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DNA barcoding and metabarcoding are techniques that focus on signature genomic
regions that in theory provide species level resolution, but in practice this is not always
possible. We place animal-focused COI metabarcoding in context with respect to the
use of marker gene sequencing in microbial and fungal ecology. We focus on three
specific aspects of metabarcodes: (1) the process of metabarcode sequence clustering,
(2) how metabarcode cluster types affect the results of biodiversity analyses, and (3)
the current state of reference sequence databases used for metabarcode identification.
Using examples from the arthropod COI metabarcode literature, we show that exact
sequence variants (ESVs) detect more unique taxa than operational taxonomic units
(OTUs) but with similar patterns in taxonomic resolution. We also show that the
difference between ordinations based on ESVs or OTUs recover similar groupings. We
compile a list of reference sequence databases useful for multi-marker metabarcoding
and present a list of reference sequence databases specifically formatted for use
with a naive Bayesian classifier for rigorous metabarcode taxonomic assignments.
Sophisticated tools and reference databases are available for analyzing COI sequences,
and these compare favorably with those available for other metabarcode markers such
as the ribosomal RNA genes used to target microbes and fungi.

Keywords: exact sequence variant, amplicon sequence variant, operational taxonomic unit, DNA barcode, mini-
barcode, metabarcode, taxonomic assignment

BACKGROUND

The objective of DNA barcoding is to permit specimen identification to the species rank. Part
of the DNA barcoding process involves building a high-quality reference database containing
geographic, morphological, and taxonomic information that is submitted along with a high-quality
reference sequence providing species-level resolution (Hebert et al., 2003). DNA barcodes can then
be used to help identify unknown specimens when compared to a reference sequence database.
Cytochrome c oxidase subunit I (COI) mitochondrial DNA (mtDNA) barcodes for animal species
are about 650 bp, the length supported by Sanger sequencing, but modern barcoding has been able
to scale up by using newer sequencing technology (Box 1). In practice, however, only a proportion
of DNA barcode records themselves represent fully-identified specimens at the species rank
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BOX 1 | Scaling up DNA barcoding.
Though DNA barcodes can be generated for a few samples at a time to help fill out a reference dataset for a particular study, the process can also be scaled up
tremendously where researchers have access to automation, liquid handling machines, and high throughput sequencing technology (Hebert et al., 2003, 2018;
Hajibabaei et al., 2005). Initially, DNA barcodes were generated in batches using Sanger sequencing. Later, protocols were adapted for high throughput sequencing
using an Illumina MiSeq platform where multiple overlapping mini-barcode regions were targeted and then assembled into full length barcodes (Shokralla et al.,
2015b). More recently, scalability has been increased and overall cost per sequence decreased by using asymmetric unique molecular identifier (UMI) tagging to
track individual samples with single molecule real time (SMRT) technology on the PacBio SEQUEL system (Hebert et al., 2018). This new system ramps up the
throughput from 96-sample batches using Sanger sequencing up to 10,000 samples per SEQUEL run. For example, the International Barcodes of Life (iBOL)
consortium has released more than 2.6 million DNA barcode sequences from 500,000 species as a part of the BARCODE 500K project (available from
https://www.boldsystems.org). Most recently, the current BIOSCAN project is expected to generate DNA barcode sequences for more than 2 million species
(Hobern and Hebert, 2019; Hobern, 2020).

(Porter and Hajibabaei, 2018b). Some issues that hamper rapid
taxonomic identification include dwindling taxonomic expertise
(Ebach et al., 2011); hyperdiversity in certain taxa such as
insects, microbes, and fungi (Lozupone and Knight, 2007;
Blackwell, 2011; Basset et al., 2012; Tedersoo et al., 2014);
and lack of morphological characters at certain life stages
such as immature insect larva or asexual fungal cultures. Even
specimens with degraded DNA, however, such as food products
or archival specimens, have been successfully sequenced using
mini-barcodes (Box 2). The commonality of these challenges
across multiple fields of study, from microbes to animals, has
driven the development of DNA-based methods to detect and
identify organisms.

The fields of microbial ecology and animal biodiversity each
came up with their own solution to a shared problem: How do
you consistently label sequences from specimens that cannot be
identified to the species rank? In mycology, internal transcribed
spacer region of ribosomal DNA (ITS rDNA) sequences are
clustered into species hypotheses (SHs) that are given a numeric
identifier and can be used as a common label for sequences
that cannot be identified to the species rank (Koljalg et al.,
2013). In the field of COI barcoding, the barcode index number
(BIN) serves a similar purpose (Ratnasingham and Hebert, 2013).
Specialized databases such as BOLD for COI mtDNA and UNITE
for ITS rDNA barcodes house reference sequences and their
corresponding BINs or SHs that attempt to approximate species
units (Ratnasingham and Hebert, 2007, 2013; Koljalg et al., 2013).
In the future, it is possible that BINs could be adapted to include
high quality metabarcode (environmental) sequences lacking a
physical specimen in the way that fungal species hypotheses (SHs)
currently do (Kõljalg et al., 2019; Nilsson et al., 2019).

To transition from sampling individuals (DNA barcoding) to
whole communities (DNA metabarcoding) requires the use of
“culture-free” and “capture-free” approaches based on targeting
environmental DNA (Box 3). DNA metabarcoding is a technique
similar to the culture independent marker gene sequencing
routinely used in the microbial and fungal ecology literature.
The term DNA metabarcoding, however, also implies species-
level taxonomic assignment (Taberlet et al., 2012b). Species level
resolution of metabarcodes, however, may not be possible if
there are gaps in the reference sequence database, the chosen
marker lacks species-level resolution (Hajibabaei et al., 2011;
Hajibabaei, 2012), or if the metabarcode sequences are too
short to provide enough variable characters for a confident
assignment (Porter and Hajibabaei, 2018a). In the microbial

literature, it is accepted that 16S rRNA gene sequences may only
provide genus level taxonomic assignments (Wang et al., 2007).
Popular bioinformatic pipelines used in the microbial ecology
and microbiome literature, such as QIIME, produce rank-flexible
taxonomic assignments (Caporaso et al., 2010). In the DNA
barcoding and metabarcoding literature, this type of rank flexible
taxonomic assignment was specifically termed “metasystematics”
(Hajibabaei, 2012).

From microbes to macrofauna, DNA metabarcoding can
be conducted without having to isolate or identify individuals
using morphological characters and leverages the sequence and
taxonomic information contained in reference databases built
from DNA barcodes (Hajibabaei et al., 2011; Taberlet et al.,
2012b; Yu et al., 2012). Often, metabarcodes range from about
200–400 bp to correspond to the length supported by current
high throughput sequencing platforms such as the Illumina
MiSeq (Hajibabaei et al., 2011; Taberlet et al., 2012b). For some
applications, such as with ancient DNA, even shorter regions may
be targeted (D’Costa et al., 2011). In this paper, we focus on how
metabarcodes are generated, analyzed, and identified. We ask
three questions: (1) Why do we cluster metabarcode reads? (2)
Does metabarcode cluster type affect the results of biodiversity
analyses? (3) What resources are available for metabarcode
identification?

WHY DO WE CLUSTER METABARCODE
READS?

If the DNA metabarcode sequences themselves provide the finest
level of resolution, why do many metabarcode bioinformatic
pipelines include a clustering step (Box 4)? First, clustering
metabarcode sequences allows users to reduce the size of the
data files and facilitate downstream processing. Second, sequence
clustering may absorb artifactual sequences caused by PCR or
sequencing error. This clustering step was needed because the
early methods of denoising were computationally intensive and
difficult to implement on large datasets (Reeder and Knight,
2009). Current denoising methods are incorporated into several
existing programs and pipelines such as DADA2, USEARCH,
VSEARCH, and Deblur (Callahan et al., 2016; Edgar, 2016;
Rognes et al., 2016; Amir et al., 2017; Nearing et al., 2018). Reads
may be clustered to approximate species units. In the field of
microbial ecology, it was shown that if a phylogenetic species
definition requires at least 70% or greater DNA similarity, this
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BOX 2 | Mini-barcodes for difficult samples.
Mini-barcodes can be thought of as partial DNA barcodes where very short regions about 100–200 bp in length are generated from individual specimens (Hajibabaei
et al., 2006). These minimalist barcodes are ideal for identifying very old or poorly preserved specimens or highly processed material (e.g., food products) where DNA
is very degraded and longer barcode sequences are difficult to amplify (Hajibabaei et al., 2006; Shokralla et al., 2015a). In the original study that describes a
minimalist barcode, a dataset of over 200 Australian fish species and four species-rich lepidopteran genera show that 109–218 bp regions of COI mtDNA had
sufficient variation to allow for identification (Hajibabaei et al., 2006).

Mini-barcodes, and even metabarcodes, can also be generated from sample preservative such as ethanol (Hajibabaei et al., 2012; Erdozain et al., 2019). In one
of the first studies describing this non-destructive technique, DNA was isolated from mescal, a liquor containing the larva of the Agave butterfly, and a sequence from
the family that includes the Agave butterfly was successfully recovered (Shokralla et al., 2010). The optimization of non-destructive DNA barcoding to identify single
specimens and entire communities from sample preservative continues (Shokralla et al., 2010; Hajibabaei et al., 2012; Erdozain et al., 2019; Marquina et al., 2019;
Gauthier et al., 2020; Zenker et al., 2020).

BOX 3 | Environmental DNA.
Environmental DNA (eDNA) refers to DNA that can be extracted from environmental samples, without having to isolate individual organisms (Taberlet et al., 2012a). In
the microbial and fungal literature, “culture-free” methods were used to extract eDNA directly from, for example, soil or water without having to isolate, culture, and
identify individual strains (Pace et al., 1986; Handelsman, 2004). The term “bulk” was used to refer to a bulk environmental sample such as soil or water. The
advantage of “culture-free” methods was the avoidance of known culture-bias such as in the “great plate count anomaly” described from microbial studies (Staley
and Konopka, 1985). More recently in animal-focused studies, “capture-free” methods using eDNA have been adopted to facilitate the detection of organisms in the
environment (Darling, 2019). In animal-focused studies, eDNA methods allow for the detection of organisms that are difficult to catch using traditional methods,
especially if they are rare.

The term “extracellular DNA” should not be confused with eDNA as we use the term here. In some of the modern eDNA literature, extracellular DNA has been
targeted to improve the chances of recovering enough DNA to detect non-microbial organisms such as plants and invertebrates from soil or water. Extracellular DNA
can adsorb to sand, clay, silt, or organic compounds such as humic acids. It has been shown that extracellular DNA is more resistant to DNase digestion and
adsorbed DNA may persist longer than free-DNA in the environment (Romanowski et al., 1991; Nielsen et al., 2007; Pietramellara et al., 2009). It has also been
suggested that focusing metabarcoding on extracellular DNA allows for more efficient detection of non-microbial organisms compared with using methods that
extract both intra- and extra-cellular DNA from environmental samples that are dominated by microbial DNA (Taberlet et al., 2012c). In the eDNA literature, water
samples are filtered to isolate the extracellular DNA used to indirectly monitor fish and other aquatic animals using metabarcoding or species-specific qPCR (Hänfling
et al., 2016; Hernandez et al., 2020). The focus on extracellular DNA for animal-focused metabarcoding can be contrasted with that in the microbial soil ecology
literature where DNA adsorbed to particles has been termed “relic DNA.” Such relic DNA has been considered problematic as it may obscure estimates of microbial
diversity (Carini et al., 2016).

In eDNA studies, a further distinction is also often made between environmental DNA comprised of degraded extracellular DNA or DNA from mixed community
samples (Deiner et al., 2017). Such mixed community samples are sometimes referred to as “bulk” tissue samples that are comprised of whole organisms such as
those collected from traps or nets (Taberlet et al., 2012b; Yu et al., 2012; Creer et al., 2016). For example, the arthropods collected from a Malaise trap or kick-net
sample can be homogenized together, whole community DNA can be extracted, then one or more primer sets are used for metabarcoding (Hajibabaei et al., 2011;
Gibson et al., 2014; Barsoum et al., 2019).

The terminology used in microbial versus animal metabarcoding studies needs to be understood from the history of the field and context in terms of the targeted
organisms to avoid misunderstandings.

corresponds to ∼97% sequence similarity in the 16S rRNA gene
region (Stackebrandt and Goebel, 1994). A recent study, however,
suggests that 99–100% thresholds may be more appropriate
(Edgar, 2018b). In current fungal ecology, 97–99% cutoffs for
the ITS rDNA are sometimes used to approximate species
units (Koljalg et al., 2013). In COI metabarcoding studies, a
variety of sequence similarity cutoffs have been used ranging
from 95–100% to maximize genetic diversity recovered while
controlling for the effect of sequence errors, resulting in species-
like groupings (Elbrecht et al., 2017; Braukmann et al., 2019;
Tapolczai et al., 2019). In many cases, a 97% sequence similarity
cutoff is used because existing bioinformatic pipelines were
originally developed to process microbial rRNA gene sequences,
and this threshold is often a default value. In all cases, use
of a single sequence similarity threshold, such as 97% OTUs,
may not reproduce species units across all taxa defined by
traditional species concepts or across the variety of markers used
for metabarcoding today.

The reasons for clustering metabarcodes may vary, but
the result are two types of metabarcode clusters, operational
taxonomic units (OTUs) or exact sequence variants (ESVs).
OTUs, or molecular OTUs (mOTUs), represent a cloud of
similar sequences whose composition may vary depending on

the order of the sequences being clustered, making them difficult
to reproduce and compare across studies (He et al., 2015).
Any single OTU is usually represented by a single sequence,
such as the centroid, and the remaining sequences in the OTU
are disregarded in further analyses obscuring the underlying
nucleotide variation within any single OTU. On the other
hand, exact sequences variants (ESVs), also known as amplicon
sequence variants (ASVs) (Callahan et al., 2017), zero-radius
OTUs (Edgar, 2016), or simply error-corrected OTUs defined
by 100% sequence identity, each represent sequence variation
down to single-nucleotide resolution. To ensure high quality
ESVs, steps need to be taken to remove artifactual sequences
such as putative chimeras, sequences with predicted errors, and
contaminants (Callahan et al., 2016; Edgar, 2016). We make the
case here that ESVs are appropriate for analyzing metabarcodes
from any taxon, from microbes to arthropods, using any marker
from rRNA genes to COI. The advantages of using ESVs includes
improved taxonomic resolution down to single nucleotides as
well as improved reproducibility and comparability across studies
that use the same marker (Callahan et al., 2017). In theory, ESVs
are comparable to haplotypes used commonly in population
genetics and phylogeography (Callahan et al., 2017) and are
already starting to be treated as such in the COI metabarcoding

Frontiers in Ecology and Evolution | www.frontiersin.org 3 August 2020 | Volume 8 | Article 248

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-08-00248 August 9, 2020 Time: 12:9 # 4

Porter and Hajibabaei DNA Barcodes

BOX 4 | A general bioinformatic pipeline for metabarcode clusters based on operational taxonomic units or exact sequence variants.
DNA metabarcodes are often generated using paired-end Illumina sequencing. Forward
and reverse reads are paired, then the ends of the sequence matching the primers are
removed. In some pipelines, primers are trimmed first, then forward and reverse reads
are paired. Each of these steps may require the user to set a minimum Phred quality
score cutoff as well as a cutoff for the number of mismatches tolerated.

At this point, sequence files belonging to each sample are often pooled together
for a “global” analysis. Dereplication involves obtaining just the unique sequences from
the set. The number of reads matching each unique sequence is retained as this
information is needed for both the clustering and denoising methods described below.
The output is usually sorted by decreasing read abundance, but other sort orders are
possible. Because many clustering methods are “greedy” to improve computation time,
changing the input order of the sequences can change the composition of the resulting
OTUs.

The operational taxonomic unit (OTU) clustering part of the pipeline is shown in
blue. An identity threshold is chosen, for example, 0.97, to cluster sequences with at
least 97% sequence similarity. Steps to remove putative chimeric sequences and rare
sequences that may contain sequence errors will also be conducted at this step. In
pipelines run in USEARCH or VSEARCH, each OTU is represented by a single centroid
sequence in any future analyses (Edgar, 2013; Rognes et al., 2016). To create an
OTU × sample table containing read numbers, primer-trimmed paired sequences can
be aligned to each OTU centroid sequence in the database. This step may require
numerous parameters to be chosen such as the identity threshold, for example, 0.97,
to retain sequences with at least 97% sequence similarity to an OTU centroid sequence.

The exact sequence variant (ESV) denoising pipeline is shown in orange. In USEARCH or VSEARCH, the UNOISE3 algorithm performs denoising (Edgar, 2016)
by clustering identical sequences together, similar to using an identity threshold of 1.0 to cluster sequences that have 100% sequence similarity. During this process,
sequences with predicted sequence errors, putative PhiX carry-over from Illumina sequencing, putative chimeric sequences, and rare sequences are removed.
Each denoised ESV is represented by a single sequence in any future analysis. To create an ESV x sample table containing read numbers, primer-trimmed paired
sequences can be aligned to each unique ESV sequence in the database. This step may require numerous parameters to be chosen such as the identity threshold
of 1.0 to retain sequences with at least 100% sequence similarity to a denoised ESV sequence.

Several metabarcode denoising programs have been compared and the USEARCH UNOISE3 algorithm was shown to be the fastest and DADA2 was found to
generate the greatest number of ESVs (Callahan et al., 2016; Nearing et al., 2018). USEARCH is proprietary software with a free 32-bit version available and DADA2
is open source software. VSEARCH is another useful open source software program that allows you to use as much memory as your system supports to facilitate
large analyses, and it can also run the UNOISE3 algorithm.

Metabarcode identification can be performed a number of ways using similarity-, phylogeny-, or composition-based methods (Porter and Hajibabaei, 2018c). One
most popular method for high-throughput identification of large batches of COI metabarcodes is to perform BLAST comparisons against the GenBank nucleotide or
other custom databases. We have developed the COI classifier v4 that uses a method initially developed to taxonomically assign rRNA gene sequences. This naive
Bayesian classifier was trained on a curated set of COI sequences from BOLD and GenBank to make rapid, accurate taxonomic assignments (Altschul et al., 1997;
Wang et al., 2007; Porter and Hajibabaei, 2018a). Recently, a python package called BOLDigger has been developed to help automate batch query submissions
to the BOLD identification engine and can be used to identify COI, ITS, rbcL, and matK sequences (Buchner and Leese, 2020). For each of these methods, there
are trade-offs in terms of ease of use, speed, and rigor. Users should carefully consider the output: Similarity-based methods provide a measure of how similar a
query sequence is to a target sequence whereas taxonomic assignment methods provide a statistical measure of confidence for a taxonomic placement at each
rank. Each of these approaches relies on comparing unknown metabarcode sequences against a reference sequence database of known sequences. The quality,
coverage, and availability of these reference sequences can be quite varied for COI and other popular metabarcode markers and is discussed below (also see
Table 1).

literature (Elbrecht et al., 2018). In terms of reproducibility and
comparability, it is relatively straightforward to align new reads
using a 100% sequence similarity threshold to an ESV reference
database. It is more complicated to align new reads to an OTU
reference database because an arbitrary similarity threshold needs
to be chosen or to regenerate OTUs from scratch since greedy
algorithms are affected by sequence input order and may not
generate OTUs with the same composition as before (He et al.,
2015). For studies that require species estimates, fungal ITS or
animal COI ESVs can be aligned to ITS SHs or COI BINs
using a meaningful threshold for sequence similarity, say 97%
sequence similarity. In the fungal literature, ESVs and OTUs
were both shown to recover similar ecological patterns (Glassman
and Martiny, 2018). In this paper, we show how the analysis
of COI metabarcode clusters based on ESVs and OTUs affects
biodiversity analyses (see next section).

After choosing whether metabarcode clusters will be based
on OTUs or ESVs, it will be necessary to decide on which
approach to take for taxonomically assigning or identifying the
clusters. For assessing biodiversity, there is no need to limit
analyses to only the portion of the dataset confidently identified
to species. Instead, we recommend that metabarcode clusters
are annotated to the most specific taxonomic rank possible. For
example, the taxonomic lineage “Cellular Organisms; Eukaryota;
Metazoa; Arthropoda; Arachnida; Araneae; Amarobiidae;
Amarobius; Amarobius borealis; F230R_Otu231” represents an
OTU identified to the species rank, Amarobius borealis; and the
taxonomic lineage “Cellular Organisms; Eukaryota; Metazoa;
Arthropoda; Insecta; Diptera; F230R_Otu1794” represents
an OTU identified to the order rank. Using a taxonomic
assignment method such as the COI Classifier v4, instead of a
similarity-based method, can help to delimit the finest level of
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resolution that can be made with confidence (Table 1; Porter and
Hajibabaei, 2018a). Filtering for bootstrap support values that
exceed cutoff values can also help reduce the rate of false positive
taxonomic assignments (Porter and Hajibabaei, 2018a). This
may be an important consideration in cases where the cost of
making a false-positive assignment is high, such as where falsely
detecting an invasive species could be a cause for alarm. Methods
that use a naive Bayesian classifier such as the RDP classifier,
phylogenetic-based taxonomic assignment such as SAP, Bayesian
multinomial regression such as PROTAX, or non-Bayesian
k-mer based methods such as SINTAX each produce measures
of confidence for taxonomic assignments for each rank (Wang
et al., 2007; Munch et al., 2008; Huson et al., 2016; Somervuo
et al., 2016). Some methods even take into consideration species
that exist but may not have a reference sequence, new species,
and mislabeled sequences (Somervuo et al., 2016, 2017).

HOW DOES CLUSTER METHOD CHOICE
AFFECT DIVERSITY ANALYSES?

For biodiversity analyses, the choice between using ESVs or
OTUs can affect recovered alpha diversity/richness (Hajibabaei
et al., 2019). We reanalyzed the data from a study that used
COI metabarcoding to assess invertebrates directly from forest
soils and directly compared the data reanalyzed two ways:

TABLE 1 | Taxonomic assignment using the COI classifier produces a measure of
statistical support at each rank.

ESV Rank Taxon COI Classifier
v4 bootstrap

support*

F230R_Otu231 Root Cellular organisms 1.0

Superkingdom Eukaryota 1.0

Kingdom Metazoa 1.0

Phylum Arthropoda 1.0

Class Arachnida 1.0

Order Araneae 1.0

Family Amaurobiidae 1.0

Genus Amaurobius 1.0

Species Amaurobius borealis 1.0**

F230R_Otu1794 Root Cellular organisms 1.0

Superkingdom Eukaryota 1.0

Kingdom Metazoa 1.0

Phylum Arthropoda 1.0

Class Insecta 1.0

Order Diptera 0.94**

Family Hybotidae 0.16

Genus Crossopalpus 0.13

Species Crossopalpu nigritellus 0.13

*Bootstrap support ranges from 0 to 1. These values can be filtered using
appropriate cutoff values that vary according to taxonomic rank and query
sequence length to ensure 95 or 99% accuracy. Assumes that the query sequence
is in the reference sequence database. **Indicates the finest resolution for the
taxonomic assignment to ensure 99% correct assignments for a COI metabarcode
∼200 bp in length.

FIGURE 1 | ESVs detect more unique taxa than OTUs, but both reveal similar
patterns in taxonomic resolution. Data is from a study that assessed
arthropod diversity using COI metabarcoding of forest soil (Porter et al., 2019).
The data was analyzed twice, first using denoised exact sequence variants
(ESVs) and second using denoised ESVs that were clustered into operational
taxonomic units (OTUs) based on 97% sequence similarity.

FIGURE 2 | The most abundant recovered taxa based on ESVs or OTUs are
similar. Data is from a study that assessed arthropod diversity using COI
metabarcoding of forest soil (Porter et al., 2019). The top 10 most abundant
taxa are color coded according to the legend. Remaining clusters are binned
into the “Other” category.

using denoised ESVs and using denoised ESVs clustered into
OTUs with 97% sequence similarity (Porter et al., 2019; Box
4). Taxonomic assignments were made using a naive Bayesian
classifier trained using a COI reference set (Wang et al., 2007;
Porter and Hajibabaei, 2018a). Using this method, we were able
to filter for taxonomic assignments to ensure 95% accuracy
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Insecta; Lepidoptera; Gelechiidae
Arachnida; Trombidiformes; Hydryphantidae

Collembola; Neelipleona
Diplopoda; Chordeumatida

Diplopoda; Polydesmida; Polydesmidae
Insecta; Diptera; Agromyzidae

Insecta; Trichoptera; Philopotamidae
Insecta; Coleoptera; Curculionidae

Insecta; Lepidoptera; Tortricidae
Malacostraca; Mysida

Maxillopoda; Harpacticoida
Maxillopoda; Pedunculata
Pycnogonida; Pantopoda

Insecta; Coleoptera; Silphidae
Insecta; Diptera; Fanniidae
Insecta; Diptera; Hybotidae

Insecta; Megaloptera
Malacostraca; Isopoda; Trichoniscidae

Maxillopoda; Cyclopoida
Branchiopoda; Diplostraca; Chydoridae

Insecta; Hemiptera; Cicadellidae
Arachnida; Sarcoptiformes; Euphthiracaridae

Insecta; Embioptera
Insecta; Diptera; Ceratopogonidae

Insecta; Plecoptera_Insecta; Notonemouridae
Arachnida; Opiliones

Insecta; Diptera; Ephydridae
Insecta; Lepidoptera; Argyresthiidae

Insecta; Lepidoptera; Geometridae
Insecta; Odonata

Insecta; Trichoptera; Uenoidae
Maxillopoda; Calanoida

Insecta; Hemiptera; Aphididae
Diplopoda; Polydesmida

Branchiopoda; Diplostraca; Daphniidae
Arachnida; Ixodida

Insecta; Diptera; Calliphoridae
Insecta; Thysanoptera; Thripidae

Insecta; Raphidioptera
Insecta; Ephemeroptera; Leptophlebiidae

Insecta; Neuroptera; Chrysopidae
Insecta; Diptera; Tephritidae
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FIGURE 3 | Observed community composition can vary based on choice of COI amplicon. Data is from a study that assessed arthropod diversity using COI
metabarcoding of 6 amplicons from freshwater kick net samples (Hajibabaei et al., 2019). Number of unique taxa detected from each primer set is indicated below
the COI amplicon name on the x-axis. Results are based on ESVs whose taxonomic assignments have been summarized to the family rank where possible on the
y-axis and ordered by decreasing read number (see legend). A UPGMA dendrogram is shown above the heatmap, indicating which amplicons recover communities
that are most similar to each other. Fields in “gray” indicate that zero reads were detected.
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FIGURE 4 | Sample sites and soil strata are similarly distinguished using either ESV or OTU clusters. Data is from a study that assessed arthropod diversity using
COI metabarcoding from forest soil (Porter et al., 2019). Parts (A,B) show that non-metric multidimensional scaling plots based on binary Bray Curtis (Sorensen)
dissimilarities. A Procrustes analysis (least squares orthogonal mapping) was used in part to assess differences in the ordinations based on the analysis of ESVs and
OTUs. The vector residuals plotted in (C) show the differences between the original ESV ordination and the OTU ordination. Smaller residuals indicate smaller
differences between the ordinations.

at the species rank and 99% accuracy at all other ranks. As
expected, we detected greater number of unique ESVs (3,357)
than OTUs (2,078) (Figure 1). We also, however, found a similar
distribution in taxonomic assignment resolution with almost
half the clusters being identified to species, and just over half
resolved to more inclusive ranks from genus to order. In the
original study, analyzing the data with ESVs or OTUs did not
make a difference to our final conclusions, so the final data was
presented using ESVs.

We also assessed whether community composition patterns
were affected by the use of ESVs or OTUs (Figure 2). The
top 10 most abundant taxa are found in similar proportions
whether the data are analyzed according to ESVs or OTUs.
Again, in the original study, the analysis of ESVs or OTUs
showed similar patterns and the final results were shown
using ESVs. The taxonomic resolution of these results are
typical of most studies, where many sequence clusters cannot
yet be assigned to the species rank with confidence, and
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FIGURE 5 | Merging COI sequences from the BOLD and NCBI nucleotide database improves taxonomic coverage. Comparison of high-quality eukaryote COI
reference sequences at a variety of ranks. Data is based on the BOLD data releases (no more than 3 Ns in the barcode sequence and at least 500 bp long), the
NCBI nucleotide database accessed April 2019 (no Ns, at least 500 bp long, human and bacterial contaminants removed), and the combined database released in
the CO1 Classifier v4 that merges data from BOLD and GenBank.

indicate where to target additional barcoding efforts. This is
especially important for geographic locations that are poorly
sampled, where diversity is high, and where the reference
database is incomplete.

Both richness and community composition can be assessed
based on metabarcoding data generated using a single primer
set, but how would these results be affected if the primers
were found to be biased in some way? Some of the early
microbiome literature used only a single primer set to produce
single amplicon datasets, and this has facilitated large scale
studies and brought a measure of standardization to the field
(Gilbert et al., 2014; Thompson et al., 2017). There are many
examples, however, showing the effect of primer bias for
a variety of commonly used metabarcoding primers (Hong
et al., 2009; Bellemain et al., 2010; Clarke et al., 2014; Gibson
et al., 2014; Elbrecht et al., 2019; Hajibabaei et al., 2019).
There is also difficulty in designing “universal” COI primers
to capture broad swaths of phylogenetic diversity and a switch
to a multi-marker approach has been proposed for assessing
animal diversity (Deagle et al., 2014). In the microbiome
literature, there has been a shift to the use of PCR-free

metagenomic methods to both avoid PCR-bias as well as to
aid in quantitative assessments (Nayfach and Pollard, 2016).
PCR-free methods have also been proposed to study terrestrial
arthropod biodiversity, but these approaches are not often used
due to cost and technical challenges for application in large
scale studies (Zhou et al., 2013; Shokralla et al., 2016). For
now, the most cost-effective approach to capture a wide array
of phylogenetic diversity using COI metabarcoding is to use
multiple primers sets.

To look at the effect of primer bias, we reanalyzed the data
from a study that used 6 different COI metabarcode amplicons to
sample arthropods from freshwater kick net samples (Hajibabaei
et al., 2019). This study includes two COI amplicons that we
have routinely used in our own work to survey freshwater
macroinvertebrates, BR5 (B/ArR5) and F230R (LCO1490/230_R)
(Folmer et al., 1994; Hajibabaei et al., 2012; Gibson et al.,
2014, 2015); a primer set designed for marine taxa but has
been shown to perform well for detecting arthropods in other
environments, ml-jg (mlCOIintF/jgHCO2198) (Geller et al.,
2013; Leray et al., 2013); as well as a few other recently
published primer sets that look promising for macroinvertebrate
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biomonitoring, BF1R2 (BF2/BR2), BF2R2 (BF2/BR2) (Elbrecht
and Leese, 2017), and fwh1 (fwhF1/fwhR1) (Vamos et al., 2017).
Taxonomic assignments were carried out as described above
using the naive Bayesian classifier and summarized to the
family rank where possible. Read number was normalized across
each amplicon using rarefaction to account for differences in
library size. We compared the results for each COI amplicon
and found similarities among taxa represented by the greatest

number of reads and many differences among taxa represented
by fewer reads (Figure 3). Binary data was also used to create a
Jaccard dissimilarity matrix to generate the UPGMA dendrogram
clustering the COI amplicons. Community dissimilarities across
amplicons ranged from 32 to 56%, with the community detected
by ml-jg and BF1R2 being the most similar. The number of
unique taxa detected by each amplicon ranged from 44 to 65,
with the highest number of unique taxa detected by BF1R2. The

TABLE 2 | Reference sequence databases useful for taxonomically assigning metabarcodes.

Database Content/Markers (Taxa) Number of reference
sequences

Website References

International Nucleotide
Sequence Database
Collaboration (INSDC)

Repository for raw
sequence data,
alignments/assemblies/
annotations,
sample/experimental
metadata available through
the NCBI, ENA, DDJB *

216,531,829 in GenBank
[April 2020]

http://www.insdc.org/ Cochrane et al., 2016

Barcode of Life Data
System v4 (BOLD)

COI (mostly), rbcL, matK,
ITS (eukaryotes)

Available for searching:
7,389,954 COI (public and
private BOLD + INSD);
2,027,132 COI (public
BOLD + INSD) Available for
download: 2,869,168 in
data release packages

https://www.boldsystems.org/ Ratnasingham and Hebert,
2007

SILVA release 138 16S + 18S SSU,
23S + 28S LSU (bacteria,
archaea, eukaryotes)

510,984–9,469,656 SSU;
TBD LSU**

https://www.arb-silva.de/ Pruesse et al., 2007; Yilmaz
et al., 2014

Greengenes 13.5 16S (bacteria, archaea) 1,262,986 https://greengenes.
secondgenome.com/

DeSantis et al., 2006;
McDonald et al., 2012

Genome Taxonomy
Database (GTDB release
89)

120 proteins and 16S SSU
(bacteria, archaea)

145,904 genomes;
284,051 SSU

https://gtdb.ecogenomic.org/ Parks et al., 2020

Ribosomal Database
Project (RDP) release 11

16S SSU
(bacteria + archaea), 28S
LSU (Fungi)***

3,196,041
(bacteria) + 160,767
(archaea) SSU; 125,525
(fungi) LSU

https://rdp.cme.msu.edu/ Cole et al., 2014

The All-Species Living Tree
Project (LTP) 132
(SSU) + 123 (LSU)

16S + 23S type strains
(bacteria, archaea)

13,903 SSU; 1,614 LSU https://www.arb-silva.de/
projects/living-tree

Yilmaz et al., 2014

The Protist Ribosomal
Reference Database (PR2)
v4.12.0

16S, 18S (protists plus
metazoans, land plants,
macrosporic fungi, and
eukaryotic organelle
outgroups)

6,010 16S; 177,934 18S https://pr2-database.org/ Guillou et al., 2012

ITS2 database V ITS2 (eukaryotes) 711,172 http://its2.bioapps.biozentrum.
uni-wuerzburg.de/

Ankenbrand et al., 2015

UNITE v8.2 ITS fungi/eukaryotes
(UNITE + INSD)

714,329 fungi; 1,796,591
eukaryotes

https://unite.ut.ee/ Kõljalg et al., 2019

PLANiTS ITS (plants) 104,584 ITS1; 101,584
ITS2; 104,342 ITS

https://github.com/apallavicini/
PLANiTS

Banchi et al., 2020

R-Syst:Diatom v7 18S, 28S, ITS, rbcL, COI
(diatoms)

2,647 18S; 315 28S; 293
COI; 83 ITS2; 3,504 rbcL

https://www6.inrae.fr/r-syst_
eng/Databases/R-Syst-diatom

Rimet et al., 2019

MitoFish Mitochondrial genomes
(fish)

2,853 genomes http:
//mitofish.aori.u-tokyo.ac.jp/

Sato et al., 2018

rbcL Bell rbcL (plants) 87,352 https://figshare.com/
collections/rbcL_reference_
library/3466311/1

Bell et al., 2017

*National Centre for Biotechnology Information (NCBI), European Nucleotide Archive (ENA), DNA Data Bank of Japan (DDBJ). **To be determined (TBD), LSU has not
been released yet. ***A fungal ITS classifier is also provided.
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total number of unique taxa detected by all 6 COI amplicons
was 109. It is clear from our example that taxa represented
by the greatest number of reads tend to be similar across
amplicons, but combining the results from multiple amplicons
improves the overall recovery of the greatest diversity of taxa.
In the original study, we showed that using at least two COI
amplicons from this set of six could detect most species,
genera, and families. Previous work has used in silico PCR
using ITS primers to detect fungi (Bellemain et al., 2010) and
mock community studies in bacterial (Brooks et al., 2015) and
terrestrial arthropod communities (Elbrecht et al., 2019) to
demonstrate the effect of PCR bias. Here we show the effect of
primer bias on a real community with realistic complexity and
template background.

We have shown that alpha diversity, richness, is sensitive
both to choice of metabarcode cluster type and primer choice,
but what does this mean for beta diversity? For arthropods
sampled using COI metabarcoding from freshwater or soil
samples, beta diversity assessments have been shown to be
robust to both variations in primer choice and sampling method
(Hajibabaei et al., 2019; Porter et al., 2019). Does this hold
true for differences in clustering strategy and resolution of
the matrix? In our research we have found that beta diversity
estimates are robust to the use of either ESVs or OTUs
(Figure 4). The difference between ordinations based on ESVs
and OTUs is minimal, and the site and soil layer groupings
are visually distinct using either sequence cluster type. In the

original study, clustering patterns observed from NMDS plots
and permutational analysis of variance (PERMANOVA) results
were not affected by the analysis of ESVs or OTUs. As a
result, we prefer the use of ESVs over OTUs to improve
reproducibility, facilitate comparisons across studies, and permit
within-species analyses.

HOW CAN WE LEVERAGE TAXONOMIC
COVERAGE ACROSS REFERENCE
DATABASES?

The composition, quality, and completeness of reference
sequences databases determines our ability to identify unknown
specimens using DNA barcodes and metabarcodes. BOLD has
become the canonical COI reference sequence database, with
official DNA barcode sequences available for download through
data releases available from https://www.boldsystems.org/index.
php/datarelease. The BOLD system also contains sequences
mined from GenBank as well as private data that is available
for comparison when using the BOLD identification engine
(Ratnasingham and Hebert, 2007). Recently an R package
was released that facilitates mining BOLD data; however, it
can still be challenging to retrieve large amounts of data at
one time, for example, the entire reference database of all
arthropoda (Chamberlain, 2019). The NCBI nucleotide database,
GenBank, has accumulated over 2.5 million COI sequences

TABLE 3 | Curated reference sequence databases specifically formatted to work with the RDP naive Bayesian classifier.

Marker Name version (year) Target taxa Number of reference
sequences

Availability References*

SSU (16S) 16S trainsetNo16 (2016) Prokaryotes 13,212 https://sourceforge.net/
projects/rdp-classifier/

Wang et al., 2007

SSU (18S) 18S classifier v4** (2020) Eukaryotes 42,301 https://github.com/
terrimporter/
18SClassifier

Pruesse et al., 2007

SSU SSU Diatom Classifier v1.0 (2020) Diatoms 2,962 https://github.com/
terrimporter/
SSUdiatomClassifier

Rimet et al., 2019

LSU Fungi LSU trainsetNo11 (2014) Fungi 11,442 https://sourceforge.net/
projects/rdp-classifier/

Liu et al., 2012

ITS Fungalits UNITE 07042014 (2014) Fungi 145,019 https://sourceforge.net/
projects/rdp-classifier/

Abarenkov et al., 2010

ITS Fungalits Warcup v2 (2016) Fungi 17,878 https://sourceforge.net/
projects/rdp-classifier/

Deshpande et al., 2016

rbcL rbcL Classifier v1 (2020) Eukaryotes 164,454 https://github.com/
terrimporter/
rbcLClassifier

Benson et al., 2012

rbcL rbcL Diatom Classifier v1.0 (2020) Diatoms 3,504 https://github.com/
terrimporter/
rbcLdiatomClassifier

Rimet et al., 2019;
Maitland et al., 2020

COI CO1 Classifier v4 (2019) Eukaryotes 1,221,528 https://github.com/
terrimporter/
CO1Classifier

Porter and Hajibabaei,
2018a

12S 12S fish Classifier v1.0 (2020) Fish 2,853 https://github.com/
terrimporter/
12SfishClassifier

Iwasaki et al., 2013

*References for the database where sequences were obtained and/or for the trained naive Bayesian classifier if available. **Based on SILVA 138 SSURef Nr99.
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since the advent of the DNA barcoding initiative in 2003
(Hebert et al., 2003; Benson et al., 2012; Porter and Hajibabaei,
2018b). Since BOLD has a policy of depositing DNA barcodes
in GenBank, much of the public BOLD data is also available
through GenBank. Neither BOLD nor GenBank, however, is
entirely complete, and each database provides complementary
taxonomic coverage as has been shown for Canadian freshwater
invertebrates (Curry et al., 2018). Combining these databases
would improve both sequence and taxonomic coverage. Making
the merged reference data available in plain text formats would
make it relatively straightforward to reformat so they can be
used as the basis for alternative taxonomic assignment tools
such as those that provide rank-flexible statistical measures
of confidence. For example, the BOLD_NCBI_Merger script
provides a means to combine data from BOLD and the NCBI
nucleotide database for use with MEGAN (Huson et al., 2016;
Macher et al., 2017). Our own approach has been to update
the underlying reference sequence database used by the COI
classifier v4 to combine data from BOLD and GenBank, and it
is available from https://github.com/terrimporter/CO1Classifier
(Wang et al., 2007; Porter and Hajibabaei, 2018a). We
demonstrate the improved taxonomic composition when COI
reference sequences from the BOLD data releases are combined
with COI sequences mined from GenBank (Figure 5). The
combined reference set is available as a FASTA file as are the
trained files needed to use these reference sets with the naive
Bayesian classifier.

We have mainly focused on using a single marker, such as
COI for animal metabarcoding, but the field has progressed
such that investigators are now using multi-marker approaches
(Drummond et al., 2015) to conduct food web studies or
comprehensive biodiversity monitoring across phylogenetically
diverse taxa. As such, we should be aware of tools available for
analyzing other widely used metabarcoding markers (Table 2).
The largest source for reference sequence information is through
the International Nucleotide Sequence Database Collaboration
(INSDC) comprised of the NCBI (GenBank, Short Read Archive),
EMBL-EBI, and DDJB. In North America, most users are familiar
with GenBank, a repository for marker gene sequences (also see
European Nucleotide Archive and DDJB), and the Short Read
Archive (SRA) where raw metabarcode reads are stored. For COI
barcodes, public data in BOLD is automatically transferred to
GenBank, and additional barcode sequences are retrieved from
GenBank to complement the BOLD database. Multi-marker or
genome projects focused on particular taxonomic groups are
also valuable sources of reference sequence information. For
example, DNA barcodes found to be most useful for diatom
identification includes 18S, 28S rDNA, internal transcribed
spacer 2 (ITS2), rbcL cpDNA, and COI mtDNA and are
available through the Diat.barcode library (Chaumeil et al.,
2018; Rimet et al., 2019). Additionally, though COI DNA
barcodes are readily available for fish identification (Becker
et al., 2011; Weigand et al., 2019), 12S mtDNA has a history
of use for vertebrate detection (Kitano et al., 2007; Sato
et al., 2018). Throughout the course of our own work, we
have mined existing databases and created our own curated
reference sets reformatted to work with a naive Bayesian

classifier to make rank-flexible taxonomic assignments with
a statistical measure of confidence (Table 3). Each of these
curated datasets are also available as FASTA files. These resources
show how the field of eukaryote metabarcoding is diversifying
to use multiple markers and support a variety of taxonomic
assignment methods.

Choosing a database for any given DNA barcode or marker
often comes down to one’s preferred species concept, database
coverage, as well as the availability and ease-of-use of related
tools. The NCBI database is the primary source of raw
sequence data for most of the databases listed in Table 2.
What makes each of the rRNA gene databases unique, however,
is that they filter the data using their own quality control
standards, and they follow their own taxonomic roadmap
(Balvočiūtë and Huson, 2017). For example, a phylogenetic
species concept is often preferred in microbial ecology where
taxa are challenging to study and describe using traditional
methods and undescribed environmental diversity is exceedingly
high. In this case, both Greengenes and SILVA assume that
trees based on available SSU sequences reflect evolutionary
relatedness, and any taxonomic inconsistencies are resolved to
make classification consistent with phylogeny. The RDP, however,
follows Bergey’s classification system (Cole et al., 2014). When
the goal is to identify unknown environmental sequences from
metabarcode sequences, the so-called “dark taxa,” the microbial
and fungal communities have come up with their own methods.
For prokaryotes, the GTDB includes metagenome assembled
genomes (MAGs) represented in their database (Chaumeil
et al., 2019). The RDP, SILVA, and Greengenes databases each
contain many environmental sequences for comparison, but
the taxonomic assignment can be based on different criteria
using an algorithm (RDP) or phylogenetic placement and
manual curation (SILVA, Greengenes). For fungi, the UNITE
database has made a concerted effort to incorporate fungal
dark taxa in their SHs and have introduced Taxon Hypotheses
(THs) to allow for the communication of SHs using different
classification schemes at the same time (Nilsson et al., 2019). If
a fungal or animal study requires species estimates, then using
a database that attempts to approximate species using fungal
SHs or animal COI BINs may be preferred. For studies where
few taxa can be confidently identified, using a large database
that includes environmental sequences will provide the most
coverage, and using a method that provides a statistical measure
of confidence can allow the user to adjust for the recovery of
false negatives or false positives according to the study aims
(Edgar, 2018a).

CONCLUDING REMARKS

Over the last 15 years the use of standardized DNA-based
biodiversity markers such as DNA barcodes has become
a routine practice in various scientific and socioeconomic
endeavors. A much wider spatiotemporal biodiversity perspective
is now achievable through bulk analysis of metabarcodes. Our
ability to fully identify metabarcodes from particularly diverse
taxonomic groups or samples may be currently limited, but
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with continued DNA barcoding efforts these databases are
expected to become more representative over time. Insufficiently
identified sequence clusters, those not confidently identified to
the species rank, can still be used for biodiversity analyses
including richness assessment, community composition, and beta
diversity assessments. For improved reproducibility, comparison
across studies, and nucleotide-level resolution, we encourage
the use of ESV level analyses. For studies that require species
estimates, we suggest aligning ESVs to fungal ITS SHs or animal
COI BINs which both attempt to approximate species units.
If representative BIN sequences were made available in an
easily parsed format, this would allow taxonomic assignments
to be made using tools outside the BOLD system built-in
barcode identification engine and would allow inclusion in
metabarcode bioinformatic pipelines that are already widely used
for analyzing large metabarcode datasets. COI metabarcoding
offers a sophisticated toolset and reference databases suitable for
large scale studies; as such, it is now firmly established as a marker
for animals in molecular ecological and biodiversity studies.
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