day periods at 250-m resolution (Meier and Brown, 2014)
and often used as a surrogate to represent ungulate nutrition in
modeling landscape use (e.g., see review by Villamuelas et al.,
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FIGURE 3 | Nine study areas (hatched areas) were used by Coe et al. (2018) as spatial replicates to model habitat use by 452 mule deer during winter over 8 years
(2005–2012) in southcentral Oregon and northern California, United States. As context, study areas were embedded within a minimum convex polygon of >3-million
ha that defined the year-round range of telemetered animals (black boundary). Study areas were used as units of replication in developing and validating global
models of habitat use for mule deer at three spatiotemporal scales: population, home range, and foraging. Competing models of habitat use at each scale were first
developed and ranked for empirical support by study area. Rankings were then summed across study areas to identify the global model with highest overall support,
and model coefficients averaged among study areas to derive a global model. Validation of the global model used locations from 95 mule deer withheld from model
development in eight study areas, and results were reported by study area.
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FIGURE 4 | In southwest Montana, United States (A), predictions of bighorn sheep landscape use (B,C) from a resource selection function (RSF) were applied to an
explicit inference space of historical but currently unoccupied bighorn sheep range to estimate potential winter and summer use (B,C, from Lula et al., 2020). Cool
colors depict areas of low predicted selection, and warm colors areas of high predicted selection. The RSF was developed with telemetry data and validated with
estimates of population abundance from established populations in nearby areas within the same historical range (summer and winter population home ranges, B,C).

2016). An implicit assumption is that this spatial (i.e., 250 m) and
temporal (16 days) grain matches that of the foraging behavior
and associated landscape use by the species. For ungulates that
forage in very small patches, however, a much smaller grain
(e.g., 10 m) may be more appropriate, owing to the fine scale at
which the ungulate selects foraging sites. The challenge lies with
deriving a nutrition covariate that can be mapped accurately at
this grain (Morris et al., 2016) but not exceed the accuracy of
associated animal location data (Garton et al., 2001).

Evaluating each covariate at multiple scales during model
development and selection is essential to identify optimal
patterns of landscape use which otherwise can be missed (Mateo
Sánchez et al., 2014). Although ecologists have recognized the
need for multi-scale habitat models for decades, implementation
of such models has been uncommon (McGarigal et al., 2016).
The range in scales evaluated is based on ecological rationale
and a priori knowledge about the covariate in relation to life-
history traits and species activities being modeled (Wheatley and
Johnson, 2009) or determined empirically post hoc (McGarigal
et al., 2016). Different scales are customized for each spatial
covariate based on this rationale and then formally evaluated
for empirical support (see the section “Model Development
and Selection”).

Importantly, defining and evaluating a range of scales for
each covariate is different than hierarchical “levels” of landscape
analysis (Mayor et al., 2009; Wheatley and Johnson, 2009), such
as first, second, and third orders of selection (Johnson, 1980).
Spatial orders of selection are now commonly incorporated in

hierarchical modeling of landscape use (McGarigal et al., 2016)
at the home range, population, study area, or species range (e.g.,
DeCesare et al., 2012). We do not address hierarchical modeling
because of its common use, whereas covariate scaling to match
ecological and management considerations of a species continues
to be addressed superficially or not at all (McGarigal et al., 2016).

Examples
Rowland et al. (2018b) used a suite of process covariates to
develop and validate elk nutrition and habitat-use models, each
containing covariates representing sources of energy acquisition
and loss that could be managed (Figure 5) (Wisdom et al., 2018a).
The nutrition model addressed energy gain through overstory
canopy cover, deemed a process covariate because it affects light
penetration to the forest floor that directly influences biomass
and quality of ungulate forage (e.g., Jenkins and Starkey, 1993;
Peek et al., 2001, 2002; Cook et al., 2016, 2018), and because it can
be managed through silvicultural prescriptions (Wisdom et al.,
2018b). The response variable of the nutrition model, dietary
digestible energy, was then used as a covariate in the habitat-
use model that included a process covariate representing energy
loss - distance to roads open to public motorized use (Figure 5)
(Rowland et al., 2018a). Distance to roads served as an actively
managed process covariate because public motorized routes are
conduits for human activity that elk consistently avoid (e.g.,
Rowland et al., 2000; Ciuti et al., 2012; Ranglack et al., 2017).
This example demonstrates the ecological underpinnings of the
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FIGURE 5 | Conceptual framework of nutrition and habitat-use models developed and validated for elk in western Oregon and western Washington, United States
(from Wisdom et al., 2018a). Categories of covariates considered during model development and types of data used for validation are shown below each model or
type of validation. Covariates in the nutrition model included study area and potential natural vegetation (PNV) zone as contextual covariates, and percent overhead
canopy cover (forest canopy cover) and percent composition of hardwoods (forest hardwoods) as process covariates to predict dietary digestible energy (nutritional
resources). Nutrition model predictions were most strongly influenced by canopy cover. Predictions of the habitat-use model were influenced by process covariates
of nutrition (dietary digestible energy), human disturbance (distance to roads open to public motorized use), and vegetation (distance to cover-forage edges), and the
contextual covariate percent slope (physical category). The two models were designed as complementary applications: the nutrition model identified the spatial
arrangement and quality of nutritional resources, and the habitat-use model quantified the probability that areas of higher nutrition would be used by elk, given the
influence of all covariates that best predicted spatial distribution.

process covariates selected for modeling, and their manipulation
through active management to affect desired landscape use.

Ecological scaling of covariates was demonstrated by Laforge
et al. (2015, 2016) in their landscape-use model for white-tailed
deer (Odocoileus virginianus). They considered eight covariates
in model selection, each derived at six grain sizes (Laforge
et al., 2015), with grain defined as the area around used and
available telemetry points. Deer responded uniquely to covariates
at different grains. The slope of the functional response, measured
as proportion of habitat used versus available, in relation to grain
size for each covariate was strikingly different, indicating that
deer response to covariates was scale-dependent. Had modeling
proceeded with a single grain for all covariates, patterns of
landscape use likely would have been substantially different—
with the possibility that use associated with some covariates
would have been undetected or substantially diluted (Laforge
et al., 2015, 2016).

Ecological Model Development and
Selection
Given the widespread availability of large datasets on animal
locations and broad-scale spatial data, statistical models of

landscape use may be complex, and in some cases their
complexity may become the focus of the analysis. Contemporary
models of landscape use thus often emphasize statistical methods
and rote application of model selection criteria (e.g., Burnham
and Anderson, 2002). A strong ecological framework for
model formulation and selection will ensure that modeling
is process-based and explicitly addresses the species life
history, habitat relationships, and hypotheses of ecological and
management interest.

Building an ecological framework for landscape-use modeling
involves several steps. The first is developing ecologically
plausible competing models or a list of potential covariates that
align with the species’ life-history traits, habitat requirements,
and evolutionary behavior (see the section “Process Covariates
and Their Ecological Scaling”). In contrast to considering
all possible combinations of covariates, recent approaches
for developing sets of plausible competing models emphasize
organizing covariates into model suites, such as nutrition,
predation, and human disturbance (Figure 5) to address specific
hypotheses (Franklin et al., 2000; DeVoe et al., 2015; Lowrey
et al., 2017; Rowland et al., 2018b). Suites of covariates often are
organized according to their roles as sources of energy acquisition
(e.g., nutrition covariates or nutrition surrogates), energy loss
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(e.g., human disturbance, land use, or predation covariates), or
energy conservation (e.g., cover or topographic covariates) per
modeling concepts of Long et al. (2014) for ungulates. Some
covariates may address more than one role, such as slope to
indicate areas of higher nutrition and energy conservation (i.e.,
flatter slopes may have deeper soils that support higher forage
biomass, but also are associated with decreased movement costs).

Organizing covariates into model suites that represent specific,
often competing hypotheses helps simplify otherwise large and
complex competing sets of models and fosters identification of
the covariates best supported by the data within a model suite.
This approach also allows for important process covariates to
advance to later stages of model selection based on ecological
rationale for their importance rather than solely on statistical
criteria (Lula et al., 2020). Additionally, this approach allows
different spatial grains or functional forms of covariates to be
evaluated, such that only the most supported form of each is
advanced in model selection (Franklin et al., 2000; Laforge et al.,
2015; Eckrich et al., 2019; Lowrey et al., 2020). We suggest a
tiered or similar approach (e.g., see Franklin et al., 2000; Lowrey
et al., 2020) of organizing model suites that represent ecological
processes or hypotheses to prioritize inclusion of ecologically
meaningful and/or manageable covariates in the final model.

Second, the process of ranking and identifying a final model
with highest empirical support from the data has a well-
developed history based on information-theoretic (IT) methods
(Burnham and Anderson, 2002). Nearly all models of landscape
use, as cited here, have used Akaike’s Information Criterion
(AIC), its variants (Burnham and Anderson, 2002), or other
Bayesian IT statistics (Hooten and Hobbs, 2015) to guide model
selection. When applied to all possible combinations of covariates
or a model built solely on IT-based metrics (e.g., stepwise model
building), the final landscape-use model may not be ecologically
relevant or useful for management because a comparative
ranking of models may overshadow ecological rationale and need
for interpretable results (Arnold, 2010). However, when applied
to a carefully developed process for modeling that represents
ecological hypotheses of interest, statistical criteria such as AIC
can help identify a plausible model with high management utility.

Examples
Lowrey et al. (2017) used an ecological framework and tiered
model approach to develop and select models for mountain goat
resource selection in the southwestern Greater Yellowstone Area,
United States. The authors considered 12 covariates representing
potential habitat attributes influencing mountain goat resource
selection based on published research. To address specific
hypotheses and simplify an otherwise potentially complex model
list, covariates were grouped into four model suites representing
terrain, vegetation, heat load, and snow. A tiered modeling and
IT approach to model selection guided the progression from
relatively simple univariate models focused on identifying the
most explanatory functional form and grain of each covariate,
to multivariate models that compared covariates within model
suites. The final model suite contained supported covariates
from each of the four model selection suites, from which
the authors selected a final model of mountain goat resource

selection. The authors’ approach placed covariates into categories
representing specific ecological hypotheses, which strengthens
interpretation of model outcomes and provides a more robust
modeling foundation.

Rowland et al. (2018b) also used a strong ecological framework
to develop and select models for elk habitat use in western Oregon
and Washington, United States. To create a regional landscape-
use model across sites differing in resource availability, the
authors placed covariates to predict elk habitat use in one of four
categories to represent specific hypotheses about their relative
influence and associated ecological processes (Figure 5). As in
the prior example, covariates were chosen from each suite for
advancement and combined to create a set of candidate models
for evaluation and identify a final global model that addressed
specific ecological hypotheses and their use in management.

Model Evaluation to Address Objectives
Model evaluation can be defined as an examination of how
a model performs in relation to a priori expectations (Rykiel,
1996; Johnson, 2001). The word “validation” is often used in the
ecological modeling literature, but this term is misleading in that
no model can be truly validated but only invalidated through
repeated testing in space and time under various conditions
(Holling, 1978; Walters, 1986). Moreover, the term validation
implies a more absolute outcome than does exploring the value
of a model; model evaluation thus has been recommended as a
more appropriate term (Johnson, 2001).

Conceptually and in practice, model evaluation can occur
in many ways (Rykiel, 1996; Morrison et al., 2006). Identifying
the most appropriate method depends on objectives, targeted
inference space (see the section “Explicit Inference Space with
Supporting Replication”), study design and analysis methods, and
available data. Assessing the accuracy and precision of model
predictions to new areas is the most common objective for
evaluating ungulate models of landscape use (Boyce et al., 2002;
Morrison et al., 2006).

Evaluation often is narrowly focused on assessing model
predictions, such as relative probability of use, versus a set
of observed data to determine their correlation. Evaluation
generally relies on some form of cross-validation (Hijmans,
2012; Hjorth, 2017), which separates the original dataset into
estimation (aka training) versus test data (Figure 6) (Hjorth,
2017). Estimation data are used to develop predictions for the
test data and evaluate the strength of their relationship. From
a formal statistical view, “validation data” are used to evaluate
the model multiple times throughout model training and help
refine model hyperparameters, whereas “testing data” are the
gold standard and used only after model “training” (Figure 6)
(Hobbs and Hooten, 2015).

Models of landscape use have traditionally evaluated model
predictions versus observed data in two ways. The first establishes
training and test data from a common dataset (Fielding and
Bell, 1997). The second evaluates model predictions with data
independent of those used to develop the model. The first type,
typically based on cross-validation, is commonly used to evaluate
predictions of RSFs and habitat-use models (e.g., Beck et al.,
2006; Laforge et al., 2015; Lowrey et al., 2017; Plante et al.,
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FIGURE 6 | The original (full) data set is split into training (estimation) and testing sets, prior to variable and model selection and parameter estimation. Predictions
from the model fit to the training data are then made for the testing data. Evaluation of the correspondence between predictions and testing data is combined with
internal evaluation of the training data using k-fold cross-validation. In computer science and engineering disciplines like machine learning, k-fold cross-validation can
lead to model refinements (Broms et al., 2016), which can then be re-tested using cross-validation. However, predictions should be made to the holdout testing data
only after a final model has been reached, and not during the model selection or refinement process.

2017). Original data are typically split into k subsets after variable
and model selection, and how the specific k subsets or holdout
data are chosen can substantially affect results (Roberts et al.,
2017). Random assignment of data to the k subsets in cross-
validation will always overestimate model performance because
evaluation is based on variability at the level of k used to assign the
subsets (Figures 2, 6; e.g., study areas, animals; Gude et al., 2009).
Whenever possible, assignment of data to the k subsets should be
based on the primary sampling unit for inference (e.g., study area,
Figure 2) to mimic the original data collection process and reduce
bias in predictions (Roberts et al., 2017). This “blocking” (Roberts
et al., 2017) to choose subsets is optimal because observations
within blocks are not independent.

The second, preferred type of model evaluation uses holdout
data that are spatially and temporally independent of those used
for estimation (Roberts et al., 2017), and is especially valuable
when making predictions to different environmental conditions.
However, if data are only available from one study area or sample
sizes are small (e.g., number of animals), all available data may
be needed for model estimation and evaluation, resulting in
optimistic performance (Roberts et al., 2017).

Use of training data to evaluate model predictions, be it
from k-fold cross-validation or other methods, may be unreliable
because the “model prediction parameters were selected with the
estimation and test data sets, and thus might be biased” (Roberts

et al., 2017). Thus, the holdout method is recommended for more
insightful and realistic model evaluation. If the objective is to
evaluate predictions for other areas and management scenarios,
variable and model selection uncertainty must also be recognized
(Hjorth, 2017). Differences in distributions of covariates between
model estimation and evaluation data may point to model
deficiencies or restrictions as to where or when the model can
be applied with confidence.

Regardless of approach, the model evaluation process,
including how to split the estimation and test datasets, should
be developed before model selection and estimation (Figure 6)
(Hjorth, 2017; Roberts et al., 2017). Evaluation can then proceed
with a variety of metrics like r2, receiver operating characteristic
(ROC) curves, area under the curve (AUC), classification tables,
kappa, or Bayesian hierarchical approaches (Chatfield, 1995;
Rykiel, 1996; Fielding and Bell, 1997; Allouche et al., 2006;
Morrison et al., 2006; Peterson et al., 2008; Matthiopoulos
et al., 2015; Broms et al., 2016). Other evaluation metrics may
be based on the types of knowledge gained in relation to
ecological hypotheses or expectations (Bunnell, 1989), or based
on simulating future conditions under changing disturbance or
climate regimes (e.g., Riggs et al., 2015; White et al., 2018).

For any evaluation that examines agreement between
predicted and observed landscape use, the essential consideration
is the degree of independence between data used for model
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development versus evaluation. Optimistic results generated by
nearly all forms of k-fold cross-validation reflect their limitations
for broad inference. Modeling approaches that hold out multiple
datasets that are spatially and temporally independent of those
used to develop a model lead to more robust evaluation and are
increasingly common (see the section “Explicit Inference Space
with Supporting Replication”).

Examples
Guan et al. (2015) developed landscape-use models for takin
(Budorcas taxicolor) in the northern MinShan Mountains of
Sichuan Province, China. The models were based on GPS
coordinates of takin and sign of takin presence within sampled
plots within a 38,000 km2 study region, and final predictions
of takin presence were based on model averaging using AIC
weights. The authors evaluated their model by comparing
predictions to an independent data set of takin locations
collected 2005–2010 across a network of 21 nature reserves in
Sichuan Province. This example illustrates the most desirable
form of model evaluation, i.e., using data independent and
beyond the range of those used to develop the model, rather
than subsetting model development data for evaluation with
k-fold cross-validation or ROC-based classification matrices.
Coe et al. (2018) likewise demonstrated a robust form of
model evaluation, using data from 95 mule deer withheld from
model development in eight study areas, with results reported
in relation to varying environmental conditions across study
areas (Figure 3).

Relationships With Animal and
Population Performance
Predicting spatial and temporal distributions or probability
of use is the primary objective of most ungulate landscape-
use models; however, linking these predictions to measures of
animal performance can identify the biological consequences
of landscape use and extend model utility for conservation
and management (Aldridge and Boyce, 2008; Gaillard et al.,
2010). Here, we define performance as measures of survival
and reproduction that reflect fitness, the expected contribution
of individuals to future generations (Franklin and Morrissey,
2017) and often quantified as lifetime reproductive success
(LRS). Indeed, the underlying motivation behind many habitat
models is that “organisms have a reason for being where we
find them” (Matthiopoulos et al., 2015, p. 414). Quantifying
and understanding these connections, referred to as Habitat–
Performance Relationships (HPR; Gaillard et al., 2010), can
inform ungulate conservation in multiple ways.

If HPR have been quantified in an area, management
can target specific habitat attributes and potentially improve
performance, such as higher juvenile survival. Moreover, if a
model covariate correlates well with some performance index
and is a key driver of landscape-use model predictions (e.g.,
large standardized coefficient), we can assume that areas of
highest predicted use are associated with greater fitness, and
target management to influence ungulate distributions and
benefit the population. However, HPR can change over time,
for example with shifting densities of predators or alternate

prey, and thus should be considered dynamic. These measures
will be increasingly important in the future by enhancing our
understanding of how populations respond to environmental
change (Losier et al., 2015; Matthiopoulos et al., 2019).

Performance components linked to ungulate habitat can
be either direct measures of reproduction and survival (e.g.,
fecundity, pregnancy status; Proffitt et al., 2016; Allen et al.,
2017; Cook et al., 2018) or indirect metrics such as body fat
(Proffitt et al., 2016; Cook et al., 2018; Merems et al., 2020).
Outputs from ungulate landscape-use models have been related
to performance measures in multiple ways (Table 2). A seminal
study is the work of McLoughlin et al. (2006), in which LRS
of red deer on the Isle of Rum, Scotland was associated with
selection of vegetation communities (see “Examples” section
below). A similar analysis by McLoughlin et al. (2007) for
female roe deer in France demonstrated that LRS was greater for
individuals that incorporated specific habitat components such as
meadows and thickets in their home ranges.

Because landscape-use models are niche-based and
multivariate, and generally predict distributions or habitat
use, we cannot directly use their outputs (e.g., probability of use)
to predict fitness (Gaillard et al., 2010). We can, however, explore
how specific habitat features, whether as model covariates
or independent of a formal modeling framework, relate to
performance. For example, Nilsen et al. (2004) documented
preference for woodland habitat by roe deer on winter ranges in
Norway, and then evaluated covariation of the area in woodlands
with litter size. Similarly, Schrempp et al. (2019) found that
quantity of “forage shrubs” was correlated with population
trends of moose in northern Idaho, United States.

One category of habitat-performance relationships especially
relevant to ungulates is that between quantity and juxtaposition
of “security” habitat to survival or other fitness indices during
hunting seasons, both for hunted and non-hunted population
segments. In Norway, Lone et al. (2015) found increased survival
of male European red deer that moved into dense cover at the
start of the hunting season. Caribou vulnerability to harvest in
Canada was greater when animals were closer to infrastructure
such as roads or hunting camps, and when in open or flat terrain
(Plante et al., 2017). Spitz et al. (2019) documented lower body fat
of adult female elk entering winter for individuals that markedly
avoided roads during hunting seasons.

Considerations in relating performance to landscape use
by ungulates and its interpretation include scale, density
dependence, and predator-prey dynamics. The scale of model
development is especially important in choosing appropriate
performance metrics. At smaller geographic and temporal scales,
individual energy gain or performance may be suitable measures,
whereas at larger scales, population demography or persistence
of local populations are more appropriate (Gaillard et al., 2010).
Habitat-performance relationships that appear robust in one
system may not be translatable to another if ungulate densities
or resources vary widely between systems (Gaillard et al., 2000,
2010; McLoughlin et al., 2006, 2010; Matthiopoulos et al., 2015).
Similarly, predator densities and distributions can strongly affect
ungulate landscape use (e.g., Frair et al., 2005; Oates et al.,
2019). Thus understanding these dynamics and quantifying their
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TABLE 2 | Examples of ungulate landscape-use models or habitat components that demonstrated relationships between landscape use and animal or
population performance.

Landscape use
model type

Habitat component Fitness/performance
metric(s)

Species Location References

RSF* Proportion time spent by
habitat type

Fecundity, calf survival Moose (Alces alces) Sweden Allen et al. (2017)

RSF Local road density,
abundance of
mature/mixed deciduous
stands

Calf survival Caribou (Rangifer tarandus) Québec, Canada Dussault et al. (2012)

RSF Land cover types, e.g.,
mixed/deciduous stands

Adult female survival Woodland caribou (Rangifer
tarandus)

Québec, Canada Losier et al. (2015)

RSF Vegetation type (e.g.,
Agrostis/Festuca)

Lifetime reproductive
success

Red deer (Cervus elaphus) Scotland McLoughlin et al. (2006)

Resource selection
indices (negative
binomial regression)

Home range composition Lifetime reproductive
success

Roe deer (Capreolus
capreolus)

France McLoughlin et al. (2007)

Integrated spatial
model

Digestible forage biomass Pregnancy rates, body fat Elk (Cervus canadensis) Western Montana,
United States

Proffitt et al. (2016)

Compositional
analysis

Area of preferred habitat
within home range

Fecundity, winter fawn
weight

Roe deer (Capreolus
capreolus)

Norway Nilsen et al. (2004)

Dietary digestible energy Pregnancy rates, body fat Elk (Cervus canadensis) Western Oregon
and Washington,
United States

Cook et al. (2018)

Quantity of forage shrubs Population trend index Moose (Alces alces) Idaho,
United States

Schrempp et al. (2019)

% herbaceous habitat in
home range

Adult female survival Black-tailed deer
(Odocoileus hemionus
columbianus)

California,
United States

Forrester et al. (2015)

*Resource selection function.

relative impact on ungulate habitat use and performance is
requisite to reliably link habitat to performance.

Despite the potential value of establishing HPR in landscape-
use models, acquiring sufficient data to do so is a daunting
challenge (Garshelis, 2000; Gaillard et al., 2010). And not
all landscape-use studies, depending on their objectives and
applications, necessarily benefit from these linkages. The primary
barrier is the long timespans required to comprehensively
document HPR (Clutton-Brock, 1988; McLoughlin et al., 2006,
2007; Gaillard et al., 2010) and the costs of measuring
performance – especially capture and handling of many animals.
The ultimate measure of fitness, lifetime reproductive output, is
seldom quantified for ungulates given their longevity and the
difficulty in long-term monitoring of fecundity in individuals
(Clutton-Brock, 1988) (but see McLoughlin et al., 2006 below).

Examples
Despite the difficulties in demonstrating habitat-performance
linkages, some studies have produced ungulate landscape-use
models that clearly establish HPR in a variety of settings.
McLoughlin et al. (2006) used a dataset spanning >30 years
on the Isle of Rum, Scotland for 270 free-ranging adult female
red deer. They developed individual lifetime RSFs, as well as a
pooled RSF, and quantified selection of primary vegetation types
on the island. They measured LRS as the number of female calves
surviving to 1 year for each adult female. Coefficients from the
RSFs were used to predict LRS. The authors found that LRS

was significantly related to use of Agrostis/Festuca grasslands,
but that benefits of these grasslands decreased with increasing
density of red deer.

In Canada, Losier et al. (2015) developed RSFs to model
probability of occurrence of adult female woodland caribou
(Rangifer tarandus caribou), and then used the top-ranked model
to estimate probability of winter survival. They demonstrated that
the functional responses of caribou in selecting risky habitats, i.e.,
clear-cuts preferred by moose, resulted in decreased survival due
to increased mortality by wolves (Canis lupus) attracted to these
habitats. This example highlights the complexities of HPR and
the potential role of predators in affecting them.

Proffitt et al. (2016) developed an integrated spatial model
to predict nutritional resources and evaluate their effects on elk
in two study areas of different nutritional quality in Montana,
United States. They found that elk exposed to lower digestible
forage biomass, their index of nutritional resources, had lower
body fat and pregnancy rates. The authors posited that nutritional
limitations may predispose elk to predation, or limit population
productivity and growth rate.

Reliable Interpretations and Uses
The final, critical steps in landscape-use modeling are to
interpret results for ecological understanding and management
uses, address unforeseen shortfalls in meeting objectives, and
adjust inferences in relation to unmet objectives. Reliable
interpretations and uses depend on successful completion
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of all three modeling phases: design, development, and
utility (Figure 1).

Model design provides the baseline against which results can
be interpreted in relation to collaboratively set a priori objectives
and hypotheses. Unmet objectives or unsupported hypotheses
may require adapting how and where the model is used, and
inference space adjusted accordingly. New research may be
initiated to augment the original spatial and temporal replication
of data collection needed to support the desired inference space,
or alternatively, to confirm the appropriateness of local models,
each relevant to a smaller inference space. Results from model
evaluation can also be used to design new modeling approaches
and reformulate objectives (e.g., Walters, 1986; Hooten and
Hobbs, 2015).

Model development provides further context for reliable
interpretation and uses. For example, modeling ungulate
nutrition and landscape use in response to climate change
for an alpine ungulate (e.g., White et al., 2018) requires
critical assumptions about how nutrition and other covariates
are derived and mapped under climate change projections.
These assumptions must be clearly articulated as covariates are
developed, combined, and selected as plausible models that
address climate change factors relevant to the species’ ecology
and management. Further, ecological scaling of covariates, such
as forage biomass and quality, with sufficient precision is needed
to match the spatiotemporal scales of climate-change projections
and habitat use. Low precision of model outcomes can muddy
interpretation, emphasizing the need for improved empirical
estimates of forage covariates and possibly their scaling as
prerequisites to meet modeling objectives.

Model utility builds on these two prior phases with careful
interpretation of model evaluation results to assess the ecological
and management value of a model. How well model predictions
are supported by independently observed data, withheld as spatial
or temporal replicates for evaluation, often becomes critical to the
interpretation of whether the desired inference space is justified
or must be adjusted. Similarly, model covariates or predictions
may be hypothesized to relate to pregnancy rates, survival, or
other measures of animal performance. HPR linkages resulting
from modeling can then be reliably interpreted in terms of value
of the model as it relates to performance.

Models can ultimately be designed, developed, and applied
as part of adaptive management (Walters, 1986; Varley and
Boyce, 2006; Apollonio et al., 2017), which continues to
provide a useful template that embodies the coproduction
process (Figure 1) among scientists, managers, and stakeholders
(Voinov et al., 2016), despite mixed application successes
(Allen and Gunderson, 2011). Learning and improvement
occurs throughout the process via studies and applications
codeveloped and implemented incrementally and iteratively over
time (Walters, 1986).

Modeling landscape use will continue to grow in scope
and practice to benefit ungulate ecology and management with
approaches that foster a continual learning process. No single
model can ever serve the changing demands of knowledge
gain and management applications, but the reliability of model
interpretations and uses can be substantially improved with

consideration of ecological and management criteria throughout
the modeling process (Figure 1).

CONCLUSION

Models of landscape use have tremendous potential to advance
ecological understanding and management of ungulates and
other species worldwide. The growing volume of animal location
data, accessibility of spatial data at broad scales, and advances
in statistical modeling and software allow for the continued
refinement and expanded application of landscape-use models.
Without a sound ecological and management framework,
however, contemporary modeling of landscape use may continue
to rely on “convenience sampling,” statistical methods, and case
studies lacking the spatial and temporal replication needed for
broad inference. Although many of these concepts have been
previously described in a variety of publications, we synthesized
trends and ideas from the disparate literature to develop a
coherent ecological framework that included seven criteria for
designing, developing, and applying landscape-use models to
advance ecological understanding and effective management
of ungulates (Table 1 and Figure 1). We highlighted recent
examples that represent successes in this advancement and
described future avenues for research to fill gaps in current
understanding of ungulate modeling, such as linking landscape
use to animal performance.

We view the criteria as aspirational standards, not strict rules
to uniformly follow without careful consideration of modeling
objectives. Not all landscape-use models will include all criteria,
owing to a wide spectrum of modeling objectives and available
resources. In that light, we offer our criteria as a complement to
the traditional focus on statistically based methods, to help ensure
a modeling process that advances ecological understanding and
management utility.
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