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In order to understand molecular and genetic mechanism of color pattern formation,
not only adult phenotypes but also processes and mechanisms of color production
and pattern formation during embryonic and postembryonic stages should be
described. The pigment cell based color production and pattern formation during
embryogenesis were reviewed for the recent studies on lizards and snakes, by focusing
on different color production mechanisms in terms of epidermal and dermal pigment
cell architectures, and then discuss the genetic determinants of pattern formation
considering both biologically relevant theoretical models which consider pigment cell
specification, migration, and architecture differentiation. Clarifying the contributions of
pigment cells and genetic factors improves our general understanding of reptilian color
pattern evolution.
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INTRODUCTION

Why do we study color pattern production mechanisms in squamate reptiles. Basically, animal
color pattern is a longstanding and important topic in evolutionary biology in general, and
squamates in particular, which exhibit a wide variety of color patterns such as warning signal of
venomous coral snakes and its mimicry by the distantly related non-venomous snakes (Figure 1A),
and convergent evolution of stripes and vivid blue tails by small lizards (Figure 1B), are
important target of several agents of natural selection for effective visual signals to conspecifics
for reproduction, to predators for avoidance, and to sometimes prey for feeding (e.g., Cooper and
Greenberg, 1992; Pianka and Vitt, 2003; Stuart-Fox et al., 2008; McKinnon and Pierotti, 2010;
Kronforst et al., 2012; Allen et al., 2013; Olsson et al., 2013). The rich diversity of reptiles, as a stem
lineage of terrestrial vertebrates living in various ecosystems, provides an invaluable opportunity
to study coloration by mainly focusing on functional mechanisms of adaptation for avoiding
predation (Ruxton et al., 2018) such as aposematic coloration and coral snake mimicry (Wallace,
1867; Jackson et al., 1976; Pfennig et al., 2001), back ground matching for cryptic coloration
(Poulton, 1890; Cott, 1940; Rosenblum et al., 2004), and predator avoidance by motion dazzle
coloration (Thayer, 1909; Stevens et al., 2008; Murali et al., 2018; Kodandaramaiah et al., 2020).
Yet, we could point out that here have been no recent reviews on the proximate mechanisms
underlying various color patterns in reptiles, though several important studies in this topic have
been published to date.
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FIGURE 1 | Diverse reptile coloration. (A) An example of well known
aposematic coloration by the venomous coral snake Micrurus alleni (photo by
R. Fukuyama) and the non-venomous Colubrid mimic Oxyrhopus petolarius
(photo by K. Fujishima). (B) An example of convergent evolution of the motile
dazzle coloration of striped and blue tail of the small skinks of Emoia
caeruleocauda of Micronesia (left) and Plestiodon latiscutatus of Japan (right).

Our brief review attempt to fill this gap of proximate
mechanisms of color pattern formation by extending the
conceptual frame-work presented by Arnold (1983) into color
pattern evolution (Figure 2). According to the Arnold’s
conceptual frame-work or rationale linking traits, performance
and fitness of organisms, function of prey’s color pattern and its
performance should be measured by considering the interactions
between sender and receiver of visual signals under a variety of
light environment (Endler, 1978, 1992, 1993). Therefore, when
we hope to understand function and performance of prey’s
color pattern from a predator’s view (Endler, 1978), we have
to know how prey produce color signal and how predator
perceive prey coloration. Under the classic mathematical theory
of communication by Shannon and Weaver (1948), we first
simply ask how reptile skin is capable of producing a wide array
of color signals (Kuriyama et al., 2006; Kikuchi et al., 2014), no
matter how it is perceived by other organisms (Figure 2).

Admitting that predator’s visual perception is strictly
important for understanding predator avoidance function
of prey’s coloration (Endler, 1978), we would like to present
a case study of lizard tail color which functions to deflect
predator attacks from body to tail (Cooper and Vitt, 1985;
Murali et al., 2018; Kodandaramaiah et al., 2020). Kuriyama
et al. (2016a) showed that vividness of blue tail color was
associated with the differences in color vision capabilities
of lizard predator species, i.e., lizard tails with vivid blue
reflectance evolved in communities with either weasel or snake
predators, whereas, cryptic brown tail evolved independently
on the islands where birds are the primary predator (Brandley
et al., 2014). This review comes from our past effort of
understanding mechanism of color pattern formation in reptiles,
under Arnold’s conceptual framework of evolutionary biology

(Arnold, 1983), with intent to obtain broader perspective of
understanding function and performance of color pattern
in the complex prey-predator interactions (Endler, 1978;
Hämäläinen et al., 2015).

Elucidating the spatial and vertical architecture of pigment
cells within skin tissues is a fundamental step to understand color
pattern formation (Kuriyama et al., 2006; Saenko et al., 2013;
Mallarino et al., 2016). It is necessary to not just describe the
composition and spatial arrangement of pigment cells in adults,
but also to characterize the processes of pigment cell specification,
migration, and spatial organization during embryonic and
postembryonic development (Kelsh et al., 2009; Kuriyama et al.,
2013; Murakami et al., 2016, 2017). These analyses can provide
insight into gene regulatory networks (GRNs) involved in color
pattern formation (Mallarino et al., 2016). However, our current
understanding of the color pattern formation in vertebrates is
primarily based on the studies of mouse for a simple single
pigment cell type (Mills and Patterson, 2009) and zebrafish for
multiple pigment cell types (e.g., Ziegler, 2003; Kelsh, 2004;
Parichy, 2006; Kelsh et al., 2009; Greenhill et al., 2011; Parichy
and Spiewak, 2015; Petratou et al., 2018), and little is known for
the developmental mechanisms of color pattern in reptiles.

In this paper, we review recent advances in our understanding
of the roles of pigment cells in the production of various skin
colors and patterns in reptilian sauropsids (Kuriyama et al., 2006,
2013, 2016a,b; Murakami et al., 2017; Alibardi, 2011, 2012, 2013,
2015; Kikuchi and Pfennig, 2012; Saenko et al., 2013; Kikuchi
et al., 2014; Murakami et al., 2016, 2017; Szydłowski et al.,
2016; Kuriyama and Hasegawa, 2017; Jindřich et al., 2019). We
approach this topic from the viewpoint of theoretical studies of
pattern formation (Murray and Myerscough, 1991; Chang et al.,
2009; Allen et al., 2013) and molecular studies of gene systems
involved in generating color patterns (Rosenblum et al., 2004;
Manceau et al., 2010; Saenko et al., 2015; Irizarry and Bryden,
2016; Iwanishi et al., 2018). Owing to the lack of extensive
genomic resources, early studies relied on sequence analyses of a
few candidate genes, such as MC1R (Rosenblum et al., 2004; Cox
et al., 2013). Positional cloning to identify mutations or genomic
intervals harboring causal mutations requires both controlled
pedigrees to generate recombinant mapping populations and a
dense and large set of genetic markers that co-segregate with the
phenotype of interest. Therefore, Saenko et al. (2015) and Tzika
et al. (2015) adopted an unbiased next-generation sequencing
and exome assembly approach, with extensive genotyping and
candidate gene sequencing.

PIGMENT CELL–BASED
UNDERSTANDING OF COLOR AND
PATTERN FORMATION

In reptiles, four basic types of pigment cells have been identified
in the dermal skin: xanthophores, erythrophores, iridophores,
and melanophores (Taylor and Hadley, 1970; Cooper and
Greenberg, 1992; Morrison, 1995; Morrison et al., 1995;
Bagnara and Matsumoto, 2006). The spatial arrangement
and architecture of the pigment cells produce a variety of
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FIGURE 2 | Logical relationship between color producing pigment cell organization and visual signal perception by eye, according to the Shannon – Weaver model
of communication (Shannon and Weaver, 1948). Layered organization of pigment cells act as signal transmitter, and eye of predator act as signal receiver.

skin colors in reptiles (e.g., Kuriyama et al., 2013, 2017;
Saenko et al., 2013; Murakami et al., 2016), tuatara (Alibardi,
2012), crocodiles (Alibardi, 2011), and chelonians (Alibardi,

2013; Brejcha et al., 2019). These layered organization of
pigment cells (xanthophores on top, iridophores in the middle,
and melanophores on the bottom) is conserved in zebrafish
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(Hirata et al., 2003) but not in mammals and birds (Olsson
et al., 2013). An evolutionarily independent transition from
the conserved core layering of multiple pigment cells to single
melanophore layer is worth emphasizing, because it is well
known but least understood phenomena in terms of genetic
and molecular control (Bagnara et al., 1968; Grether et al., 2004;
Hofreiter and Schöneberg, 2010).

For lizards and snakes, the color of a given patch of skin
is determined not only by the static structural combination of
pigment cells (Kuriyama et al., 2006), but also by dynamic
interactions between chemical and physical parameters
(Saenko et al., 2013; Teyssier et al., 2015). Xanthophores
and erythrophores produce yellow to red coloration through
the selective absorption of short wave length of light by
pterinosomes containing pteridine and carotenoid vesicles in
cells. Saenko et al. (2013) revealed that the pH or redox states
reversibly change yellow xanthophores to red erythrophores
and vice versa. Melanophores are light-absorbing pigment
cells that produce black or brown colors. The melanophore
density controls the lightness or darkness of skin. Iridophores
are important light-reflecting cells containing light-reflecting
platelets made of crystalline purines and pteridines, which
generate structural colors by thin-layer interference and the
scatter or diffraction of light from stacks of reflecting platelets
(Huxley, 1968; Fujii, 1993; Bagnara and Matsumoto, 2006).
The wavelength of light reflected by iridophores is determined
by size, shape, orientation, number, and conformation of
reflecting platelets and their cytoplasmic spacing (e.g., Land,
1972; Rohrlich and Porter, 1972; Morrison, 1995; Morrison
et al., 1995; Kuriyama et al., 2006, 2016a, 2017; Saenko et al.,
2013). Rohrlich (1974) noted that extensive filament networks in
passive iridophores of Anolis lizards play a cytoskeletal function
to maintain crystal sheets in their strict parallel array, while
the motile filament system may mediate cellular changes by
altering the array, spacing, or tilt of cellular crystals for rapidly
changing colors due to dispersion/aggregation of pigment-
containing organelles within dermal pigment cells. Recently,
Teyssier et al. (2015) showed that chameleons can rapidly
change their coloration through active tuning of a lattice of
guanine nanocrystals within a superficial thick layer of dermal
iridophores. Additionally, a group of iridophores with larger
crystals layered in deeper dermis reflected the near-infrared
range of light to produce red color. Therefore, the iridophores
organized into two superposed layers is an evolutionarily
novel mechanism functioning both for efficient camouflage
and potentially avoiding passive thermal stress. Collectively,
these complex interactions amongst pigment cells can not only
produce various colors in the visible spectrum (Figure 3) but
also provide various physiological functions.

Recently, studies of lizard body color pattern formation
revealed that, a quasi-hexagonal lattice of skin scales, rather
than individual chromatophore cells, established a green and
black labyrinthine pattern of skin color in ocellated lizards,
and that this pattern was produced a cellular automaton that
dynamically computed the color states of individual mesoscopic
skin scales to produce the corresponding macroscopic color
pattern (Manukyan et al., 2017), indicating that cellular automata

can directly correspond to a continuous Turing reaction-
diffusion system’s processes generated by biological evolution.
However, due to our little understandings of physiological
mechanisms controlling environmentally derived pigments
such as carotenoids (Kikuchi et al., 2014), this review did
little consideration of phenotypic plasticity in color patterns
of squamates, admitting that there exist important topic
of behavioral ecology and physiology in squamate reptiles
(Pérez i de Lanuzaa et al., 2014).

Blue Tail Coloration and Stripe Formation
in Lizards
Blue coloration of the lizard is produced by the vertical
organization of iridophores with thin platelets in the uppermost
layer and melanophores in the basal layer (Figure 4; Kuriyama
et al., 2006; Bagnara et al., 2007). In the lizards with blue colored
tail, iridophores with thin platelets are found only in skin tissues
in the tail (Kuriyama et al., 2006, 2016a). Although the precise
border between iridophores with thin or thick platelets have not
yet been specified, it is possible that iridophore types radically
shift along the longitudinal axis of the trunk and tail. During the
embryonic development, iridophores with thin platelets appear
in a specific region of the tail, and this position well coincides
with the boundary between the blue coloration and brown
coloration after hatching (Figure 5). The factors controlling the
locations of iridophores with thinner or ticker platelets differ
among populations of the same species and among species within
the genus (Kuriyama et al., 2016a). After hatching, juveniles
with a vivid blue tail gradually shifted to the adult coloration
with a uniform brown tail, and the loss of blue tail during
ontogeny is due to the change in iridophores with thin platelets
into iridophores with thicker platelets and the appearance of
xanthophores (Kuriyama et al., unpublished).

For stripe pattern formation during embryogenesis
of P. latiscutatus, melanophores initially appear before
the appearance of iridophores and xanthophores to
form stripe pattern (Kuriyama and Hasegawa, 2017),
and iridophores subsequently occupy the area above the
melanophore layers. Iridophores start to fill the dermal
space that is not yet occupied by melanophores, resulting
in a higher iridophore density in yellowish-white stripes
than in the inter-stripe region. This observation suggests
that mechanisms controlling the density gradient of
melanophores during embryogenesis are crucial to understand
GRNs involved in naturally occurring variation in stripe
pattern formation.

The stripe pattern formation is a dynamic process also in
the zebrafish (Singh et al., 2014), but the role of irridophores
in pattern formation seems to differ between the zebrafish
and the lizard. In the zebrafish, iridophore instead of
melanophore proliferate, disperse and aggregate to organize
the interstripe framework along the dorsoventral axis. However,
it seems premature to conclude there there is a fundamental
difference between fish and reptiles, even though fish and
lizard irridophores shared same iridophore types with thin and
thick platelets.
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FIGURE 3 | A schematic drawing of the vertical combination and relative thickness of epidermal and dermal pigment cells producing different skin coloration in
snakes.
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FIGURE 5 | Dorso-lateral views of Plestiodon latiscutatus juveniles and full adult males from Kozu and Hachijokojima. (A) A juvenile in Kozu island of Japan has five
yellowish-white longitudinal lines in the trunk and a green tail in the anterior half that transitions to blue in the posterior region. (B) A full adult male in Kozu is almost
uniformly brown. (C) A juvenile in Hachijokojima island of Japan is almost uniformly brown, except for a blue tail tip. (D) A full adult male in Hachijokojima is almost
uniformly brown.
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Iridophores differentiate from the NC cells during embryonic
development (Bagnara et al., 1979), and the endoplasmic
reticulum and Golgi apparatus, which produce platelets in
iridophores, possibly play a certain role (Bagnara et al., 1979).
Although the mechanisms controlling platelet thickness and
orientation remain unknown, it seems possible to hypothesize
that the initial volume of vesicles derived via budding from the
endoplasmic reticulum and Golgi apparatus are responsible
for the size of reflecting platelets (Figure 6). The process
by which platelets are arranged is poorly understood at
present, and additional observations of microtubule and/or
microfilament formation in iridophores are needed; Rohrlich
(1974) suggested that extensive filament networks in iridophores
have cytoskeletal functions to maintain crystal sheets in a
strict parallel array, while a motile filament system may
mediate cellular changes by altering the array, spacing,
or tilt of cellular crystals during embryonic development.
Further comparative studies of various iridophore types
with parallel or random and thick or thin platelets will be
indispensable for inferring the genetic basis of reflecting
platelet formation.

Stripe Pattern Formation in Snakes
The Japanese four-lined snake Elaphe quadrivirgata is
polymorphic with striped, pale-striped, non-striped,
banded, and melanistic morphs (Mori et al., 2005;

Kuriyama et al., 2011, 2013). Vivid striped and non-striped
morphs possess the same set of epidermal melanophores and
dermal pigment cells (Figure 7, xanthophores at the top,
iridophores in the middle, and melanophores at the bottom),
but the spatial aggregation and concentrations of epidermal and
dermal melanophores differ between the morphs in terms of
the sharpness of the boundary between dark- and light-colored
scales (Kuriyama et al., 2013). Even at hatching, stripe and
non-stripe patterns are detectable (Murakami et al., 2014, 2016),
indicating that the basic stripe pattern might be established
during embryonic development (Murakami et al., 2016).

During embryonic development, the initial positions of
melanophores do not correspond exactly to the positions
of stripes (Murakami et al., 2017). Melanophores first
appearing in the epidermis may form a precursor stripe
pattern, and a region of highly dense melanophores in
hatchlings follows these precursor stripes. An increase in
the density gradient of epidermal melanophores proceeds
the development of the stripe pattern due to dermal
melanophores. A distinct stripe pattern is observed during
late embryonic stages in association with the appearance
of dermal melanophores. However, the higher density
and the double stratum of dermal melanophores in the
stripe region, which are characteristics of adult snakes
(Kuriyama et al., 2013), are not developed by the time of
hatching. Unlike the stripe pattern of Plestiodon lizards,

double-membraned vesicle
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Pathway B
Pat
hw
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Golgi

crystal deposition 
within platelets

FIGURE 6 | A schematic drawing of iridophore organellogenesis by Morrison and Frost-Mason, 1991. Three pathways of origin of the primordial double membraned
vesicles and crystal deposition.
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FIGURE 7 | Dorso-lateral views and vertical combination of pigment cells of three-color morphs of Elaphe quadrivirgata. (A) The striped morph with four vivid
dark-brown longitudinal stripes over yellowish-brown back ground. (B) The non-striped morph with a uniform brown or light-brown ground color without a trace of
the stripe pattern except the region just behind head. (C) The uniformly jet black melanistic morph with no sign of stripe pattern. (D) Magnified view of the dorsal
surface of a striped morph. Two dorsal scales along the lateral direction were selected as standard landmark scales to describe stripedness (No. 1) and background
coloration (No. 4). (E) Magnified view of the dorsal surface of a non-striped morph. (F) Magnified view of the dorsal surface of a melanistic morph. A schematic
drawing of the vertical combination and relative thickness of epidermal and dermal pigment cells producing different skin coloration and color pattern in Elaphe
quadrivirgata. Number, shape, and size of pigment cells and organelles are simplified and exaggerated. EM, epidermal melanophore; X, xanthophore; I, iridophore;
DM, dermal melanophore. Figure from Kuriyama et al. (2013) with permissions.

which is fully developed at the time of hatching but decays
during ontogeny (Kuriyama and Hasegawa, 2017), the snake
stripe pattern continues to develop during ontogeny after
hatching (Murakami et al., 2016). The density of dermal
melanophores presumably increases to replace xanthophores
and to form the double stratum in dark-brown scales during
postembryonic growth.

Regarding the developmental timing of pigment cells in
forming stripe pattern in snakes, there is a lesson from
zebrafish. It was thought, for a long time, that melanophores
are the first cell type to appear in the metamorphic skin
from juvenile to adult zebrafish. Our observation did not
pose question if melanophores are not the first cell type
canalizing pattern formation in reptiles. However, advent
of pigment-independent cell labeling techniques showed that
xanthophores are the first cell type that cover the skin,
followed by iridophores and then melanophores (Mahalwar
et al., 2014). In order to determine that developmental timing

of pattern formation in snakes, one has to utilize pigment-
independent markers of cell types, if earlier appearance of
xanthophores prior to melanophores was controlled pattern
formation in the snakes too.

Color Pattern Polymorphisms
Studies of the mode of inheritance of particular color patterns
in polymorphic species are important for exploring standing
genetic variation contributing to amelanistic or melanistic
coloration and stripe pattern polymorphism (Blanchard and
Blanchard, 1940; Bechtel, 1978; Zweifel, 1981; Bechtel and
Whitecar, 1983; Betchtel and Betchtel, 1989; King, 2003).
A pigment cell–based understanding of color polymorphism
facilitates the identification of types of pigment cell architectures
corresponding to gains or losses of function to produce color
and pattern polymorphisms. Higher order mutations, such as
insertions of transposable elements, translocations, inversions,
and recombination events, may contribute substantially to
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phenotypic variation, depending on their location in protein-
coding regions or cis-regulatory DNA sequences (Wray, 2007;
Wittkopp and Kalay, 2012). The precise roles of these
events in the variation of color patterns in reptiles now
have been revealing.

Albinism or amelanistic color variation was explained by a
mutation that cause loss-of-function in Phelsuma guttata (Saenko
et al., 2015). These mutations occur in the coding region of a cell
surface protein receptor regulating inner cell pH. In particular, a
retrotransposon insertion in an exon of OCA, similar to genetic
variation in MC1R (responsible for the dysfunction of melanin
synthesis), explains the whitish coloration in lizards living in
white sand dunes (Rosenblum et al., 2004). A complete lack of
tyrosinase gene due to a nonsense mutation in the coding region
of the tyrosinase gene (TYR) in Elaphe climacophora (Iwanishi
et al., 2018) explains another albinistic color variant. In these
cases, color variation results from dysfunctions in melanin bio-
synthesis. Interestingly, Saenko et al. (2015) hypothesized that
even though melanin bio-synthesis is suppressed, melanophores
without melanin can still play crucial roles in pattern formation.

Melanism is a typical variant of animal pigmentation
(Kettlewell, 1973; Majerus, 1998; True, 2003), and reptilian
melanism could be realized by one of two processes involving
distinct pigment cell mechanisms: an increase in the relative
amount of melanophores and a lack of pigment cells other
than melanophores (Kuriyama et al., 2016b). As an example
of an increase in the melanophore density in the skin layer,
Morrison et al. (1995) studied the melanism of the iguanid
lizard Sceloporus undulatus erythrocheilus, and revealed that
melanophores are four times more abundant, producing darker
skin than that of typical individuals. The complete dominance
inheritance system with two alleles at one locus explain
normal and melanistic morphs in T. sirtalis (King, 2003)
and E. quadrivirgata (Tanaka, 2009). Because the melanistic
morph has only epidermal and dermal melanophores and lacks
dermal xanthophores and iridophores in E. quadrivirgata, it
is reasonable to assume that the melanistic morph can be
explained by the loss of function to differentiate xanthophores
and iridophores. The underlying genetic alterations seem to
occur in cis-regulatory elements within GRNs for pigment
cell differentiation from chromatoblasts or melanophores to
xanthophores and iridophores.

In the studies of striped and non-striped polymorphism,
striped pattern is a dominant trait in the gopher snake Pituophis
melanoleucus (Bechtel and Whitecar, 1983), the California
king snake Lampropeltis getula californiae (Zweifel, 1981) and
in the Japanese four-lined snake E. quadrivirgata. Because
vivid striped and non-striped morphs possess the same set of
epidermal and dermal pigment cells, Murakami et al. (2014)
hypothesized that the alleles producing the striped morph
were dominant under a co-dominance model of one locus
with two alleles. Murakami et al. (2016, 2017) later proposed
that the alleles of genes controlling the distribution and
density of melanophores would additively influence individual
variation in the vividness of stripes, and that the vividness
of dorsal stripes is controlled by genes involved in the
density gradient of melanophores at particular stages during

embryonic development. This inheritance mode of the stripe
and non-stripe polymorphism is compatible with the simulation
result for the cell-chemotaxis model showing that a stronger
chemotactic response generates a vivid longitudinal stripe pattern
(Murray and Myerscough, 1991).

PIGMENT CELL SPECIFICATION GENE
NETWORK AND EVOLUTION OF COLOR
PATTERN FORMATION

To understand color pattern formation in reptiles with
four types of melanocytes (i.e., epidermal melanophores,
dermal melanophores, xanthophores, and iridophores), it seems
instructive to consider GRNs controlling pattern formation and
color production step by step. Pigment cells are differentiated
from the NC, a multipotent and migratory cell population,
along with other diverse derivatives, such as the facial
skeleton and peripheral nervous system (Bagnara et al., 1979).
Candidate GRNs for color pattern formation would include
genes responsible for cell differentiation, proliferation, death,
and localization (Chang et al., 2009; Olsson et al., 2013;
Parichy and Spiewak, 2015). Therefore, in this section, we
first summarize potential genetic mechanisms orchestrating
pigment cell formation from NC cells, from the viewpoint of
recognizing evolutionarily important GRNs and mutations in
both coding and cis-regulatory DNA elements (Wray, 2007;
Stern and Orgogozo, 2008; Wittkopp and Kalay, 2012). Later
in this section, we consider theoretical analysis of pattern-
generating mechanisms, such as cell-chemotaxis mechanisms
(Oster and Murray, 1989; Murray and Myerscough, 1991),
because it is promising to identify molecular components of
the biological system by mathematical modeling to provide a
basis for experimental studies and to refine and improve our
knowledge of the mechanisms underlying pattern formation
(Chang et al., 2009). Later in this section, potential roles
of mutations in upstream GRNs for generating novel color
phenotypes under domestication (Wilkins et al., 2014) will
be reviewed for speculating evolutionary mechanism of color
pattern evolution.

During embryonic development, Neural Crest cells undergo
cytoskeletal rearrangements and morphological changes to lose
cell–cell adhesion, allowing them to delaminate and emigrate
from the neuroepithelium, with the concomitant acquisition
of migratory ability, cell–surface receptors, metalloproteases,
and adhesion molecules that allow them to respond properly
to cell–cell interactions and environmental cues influencing
migration pathways (reviewed in Sauka-Spengler and Bronner-
Fraser, 2008). Although many kinds of GRNs have the potential
to contribute to cell motility, cell–cell interactions, and cell
population growth rates before the terminal differentiation of
pigment cells, the core genetic mechanisms underlying the
formation of NC cell derivatives are relatively uniform and
conserved among vertebrate lineages. This is instructive for
understanding characteristics of intermediate and terminally
differentiated pigment cells essential for pattern formation. Based
on zebrafish studies, the genes responsible for differentiation
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from NC cells into pigment and neural cells have been
identified (Pavan and Raible, 2012). The subsequent specification
of pigment cells and development of pigment cells occur
in temporal order from melanophores, xanthophores, and
iridophores (Ziegler, 2003). The regulation of pigment cell
differentiation involves protein synthesis; transcription factor
(TF) binding to cis-regulatory DNA sequences; the promotion
or suppression of target gene expression, subsequent expression
of TFs, signaling molecules, and cell surface receptor proteins;
regulation of standing or activated signal transduction pathways;
and the sequential production of pigment synthesis enzymes and
other essential products for specific pigment cells. In zebrafish,
the core GRNs governing melanocyte specification have been
established (Greenhill et al., 2011; Pavan and Raible, 2012), and
iridophore GRNs have recently been established by a systems
biology approach (Higdon et al., 2013; Petratou et al., 2018).
GRNs for xanthophores have not yet been fully established,
but the development and patterning of pteridine synthesis and
the regulation of the pteridine pathway and of its patterning
are largely known in zebrafish (Ziegler, 2003). Consequently,
we have established components and logical maps for GRNs
of melanophore, iridophore, and xanthophore differentiation in
zebrafish and in reptiles, given the high conservation of core
GRNs for the same set of pigment cells.

A theoretical model was developed that explicitly considers
actual cell movement, chemically mediated cell–cell interactions,
and growth of the integumental domain during the patterning
process (Murray and Myerscough, 1991). Pattern-generating
mechanisms such as reaction-diffusion models (Turing, 1952),
however, are unable to generate many common snake patterns,
and other models are similarly insufficient to mimic snake
pattern. A cell chemotaxis model has been developed considering
chromatoblasts, which are NC progenitors; chemotaxis may
be a factor in the migration of chromatoblasts to the dermis.
According to the model, chromatoblasts both respond to and
produce their own chemoattractant to promote the localization
of differentiated cells in certain regions of skin. The model
thus formalizes cell density in a given region as the product
of chemically mediated interactions among dispersive and
aggregative effects on cell motility and independent cell
population growth rates. The chemoattractant produced by
chromatoblasts diffuse and decay. Murray and Myerscough
(1991) showed through numerical simulations that longitudinal
stripes are most likely to form when both the chemotactic
response (α) and cell population growth rate (r) are extremely
high (Figure 8). This corresponds to the rapid production or
slow diffusion or decay of the chemoattractant in a confined
integumental domain. The lateral stripe is likely to form when
the chemotactic response is weak. Chemically mediated cell
motility (chemotaxis) and cell–cell interactions considered in
the model thus provide a hypothetical basis for recognizing
candidate GRNs for pattern formation. Both cell–cell and cell–
environment interactions are thought to have important roles in
directing immature pigment cell to appropriate sites. Assuming
that the final transformation to mature pigment cells occurs after
NC progenitors migrate to certain regions, GRNs responsible
for color pattern formation will be those involved in the
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FIGURE 8 | A schematic drawing of cell -chemotaxis model mechanism of
snake dorsal color pattern by Murray and Myerscough (1991).

timing and speed of motility, sensitivity to chemical signals, cell
population growth and death, and the strength of cell–cell and
cell–environment interactions during migration from the NC
to correct sites.

Deficiencies in upstream GRNs for melanophore specification
are often related to skin cancer, neural diseases, or behavioral
abnormalities (e.g., Jackson, 1994; Asher et al., 1996), implying
that the evolution of color pattern would involve a balance
between the removal of lethal mutations and neutral evolution
or positive selection on non-lethal mutations in GRNs for the
divergence or generation of novel color patterns. Along this line
of thoughts, Wilkins et al. (2014) have hypothesized that the
domestication syndrome in mammals such as a combination
of behavioral tameness, pigmentation changes, and reduced
facial skeleton and tooth size results predominantly from mild
neural crest cell failure during embryonic development. Throat
and ventral color polymorphism in lizards is often associated
with behavioral, immune functional, or life history variation,
which is advantageous or disadvantageous in an intraspecific
social context, and color polymorphisms can evolve under the
varieties of social and ecological selection regimes (Sinervo
et al., 2001; Sinervo and Svensson, 2002), presumably due
to mutations and subsequent correlational selection on GRNs
affecting differentiation from NC cells to peripheral neurons
and pigment cell progenitors upstream of GRNs for pigment
cell differentiation. Similarly, non-lethal but likely adaptive
mutations responsible for pattern formation may exist before
the final transformation to mature pigment cells (Wilkins et al.,
2014). The GRNs responsible for color pattern formation are
expected to function in the timing and speed of motility,
sensitivity to chemical signaling, cell population growth and
death, and the strength of cell–cell and cell–environment
interactions during migration from NC to correct sites (Sauka-
Spengler and Bronner-Fraser, 2008), as discussed on the model
of cell-chemotaxis (Murray and Myerscough, 1991).
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CONCLUSION

According to the new perspective of the molecular mechanisms
that regulate gene expression, we are increasingly appreciating
that mutations affecting cis-regulatory sequences (as opposed
to trans-regulatory sequences encoding TFs that bind to cis-
regulatory sequences) are the most frequent cause of phenotypic
divergence (Wray, 2007; Carroll, 2008; Stern and Orgogozo,
2008; Jones et al., 2012; Wittkopp and Kalay, 2012). Despite
the significance in evolutionary and developmental biology, few
studies have successfully connected changes in cis-regulatory
and coding DNA with changes in pigment cells and color
pattern variation. Advances in population genetic approaches for
detecting either positive or balancing selection will facilitate the
identification of genetic mechanisms underlying the fascinating
adaptive color pattern divergence in reptiles.

Comparative studies for elucidating proximate mechanisms
of color pattern convergence amongst the distantly related coral
snake model and mimics (Kikuchi et al., 2014) and blue tail
coloration amongst the closely related and distantly related
groups of lizard species (Richmond and Reeder, 2002; Richmond,
2006) are the promising study projects to uncover gene regulatory
networks (GRNs) for convergent phenotypic evolution. Under
the extended conceptual framework linking GRN, developmental
biology, morphology, performance and fitness, fruitful crops
of evolutionary biology will be harvested from a sort of
classic but long-term mark-release-recapture study of lizard and
snake, associated with individually obtained genetic information,
because lizards and snakes are particularly affordable animals
for both field and laboratory studies (e.g., Sinervo and Svensson,
2002) for detecting natural selection played by the prey lizard and
predator snakes.
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