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East Asia is one of the plant diversity and endemism centers in the world, and the
temporal and spatial patterns and processes of vascular plants attracted ecologists’ and
biogeographers’ attention. However, the biogeographic patterns of endemic epiphytic
plants in East Asia are still unclear. Here, we investigated the historical biogeography
of an East Asian endemic epiphytic genus Holcoglossum Schltr. (Orchidaceae). Using
DNA sequences of eleven chloroplast genes and one nuclear gene, we reconstructed
a robust phylogenetic framework for Holcoglossum and used a relaxed-clock method
to estimate divergent times for the genus. We inferred the ancestral range of lineages
under the statistical dispersal-extinction cladogenesis (S-DEC) and statistical dispersal-
vicariance analysis (S-DIVA), respectively. Biogeographical analysis suggested that the
most recent common ancestor of Holcoglossum occurred in the Palaeotropical region
in the late Miocene (6.33 Ma). Four dispersal events were inferred to explain the
Holcoglossum expansion to Sino-Himalayan, Sino-Japanese, and Taiwan regions from
the latest Miocene to Quaternary. The episodes of these events were associated with
intensification of East Asian monsoon around 3.6–2.6 Ma and global cooling since
the latest Pliocene. The disjunct distribution between mainland China and Taiwan was
attributed by the sea-level fluctuations and climate changes during the late Pliocene.
This study shed light on the biogeographic processes of endemic epiphytic plants in
East Asia.

Keywords: biogeography, East Asia, Holcoglossum, molecular dating, phylogeny

INTRODUCTION

East Asia is well-known for its vascular plant diversity and endemic (Qian et al., 2005). The flora
of East Asia harbors ca. 258 families and more than 3000 genera, of which approximately 8.2% are
endemic (Wu and Wu, 1998; Chen et al., 2018). Understanding the historical origins and processes
of the plant richness of East Asia has been of major interest for ecologists and biogeographers.
In the Cenozoic, East Asia underwent the uplift of the Himalaya–Tibetan Plateau (An et al.,
2001) and the establishment and intensification of the Asian monsoon (Sun and Wang, 2005).
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A great deal of phytogeographic research on plants in East
Asia has been published. East Asia is suggested as both a
“Cradle” and a “Museum” for vascular plants since the Cretaceous
(e.g., Wu and Wu, 1998; Wen, 1999; Jiang et al., 2019). Xiang
et al. (2019) combined molecular and fossil data and inferred
that the ancestors of Hamamelidaceae occurred in tropical
Asia during the mid-Cretaceous and subsequently migrated to
Europe, Africa, and America during the Late Cretaceous and
Early Tertiary. Luo et al. (2015) carried out phylogeographic
analysis of four perennial herbs in Hengduan Mountains and
showed that these species originated during the Late Pliocene or
early–mid-Pleistocene and diverged by climate-induced habitat
fragmentation. Further, during the glacial periods of Quaternary,
East Asia acted as refugia for vascular plants’ survival and
evolution, especially for more recent divergent lineages (Tiffney,
1985; Ying, 2001; Qiu et al., 2011; Chen et al., 2018). However, the
biogeographic patterns and processes of endemic epiphytic plants
in East Asia are still poorly known.

Aeridinae is the largest and horticulturally important subtribe
in Orchidaceae, which consisted of 83 genera and 1550
species (Pridgeon et al., 2014; Chase et al., 2015). The
subtribe is mainly composed of epiphytes and distributed in
tropical and subtropical Asia and northern Australia with
some extended to northeast Asia (Hidayat et al., 2012;
Chase et al., 2015). Among these, nearly 33 genera occurred
across tropical Asia to temperate Asia. Holcoglossum Schltr.
(Aeridinae, Orchidaceae) is used here as a typical case to
illustrate the biogeographic processes of endemic epiphytic
plants in East Asia. This genus encompasses ca. 16 currently
accepted species (Xiang et al., 2012), mainly distributed in
southwestern China and neighboring regions (Schlechter, 1919;
Christenson, 1998; Jin and Wood, 2009; Xiang et al., 2012).
These species are diverse in morphology, especially the structure
of the flower (Figure 1). Xiang et al. (2012) employed
three DNA markers (ITS, matK, and trnH-psbA) to resolve
the relationship of 16 Holcoglossum species and found that
Holcoglossum is monophyletic, which contains three clades,
alpine clade (AC), tropical clade (TC), and the intermediate
group (HC). Li et al. (2019) used the whole chloroplast
genomes of 12 Holcoglossum species and obtained the same
result of Xiang et al. (2012). Of Holcoglossum species, TC
includes six species that occur in Southeast Asia, and AC
contains five species that are mainly found in the Hengduan
Mountains (Figure 2). Within HC, two species are restricted
to Taiwan, and another two species are distributed in the
mainland China (Figure 2). Previous studies show that
the stem age of Holcoglossum was 7.71 Ma [95% highest
posterior density (HPD): 4.12–12.04] (Xiang et al., 2016)
with two Holcoglossum samplings. Without time estimation
and biogeographic analyses, Fan et al. (2009) postulated that
Holcoglossum originated in tropical Asia and migrated from
the tropics to the temperate regions. Therefore, when and how
the genus Holcoglossum formed current biogeographic patterns
is still unclear.

In this study, we reconstruct a time-calibrated phylogenetic
tree with samples of nearly all species. We also reconstruct the
biogeographic history of Holcoglossum. Our specific objectives

were to infer (1) the spatial and temporal pattern of Holcoglossum
and (2) the possible impacts of past geological and climatic
oscillations on the distribution of these species.

MATERIALS AND METHODS

Taxon Sampling
In this study, we sampled 15 species of Holcoglossum,
representing the three clades of this genus. Based on Topik et al.
(2005) and Xiang et al. (2012), the phylogenetic relationships of
Aerides alliance is not all resolved, so ten species from Aerides
alliance were used as outgroups (Aerangis calligera, Aeranthes
ramosus, Aerides multiflora, Angraecum eburneum, Ascocentrum
ampullaceum, Diaphananthe odoratissima, Neobenthamia
gracilis, Neofinetia falcata, Phalaenopsis aphrodite, Vanda
coerulescens). Voucher information and GenBank accession
numbers are listed in Supplementary Table 1.

Molecular Data
Total genomic DNA was extracted from silica gel-dried
leaves of a living plant using total DNA extraction kit
(CWBIO, Beijing). One nuclear markers (ITS) and eleven
chloroplast DNA markers (atpH-I, matK, psbA-trnH,
psbK-I, rbcL, rpoB, rpoC1, rpS12-rpL20, trnL-F, trnS-fM,
and trnS-G) were employed in this study. The primers for
amplification and sequencing are listed in Supplementary
Table 2. The PCR procedure of atpH-I is followed by
Shaw et al. (2007); procedures of psbK-I, rpoB, and rpoC1
are followed by CBOL Plant Working Group (2009);
procedures of rpS12-rpL20 and trnS-G are followed by
Shaw et al. (2005); the procedure of rbcL is followed by Goldman
et al. (2001); and the procedure of trnS-fM is followed by
Demesure et al. (1995).

Phylogenetic Analysis
DNA sequences were aligned using the default parameters in
Clustal X v.1.83 (Thompson et al., 1997) and subsequently
manually adjusted with BioEdit (Hall, 1999). Topological
congruence between the chloroplast and nuclear data was
evaluated using the incongruence length difference (ILD) test
(Farris et al., 1994).

Phylogenetic reconstruction was performed using maximum
parsimony (MP), maximum likelihood (ML) in PAUP∗ 4.0b10
(Swofford, 2003), and Bayesian inference (BI) methods in
MrBayes v.3.2 (Ronquist et al., 2012), respectively. All characters
were unordered and had equal weight. Gaps were treated
as missing data.

For MP analyses, heuristic searches were conducted with
1000 replicates of random addition, in combination with tree
bisection–reconnection (TBR) branch-swapping, Multrees in
effect, and steepest descent off. Bootstrap support values were
conducted with 1000 replicates with 10 random taxon additions
and heuristic search options.

Before performing ML and BI analyses, the best-fit nucleotide
substitution model for each DNA region was chosen based
on the Akaike information criterion (AIC) as calculated using
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FIGURE 1 | Habitat and diversity of Holcoglossum. (A) H. rupestre; (B) H. sinicum; (C) H. flavescens; (D) H. nujiangense; (E) H. lingulatum; (F) H. omeiense;
(G) H. pumilum; (H) H. quasipinifolium; (I) H. himalaicum; (J) H. kimballianum; (K) H. amesianum; (L) H. subulifolium. Photo by Xiaohua Jin.

Modeltest v.3.7 (Posada and Crandall, 1998). For ML analyses,
we conducted a rapid bootstrap analysis (1000 replicates) and
searched for the best-scoring ML tree simultaneously. Each DNA
region was assigned the best-fit model, and other parameters
followed the default settings.

For BI analyses, each DNA region was assigned its own model
of nucleotide substitution. Four Markov-chain Monte Carlo
(MCMC) were run, sampling one tree every 1000 generations for
3,000,000 generations. Runs started with a random tree. Majority-
rule (>50%) consensus trees were constructed after removing the
“burn-in” samples (the first 20% of the sampled trees).

Molecular Age Estimation
We first conducted a likelihood ratio test to determine
whether our sequence data were evolved in a clock-like
fashion. The result rejected a constant rate (δ = 246.55,
d.f. = 24, P < 0.001); we used a relaxed lognormal clock
model in BEAST v.1.7.4 (Drummond and Rambaut, 2007)
to generate a dated phylogeny of Holcoglossum. There are
no fossil for Holcoglossum and subtribe Aeridinae, so we

used the age of 33.97 Ma (95% HPD: 25.67–42.33) for
the tree root prior to our analysis based on our recent
broader study of Orchidaceae (Xiang et al., 2016). Following
the suggestion of Ho (2007), we assigned a prior normal
distribution for the calibration, with a standard deviation of
4. The YULE process was chosen as the speciation prior,
and the BEAST analysis was run on the GTR + I + 0
model for each DNA region, respectively. MCMC searches
were run for 100,000,000 generations, sampled every 5000
generations. Convergence was monitored using Tracer v.1.5
(Rambaut and Drummond, 2007). The effective sampling sizes
(ESSs) for all parameters were more than 200. The maximum
clade credibility tree was computed using TreeAnnotator v.1.7.4
(Drummond and Rambaut, 2007).

Ancestral Range Reconstruction
According to the extant distribution of Holcoglossum and
outgroups, four main regions were categorized based on the
floristic regions of Wu and Wu (1998) and Wu et al. (2003):
A, Sino-Japanese region; B, Sino-Himalayan region; C,
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FIGURE 2 | Geographical distribution of Holcoglossum. The red region represents the range of tropical clade (TC), the blue region is for temperate alpine clade (AC),
and the yellow region is for the group between the first two clades (HC).

Palaeotropical region; and D, Taiwan. The ancestral range
reconstruction was inferred using the statistical dispersal-
extinction cladogenesis (S-DEC) model and statistical
dispersal-vicariance analysis (S-DIVA) as implemented in
RASP (Yu et al., 2015), respectively. The maximum clade
credibility tree obtained from BEAST was chosen as the input
tree. The random 1000 trees from BEAST trees after burn-
in were input to estimate the probabilities of the ancestral
range at each node.

RESULTS

Phylogenetic Relationships Within
Holcoglossum
A total of 103 new sequences for atpH-I, rbcL, psbK-I, rpoB,
rpoC1, rpS12-rpL20, trnS-fM, and trnS-G were generated in
this study (Supplementary Table 2). The total length of
the combined chloroplast and nuclear DNA sequences was
11,176 bp, of which 1117 characters were variable, and 433
were parsimony informative (Supplementary Table 3). The
result of ILD suggested that there is congruence between
chloroplast and nuclear data (P = 1.00). The monophyly
of Holcoglossum and the three clades previously proposed
(Fan et al., 2009; Xiang et al., 2012) was strongly supported
(Figure 3). The TC was basal to Holcoglossum (BI-PP:
1.00; ML-BS: 79%; MP-BS: 82%), and the AC and the
group between the first two clades (HC) formed a sister

group (BI-PP: 1.00; ML-BS: 100%; MP-BS: 100%). The most
nodes within Holcoglossum were supported by moderate to
high supporting values, except for interrelationships in the
AC clade (Figure 3).

Divergent Time Estimation
The likelihood ratio test showed that our sequence data were
evolving in a non-clock-like model, and a chronogram of
Holcoglossum based on the relaxed-clock model is presented
in Figure 4. Our time estimates suggested that Holcoglossum
might have originated during the Late Tertiary (8.53 Ma, 95%
HPD: 4.19–14.02, node 1). The crown age of Holcoglossum
was 6.33 Ma (95% HPD: 3.3–10.6, node 2). The TC clade,
containing Holcoglossum himalaicum, H. nagalandensis, H.
kimballianum, H. wangii, H. amesianum, and H. subulifolium,
diverged first during the Early Pliocene (5.31 Ma, 95%
HPD: 2.5–8.81, node 3). Then, the HC clade and AC
clade diverged during the Late Pliocene (3.63 Ma, 95%
HPD: 1.64–6.24, node 4). The crown age of the HC clade,
containing Holcoglossum ligulatum, H. omeiense, H. pumilum,
and H. quasipinifolium, was at latest Pliocene (2.7 Ma, 95%
HPD: 1.16–4.78, node 5), and then the two Taiwan species
(H. pumilum, H. quasipinifolium) were divergent from their
sister group. The AC clade might have started to diversify
around Middle Pleistocene (1.22 Ma, 95% HPD: 0.5–2.39,
node 8), and its five species (Holcoglossum nujiangense, H.
weixiense, H. rupestre, H. sinicum, H. flavescens) rapidly
differentiated since then.
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FIGURE 3 | Chronogram obtained from Bayesian inference analysis based on combined nrDNA and cpDNA data. Numbers on the branches are supporting values
of Bayesian inference, maximum likelihood, and maximum parsimony, respectively. Dash indicates that the node was not supported.

Ancestral Range Reconstruction
The ancestral range reconstruction of Holcoglossum based on
S-DEC and S-DIVA is shown in Figure 4. Both S-DEC
and S-DIVA inferred that the most recent common ancestor
(MRCA) of Holcoglossum was probably distributed in the
Palaeotropical region (node 2). The MRCA of TC was also in
the Palaeotropical region (node 3). The MRCA of HC distributed
in the Palaeotropical region and Taiwan (node 5), which were
later split into mainland China and Taiwan. The MRCA of AC
was inferred at the Sino-Japanese region and Sino-Himalayan
region by S-DEC, and Sino-Himalayan by S-DIVA (node 8),
which subsequently diversified in the Sino-Himalayan region.

DISCUSSION

Phylogenetic Relationship of
Holcoglossum
A robust phylogenetic framework is needed for biogeographical
analyses. In this study, the phylogenetic result based on combined
chloroplast and nuclear data strongly supported Holcoglossum as
monophyletic, which included three clades, i.e., TC, HC, and TC,
which is consistent with Xiang et al. (2012) and Li et al. (2019).
However, the phylogenetic relationships within TC and AC are
slightly different. For example, Holcoglossum naglandensis and
H. himalaicum among TC are sisters in this study and Xiang
et al. (2012), while H. naglandensis is close to H. amesianum

and H. himalaicum is close to H. wangii due to different
DNA sequences. Nevertheless, these species of TC and AC are
distributed in the same floristic region, respectively, and there is
no influence on subsequently biogeographic analyses.

Temporal and Spatial Patterns of
Holcoglossum
Both S-DEC and S-DIVA analyses detected that the modern
distribution of Holcoglossum is attributed to four dispersal
events (Figure 4). Here, we adopted the S-DEC result to
explain the temporal and spatial patterns of Holcoglossum. The
biogeographical analyses indicate that the stem and crown of
Holcoglossum most likely occurred in the Palaeotropical region,
partly in agreement with the conclusion from Fan et al. (2009)
that Holcoglossum was dispersed from the tropical region.

Within TC, all six currently recognized species distribute in
the Asian tropical region. The crown group of TC happened in
the Palaeotropical region since 5.31 Ma (95% HPD: 4.19–14.02,
node 3) and then six species diversified there among 5.31–
1.63 Ma. The weather in Southeast Asia had no distinct
seasonality, and the climate is constantly moist and warm
since Pliocene (Clements et al., 2006), which is beneficial for
Holcoglossum colonization in tropical forests. Further, a putative
abrupt intensification of the East Asian monsoon system during
3.6–2.6 Ma (Zhang et al., 2012) brought abundant precipitation,
which provided favorable climatic conditions for the survival of
epiphytic species in East Asia.
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FIGURE 4 | Ancestral range reconstruction of Holcoglossum in RASP. The same results of S-DEC and S-DIVA are marked by one circle at the node. Colored circles
at nodes above branches for S-DIVA and below branches for S-DEC. A, Sino-Japanese region; B, Sino-Himalayan region; C, Palaeotropical region; D, Taiwan. The
global temperature curve is modified from Zachos et al. (2008).

After TC diverged from AC and HC, a subsequent dispersal
from the Palaeotropical region to the Sino-Himalayan region
occurred since the Late Miocene (3.63 Ma, 95% HPD: 1.64–6.24,
node 4). Within HC, the ancestor of HC dispersed from the
Palaeotropical region and Sino-Himalayan region into Taiwan
(2.7 Ma, 95% HPD: 1.16–4.78, node 5). Taiwan island formed at
5–6 Ma and had been long linked to the Chinese mainland via
Fujian-Taiwan land bridge (Teng, 1990; Zeng, 1993), which led
to the close relationship between flora of Taiwan and mainland
China (e.g., Zeng, 1993; Hsieh, 2002; Nie et al., 2007; Ying and
Chen, 2011; Xiang et al., 2017). Wang (1992) proposed that
plant lineages could extend from Southwest China eastward
along the Nanling Corridor and along other mountain chains
in Central China to East China or Taiwan. The biogeography

of Cycas taitungensis (Huang et al., 2001), Sassafras tzumu
(Nie et al., 2007), and Dichocarpum basilare (Xiang et al., 2017)
showed that dispersal is attributed to the disjunct distribution
between Asian mainland and Taiwan. Holcoglossum lineages
may also have dispersed eastward along the same route to east
China and then across the Fujian-Taiwan land bridge to Taiwan.
Conversely, the global cooling and the subsequent rise of sea
level caused the interruption of the continuous distribution
of Holcoglossum since the latest Pliocene. The Palaeotropical
Holcoglossum lingulatum and Sino-Japanese H. omeiense split at
0.56 Ma (95%: 0.11–1.17, node 6) (Figure 4). The global cooling
and frequently glacial periods happened at Quaternary, which
resulted in H. omeiense being restricted in Omei Mountains in
China and H. lingulatum in Southeast Asia.
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Within AC, the ancestor of AC migrated from the
Palaeotropical region and Sino-Himalayan region to the Sino-
Japanese region (1.22 Ma, 95% HPD: 0.5–2.36, node 8). All five
currently recognized species distribute in Hengduan Mountains,
except for H. flavescens, which extend to the Sino-Japanese
region. These species are inferred to diverge rapidly during a
short time interval (<1 Ma; Figure 4). The time is markedly
later than the time of the Hengduan Mountains Region uplift
(around 4–3 Ma; Chen, 1992, 1996; Shi et al., 1998). However,
the uplift of the Hengduan Mountains formed a complex range
of topographies, climates, and habitats (Hoorn et al., 2013),
and many areas of this region are ice-free during Quaternary
glaciations (Zheng et al., 1998), which can allow immigrations
and survivals of plant lineages. Holcoglossum species of AC clade
grow on the trees of evergreen broad-leaved forests, especially
Quercus section Heterobalanus (Jin, 2003). The continuous
uplift of Himalaya-Hengduan Mountains in the Late Miocene
to Early Pliocene triggered the diversification of Quercus
section Heterobalanus (Meng et al., 2017), which provided
suitable habits for Holcoglossum in the Hengduan Mountains.
Extensive biogeographical researches proved that the uplift of the
Hengduan Mountains directly or indirectly plays vital roles in
the species diversification in multiple lineages, such as Rhodiola
(Crassulaceae; Zhang et al., 2014), Rhododendron (Eriaceae;
Xing and Ree, 2017), Saxifraga (Saxifragaceae; Ebersbach et al.,
2017), and alpine bamboo (Ye et al., 2019). The divergence
of Holcoglossum still supported that the Hengduan Mountains
Region is an adaptive plant diversification center in the
Quaternary climate oscillations (Boufford, 2014; Jian et al., 2015;
Xing and Ree, 2017).

CONCLUSION

In this study, we reconstructed a phylogenetic tree and estimated
divergent times of Holcoglossum, a genus endemic to East
Asia. Our biogeographic inference indicated that the MRCA
of Holcoglossum occurred in the Palaeotropical region. Four
dispersal events happened from the Palaeotropical region to
the Sino-Himalayan region at ca. 3.63 Ma, from Chinese
Mainland to Taiwan at ca. 2.7 Ma, from the Sino-Himalayan

and Palaeotropical to Sino-Japanese regions at ca. 1.22 Ma, and
from the Palaeotropical to Sino-Japanese regions at ca. 0.5 Ma.
During Quaternary, the global cooling climate caused the
H. pumilum and H. quasipinifolium endemic in Taiwan and the
restriction H. omeiense in the Omei Mountains of China. The
temporal and spatial patterns of Holcoglossum shed light on
the divergence and diversification of recently evolved epiphytic
plants within East Asia.
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