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Phenotypic plasticity, the property by which living organisms express different
phenotypes depending on environmental conditions, can impact their response to
environmental perturbation, including that resulting from climate change. When exposed
to altered environmental conditions, phenotypic plasticity might help or might hinder
both immediate survival and future adaptation. Because climate change will cause more
than a global rise in mean temperatures, it is valuable to consider the combined effects of
temperature and other environmental variables on trait expression (thermal plasticity), as
well as trait evolution (thermal adaptation). In this review, we focus primarily on thermal
developmental plasticity in insects. We discuss the genomics of thermal plasticity and
its relationship to thermal adaptation and thermal tolerance, and to climate change and
multifactorial environments.

Keywords: developmental plasticity, thermal adaptation, multifactorial environments, environment-by-
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The ability of natural populations to react to environmental change will depend on the level and
type of perturbation organisms experience, and also on their intrinsic capability to respond to
it (Parmesan, 2006; Johnston et al., 2019). Phenotypic plasticity, the property by which living
organisms express different phenotypes depending on environmental conditions, can impact their
response to environmental perturbation, including that resulting from global climate change (Reed
et al., 2011; Chevin et al., 2013; Merilä and Hendry, 2014; Sgrò et al., 2016; Bonamour et al., 2019).
Considering thermal plasticity, in addition to thermal tolerance and thermal adaptation, will be
crucial to assessing how organisms might cope with climate change. And because climate change is
not only about increasing mean ambient temperature, it is also clear that it is important to consider
effects of multifactorial environments, combining temperature with other environmental variables,
both on trait expression and on trait evolution (Kaunisto et al., 2016; Westneat et al., 2019).

Here, we focus on effects of temperature and its combination with other environmental factors
on phenotypic plasticity in terrestrial/flying insects, a taxon of ectothermal animals that includes
many compelling examples of thermal plasticity. This is a large and ecologically central group of
organisms whose geographic ranges, behaviors, and life histories are very much affected by ambient
temperature (Colinet et al., 2015). It is also a group with recent worrying trends: steep global
population declines (Sánchez-Bayo and Wyckhuys, 2019; Didham et al., 2020; Wagner, 2020), as
well as expansions of agricultural pests and disease vectors (Song et al., 2017; Ryan et al., 2019). We
direct our attention primarily toward recent examples, and to studies focused on the genomics of
thermal plasticity of potential relevance to responses to climate change.
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PHENOTYPIC PLASTICITY AND
ENVIRONMENTAL PERTURBATION

Phenotypic diversity, within and across species, is shaped
by interactions between organisms and their environment,
which occur at different levels and different time scales.
Environmental conditions determine cross-generation changes
in phenotype frequencies in populations (notably through natural
selection), and affect intra-generation phenotype expression of
individuals (via phenotypic plasticity). In this section, we will
focus on examples of phenotypic plasticity and how it can
evolve and impact adaptive evolution, including in the context
of climate change.

Ecological Significance and Evolution of
Plasticity
The effect of external environmental conditions on phenotype
expression can happen at distinct time-scales: (1) change in
progeny phenotype that depends on parental environment
(trans-generational plasticity; Woestmann and Saastamoinen,
2016; Donelson et al., 2018), (2) change in adult phenotype
in response to adult environment, often reversible changes in
labile traits, such as behavior, and including what is called
acclimation (Stillman, 2003; Sgrò et al., 2016), and (3) change
in phenotype that depends on the conditions experienced during
development, often leading to irreversible adult phenotypes (the
main focus of this review). Indeed, the environmental conditions
experienced during development can alter developmental rates
and/or trajectories and result in the production of different
adult phenotypes from the same genotype, in a phenomenon
called developmental plasticity (reviewed in Beldade et al.,
2011; Nettle and Bateson, 2015). The study of developmental
plasticity, which integrates ecology, evolutionary biology, and
developmental biology (eco-evo-devo, Gilbert et al., 2015),
is key to understanding how organisms interact with their
changing environments.

Plasticity can match organismal phenotypes to their
ecological conditions and, as such, be favored by natural
selection (Nettle and Bateson, 2015). Plasticity is thought to
benefit populations that face distinct challenges imposed by
environmental heterogeneity (e.g., Chevin et al., 2010), such
as that resulting from alternating seasons (Buckley et al.,
2017). Seasonal polyphenism, where alternative seasonal
conditions lead to the production of distinct seasonal
phenotypes, is common in insects (Nijhout, 2003; Moczek,
2010; Simpson et al., 2011; Yang and Pospisilik, 2019). Their
relatively short life cycles allow for multiple generations
within the year and, consequently, exposure to conditions
that can differ substantially between generations. Seasonally
variable environmental factors, often temperature, can induce
changes in sets of integrated traits associated to distinct
strategies for survival and/or reproduction, suited to the
respective seasonal conditions. For example, in the butterfly
Bicyclus anynana, the temperature during development
anticipates upcoming seasonal conditions in vegetation
cover, and induces changes in various adult traits associated

with distinct seasonal strategies for predator avoidance and
pace-of-life (Box 1).

Phenotypic Plasticity and Climate
Change
Plasticity can be targeted by selection and evolve, and can,
in turn, impact adaptive evolution (reviewed in Lafuente
and Beldade, 2019). It has been argued that developmental
plasticity can help (or hinder; e.g., Cenzer, 2017; Oostra
et al., 2018) not only the immediate survival, but also future
adaptation of populations facing environmental perturbation
(Reed et al., 2011; Bonamour et al., 2019) and colonizing novel
environments (Ghalambor et al., 2007; Wang and Althoff, 2019;
Bilandžija et al., 2020). In addition, it has been proposed that
plasticity can promote phenotypic and taxonomic diversification
(Moczek, 2010; Pfennig et al., 2010; Schneider and Meyer,
2017). Whether plasticity can have an impact specifically in
responses to climate change has also raised significant attention
(Sgrò et al., 2016; Bonamour et al., 2019). Upon change in
local environmental conditions, particularly of temperature,
organisms that are thermally plastic might display phenotypic
change that allows them to rapidly adjust to the new conditions,
without genetic change. This type of phenotypic adjustment has
been reported for some insect populations, along with other
types of population responses to climate change (Figure 1):
(1) phenotypic change resulting from genetic change, as
populations adapt to new local conditions, (2) shifts in
distribution range, as populations track favorable conditions, and
(3) population declines that might lead to extinctions. These
responses are not mutually exclusive scenarios; they can be
combined in different manners (Valladares et al., 2014) and
can also be hard to disentangle, as illustrated in the examples
below. Shifts in species distributions can result from populations
actually migrating to new locations, but can also result from
population extinctions on one or multiple distribution edges.
Occupation of new locations is generally followed by adaptation
to the local conditions (e.g., butterflies that move up along
an altitudinal gradient adapted to a host plant in the new
habitat; Parmesan et al., 2015). Adaptation to climate change
can involve changes in plasticity (e.g., Kingsolver and Buckley,
2018), and plastic responses can facilitate adaptation involving
genetic change (e.g., Kelly, 2019) or anticipate extinction (e.g.,
Manfredini et al., 2019).

Phenotypic plasticity can impact species distribution and
vulnerability (Foden et al., 2019), and might also impact
(positively or negatively) population persistence and ability to
adapt to challenges arising from climate change (Leonard and
Lancaster, 2020). If plasticity leads to changes in phenotype
expression in a direction that maintains/improves fitness in the
new conditions, it can, indeed, allow organisms to keep pace
with environmental change, preventing immediate population
extinction (Merilä and Hendry, 2014) and effectively “buy time”
for adaptation to occur (Chevin et al., 2010; Snell-Rood et al.,
2018). While the positive impact of plasticity in a response
to climate change might go beyond buying time (Levis and
Pfennig, 2016; Fox et al., 2019), it is also apparent that plasticity
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BOX 1 | Seasonal polyphenism in B. anynana.
Development under cooler temperatures leads to the production of dry-season form adults, while development under warmer temperatures leads to wet-season
form adults. The seasons differ in vegetation cover and the alternative seasonal forms differ in their strategies for reproduction (solid line box on right side) and for
escaping predators (dashed line box). B. anynana drawings by Joana Carvalho (joana_gcc).

A case study of thermal plasticity: Bicyclus anynana butterflies.
The afro-tropical butterfly Bicyclus anynana has become a valuable model of seasonal polyphenism, where an understanding of the ecological significance of

alternative seasonal phenotypes can be integrated with knowledge about the developmental basis and evolution of thermal plasticity (Brakefield et al., 2009; Beldade
and Peralta, 2017). B. anynana seasonal plasticity is believed to be an adaptation to the strongly contrasting wet versus dry seasons of its African savannah habitat.
The temperature experienced during development, which anticipates the upcoming season and conditions adults will have to live in, results in adult phenotypes
adjusted to each of the seasons’ conditions (Figure).

Developmental temperature affects a suite of traits, including wing pigmentation (e.g., Brakefield, 1996; Mateus et al., 2014; Wasik et al., 2014), life histories (e.g.,
Pijpe et al., 2006; Fischer et al., 2007; Oostra et al., 2011, 2014), secondary sexual traits (e.g., Muller et al., 2019), and various behavioral traits (e.g., Prudic et al.,
2011; Bear and Monteiro, 2013; Westerman and Monteiro, 2016; van Bergen and Beldade, 2019). Alternative phenotypes correspond to distinct seasonal strategies
for predator avoidance and for reproduction, associated to the distinct seasonal status of the habitat’s vegetation cover on which adults perch and larvae feed.
Dry-season form adults have dull brown wings, which are cryptic against the background of dry foliage, and have increased body reserves, which sustain longer
lifespan and the delay reproduction until the end of the season (Brakefield and Reitsma, 1991; Halali et al., 2020). A raise in ambient temperature anticipates the
rainy season, when abundant vegetation provides food for rapid larval growth and adult reproduction. Wet-season form butterflies have a fast pace of life (Brakefield
et al., 2009; Halali et al., 2020) and display wings with conspicuous marginal eyespots believed to deflect the attack of predators away from the more fragile body
(Lyytinen et al., 2004; Olofsson et al., 2010; Prudic et al., 2015).

Laboratory studies have characterized thermal reaction norms for various traits (e.g., Oostra et al., 2011). Revealingly, lab thermal phenotypes do not include
phenotypes as extreme as those seen in nature, where other variables combined with temperature might affect development outcomes (Bauerfeind and Fischer,
2005; Rodrigues et al., 2018; Singh et al., 2019), but do include intermediate phenotypes between the typical dry- and wet-season forms, which are rarely found in
nature (Brakefield and Reitsma, 1991; Windig et al., 1994; Muller et al., 2019). Lab studies have also allowed characterization of the physiological and genetic basis
of thermal plasticity. Measurement and manipulation of ecdysone levels in pupae developing in different temperatures implicated temperature-induced changes in
the dynamics of this hormone in the regulation of B. anynana plasticity (Brakefield et al., 1998; Mateus et al., 2014; Oostra et al., 2014; Monteiro et al., 2015; Bear
et al., 2017; Bhardwaj et al., 2020). Expression of ecdysone receptor in eyespot organizers has, furthermore, been proposed to account for differences in levels of
plasticity between eyespots (Brakefield, 1996; Mateus et al., 2014; Monteiro et al., 2015), and for the evolutionary origin of thermal plasticity in eyespot development
(Bhardwaj et al., 2020). Transcriptomic studies targeting individuals from different developmental temperatures have started identifying temperature-regulated genes,
potentially responsible different seasonally plastic traits (Macias-Munoz et al., 2016; Oostra et al., 2018). Finally, lab studies have also shed light onto the genetic
architecture and constraints on the evolution of thermal reaction norms (Holloway and Brakefield, 1995; Brakefield, 1996; Wijngaarden and Brakefield, 2001;
Wijngaarden et al., 2002). On the other hand, field collections allowed for characterization of differences in reaction norms between geographical populations of
B. anynana (de Jong et al., 2010) and between Bicyclus species (van Bergen et al., 2017; Balmer et al., 2018).

A number of studies have explored ideas about B. anynana’s vulnerability to climate change. These include assessing effects of increased temperature on
organismal performance (Klockmann et al., 2017) and the evolutionary potential for populations to cope with warming (Fischer et al., 2010). They also include
discussions about the species’ thermal developmental plasticity possibly becoming a disadvantage if climate change breaks the correlation between the inducing
(temperature) and selective (vegetation) environmental variables, and leads to a mismatch between phenotype and environment (de Jong et al., 2010; Oostra et al.,
2018), especially if genetic variation for plasticity is depleted (Oostra et al., 2018). Studies for this and other thermal plasticity models, which allow integration of
temperature effects across levels (from gene expression, to physiology and development, to multiple adult traits, to individual fitness, to population performance), will
be valuable to achieve a better understanding of the impact of phenotypic plasticity in the response to climate change.

can have a negative impact, both by compromising immediate
survival (Ghalambor et al., 2007; Manfredini et al., 2019) or
by slowing-down future adaptation (discussed in Beldade et al.,

2011). Adaptation will be slower if developmental plasticity
somehow shields genetic variation from the action of natural
selection, but this can be hard to assess (Fox et al., 2019).
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FIGURE 1 | Insect examples of responses to climate change. Populations facing warming temperatures that result from climate change can respond in different
manners, including moving to new locations where temperature is closer to their optimum (blue), changing genetic composition as they adapt to new local
conditions (yellow), expressing suitable temperature-induced phenotype without genetic change (green), or failing to adjust leading to decline and potential extinction
(red). Examples from: 1Umina et al., 2005; 2Bradshaw and Holzapfel, 2001; 2001; 3Kearney et al., 2010; 4Jönsson et al., 2007; 5Bentz and Powell, 2014; 6Kollberg
et al., 2013; 7Condamine and Sperling, 2018; 8Soroye et al., 2020; 9Faldyn et al., 2018; 10Ryan et al., 2019; 11Parmesan et al., 1999; 12Parkash et al., 2013.

Survival will be compromised when plasticity leads to expression
of phenotypes that, while possibly adaptive in the historical
context, are maladaptive in the new conditions (Manfredini
et al., 2019). For example, under unusually warm conditions,
thermal plasticity in developmental rate in the bark beetle
Ips typographus may result in a second generation of beetles
consisting of immature stages that are poorly adapted to winter
conditions (Dworschak et al., 2014). Maladaptive plasticity seems
more common in new habitats, presumably because there
has been no evolutionary adjustment of the link between the
environmental cues and physiological responses (Ghalambor
et al., 2007; Chevin and Hoffmann, 2017). If the environmental
cues that leads to change in phenotype expression no longer
accurately predict future selective environment, plasticity actually
can result in a mis-match between phenotype and environmental
conditions. Climate change-related failure in the accuracy of
cue predictions can lead to an aggravation of maladaptive
phenotype-environment mismatches (e.g., Ghalambor et al.,
2007; Bonamour et al., 2019).

THERMAL DEVELOPMENTAL
PLASTICITY

Temperature is a key factor determining the geographical
distribution, abundance and physiology of insects (Colinet et al.,
2015). As small ectotherms whose body temperature closely

matches ambient temperature, insects are particularly susceptible
to thermal perturbation. Climate change-related temperature
variation has been implicated in altered phenology, distribution
range, and population abundance of many insect species around
the world (Parmesan, 2006; Buckley et al., 2017; Cohen et al.,
2018; Macgregor et al., 2019). In this section, we focus on insects’
capability to tolerate, adjust, and adapt to temperature change,
which their response to climate change will greatly depend on.
We address the relationship between the processes and between
their genomic bases.

Thermal Plasticity, Thermal Adaptation,
Thermal Tolerance
Temperature acts both as an agent of natural selection (resulting
in thermal adaptation), and as a factor affecting phenotype
expression (in cases of thermal plasticity). There are any examples
of thermal plasticity in insects, including developmental
effects and adult acclimation. Temperature-dependence has
been described for many processes and traits, including sex
determination (Blackmon et al., 2017), induction of diapause
(Saunders, 2014), body pigmentation (Sibilia et al., 2018),
behavior (Abram et al., 2017). Likewise, thermal adaptation and
thermal tolerance have also been extensively studied in various
insect species (Tobler et al., 2015; Mallard et al., 2018; Kellermann
and van Heerwaarden, 2019). Thermal tolerance, corresponding
to a favorable range of temperatures for performance, can be
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assessed by measuring survival and/or recovery from acute
or chronic exposure to temperature extremes (e.g., Kingsolver
et al., 2016). As it reflects the capability to cope with adverse
temperature conditions, thermal tolerance is very obviously and
very directly relevant to how organisms respond to climate
change. Moreover, thermal tolerance has also been shown to
be associated to other fitness related traits (e.g., tolerance of
high temperatures affects dispersal in the Glanville fritillary;
Saastamoinen and Hanski, 2008; Mattila, 2015), and to vary
between populations and between species (e.g., Hamblin et al.,
2017; Oyen and Dillon, 2018).

Thermal plasticity, thermal tolerance, and thermal adaptation
are very closely intertwined. Thermal tolerance can be thermally
plastic (Schou et al., 2017), but it is unclear how much plasticity in
thermal tolerance will impact insects’ response to climate change
(Mitchell et al., 2011; Gunderson and Stillman, 2015). Thermal
plasticity and thermal tolerance can facilitate thermal adaptation
(e.g., Mitchell et al., 2011; Noh et al., 2017). Conversely, thermal
adaptation can entail changes in thermal plasticity (discussed
above), as well as in thermal tolerance. The evolution of thermal
tolerance as a result of adaptation to different thermal regimes
is compellingly illustrated by differences between populations
along climatic clines, including the negative correlation between
heat tolerance and both altitude (e.g., in Heliconius butterflies;
Montejo-Kovacevich et al., 2020) and latitude (e.g., in Drosophila
flies; van Heerwaarden et al., 2014).

Genomics of Thermal Plasticity
Deciphering the genetic basis of thermal plasticity involves
asking about the genes involved in regulating the expression
of thermally-dependent phenotypes, as well as about the genes
contributing to inter-genotype variation in plasticity that can
fuel its evolution (Lafuente and Beldade, 2019). Genomic-level
studies of different types have made crucial contributions to both
ends. First, investigating the genetic basis of the regulation of
thermal plasticity requires identifying genes whose expression
and/or function depends on temperature, and, among those,
the genes that actually account for changes in thermally-
sensitive phenotype expression. Transcriptome-profiling studies
in a variety of species have documented thermal plasticity in
gene expression levels, including assessment of how many and
which genes are differentially expressed between temperatures.
The important effect of temperature on transcription has
been particularly well studied in the genetic model Drosophila
melanogaster (e.g., Chen et al., 2015; Sørensen et al., 2016),
but also in other insect examples of thermal plasticity (e.g.,
Oostra et al., 2018). Importantly, while transcriptome-wide scans
allow us to identify many genes whose expression depends on
temperature, targeted candidate gene analysis facilitates making
the connection between differential gene expression and plastic
trait development (e.g., thermal plasticity for body pigmentation
in D. melanogaster; Gibert et al., 2016). Second, investigating
the genetic basis of the variation in thermal plasticity involves
identifying genes that harbor allelic variation contributing for
differences in plasticity, and, among those, which actually
fuel the evolution of plasticity. Differences between genotypes
in levels of thermal developmental plastic, which correspond

to significant genotype-by-environment interactions, document
the existence of genetic variation for plasticity and offer the
opportunity to characterize its nature. Here too, candidate
gene studies are quickly being replaced by less-biased whole
genome analysis, including genome-wide association studies that
identify QTLs for inter-genotype differences in thermal plasticity
for specific plastic traits (e.g., QTLs for thermal plasticity for
body size in D. melanogaster; Lafuente et al., 2018). These loci
can provide the raw material for the evolution of plasticity,
including level, direction and inducing cues (discussed in
(Lafuente and Beldade, 2019).

The rapid rate of current global climate change, with strong
effects on many species, provides both a unique opportunity and
a pressing need to study the genetic bases of adaptation, tolerance,
and plasticity in natural populations (Franks and Hoffmann,
2012). The extent to which the same genes are involved in thermal
adaptation, thermal plasticity, and thermal tolerance has also
been addressed both by focusing on candidate genes and by
using genomic-level approaches. Perhaps unsurprisingly, several
candidate gene studies have focused on genes encoding heat-
shock proteins, which have been shown to be thermally plastic,
impact thermal tolerance, and differ between populations from
different thermal conditions (e.g., Sørensen et al., 2001, 2019;
Mattila, 2015; Liu et al., 2017). Heat-shock genes also come up
as significant hits in some (e.g., Wang et al., 2019) but not all
(e.g., Mallard et al., 2018) genomic-level searches. Accumulating
genomic studies in Drosophila melanogaster, using different
natural and experimental populations and different approaches
(Klepsatel et al., 2013; Tobler et al., 2014; Gerken et al., 2015;
Machado et al., 2016; Porcelli et al., 2016; Fabian et al., 2017;
Lafuente et al., 2018; Rolandi et al., 2018; Kapun et al., 2020),
are building an unprecedently powerful body of data to assess
the genomic basis of thermal adaptation, and its repeatability and
relationship to thermal plasticity and thermal tolerance. In the
future, integration of studies covering different species, different
geographical and temporal scales, and different approaches will
undoubtedly help shed much needed light onto the genomics
of thermal plasticity, as well as its overlap with the genomics of
thermal tolerance and thermal adaptation.

MULTIFACTORIAL COMPLEX
ENVIRONMENTS

Climate change entails changes in mean global temperature,
but also in temperature dynamics and in other environmental
variables. As such, to assess the potential impact of climate
change on natural populations, it is relevant to consider the
combined effects of change in temperature with change in other
variables. This section considers effects of temperature and other
environmental variables on both plasticity and adaptation.

Phenotypic Plasticity in Complex
Environments
As illustrated above, effects of the environment on developmental
outcome have been amply documented for various phenotypes
and species. Indeed, phenotypic plasticity (phenotypic differences
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FIGURE 2 | Insect examples of studies of effects of temperature combined with other environmental factors on phenotypic plasticity. Examples from: 1Ahmadi et al.,
2018; 2Liefting et al., 2017; 3Schou et al., 2013; 4Arambourou and Stoks, 2015; 5Saeed et al., 2018; 6Bubliy et al., 2013; 7Kutz et al., 2019.

attributable to environmental variation) and genotype-by-
environment interactions (i.e., genetic differences in how
organisms respond to environmental conditions) are very
common. Unlike what happens for genetic variation, though,
where evolutionary biology explicitly considers interaction
effects (dominance and epistasis), potential environment-
by-environment interactions received considerable less
attention. Traditionally, experimental studies of plasticity
focused on the analysis of single, isolated environmental
factors, held constant during the time it takes organisms
to complete their life-cycle. This is in stark contrast with
natural situations, where complex environments include
variation in multiple and highly dynamic environmental cues.
These different variables may act additively on phenotype
expression, but may also act redundantly, synergistically, or
antagonistically (Piggott et al., 2015; Westneat et al., 2019).
Climate change has brought substantial attention to the
analysis of multi-stressor effects in populations (Kaunisto
et al., 2016), albeit with the majority of studies focused on
plants or aquatic systems (e.g., Byrne and Przeslawski, 2013;
Gunderson et al., 2016).

Focusing exclusively on environmental factors considered
to be individually (i.e., on their own, independently of other
environmental factors) and universally (i.e., always, for all
genotypes) stressful fails to acknowledge that what is and is
not “stressful” might depend on environmental and genetic
context. For example, what is a stressful temperature under
some photoperiod (or for some genotype) might not be

stressful under another photoperiod (or for another genotype).
Studies of thermal plasticity in multifactorial environments
are increasing, including for different insect species. These
studies search to investigate phenotypic effects when variation in
temperature is combined with variation in other environmental
variables (Figure 2), including biotic and abiotic factors (Bubliy
et al., 2013; Schou et al., 2013; Arambourou and Stoks, 2015;
Saeed et al., 2018; Kutz et al., 2019). Some studies extend
the analysis of plasticity in multifactorial environments to
include: (1) multiple traits and/or to multiple genotypes (e.g,.,
Saastamoinen et al., 2013; Verspagen et al., 2020), (2) three-
way environmental interactions (e.g., temperature × humidity ×

food; Bomble and Nath, 2019), and (3) quantifying underlying
changes in gene expression (e.g., candidate genes, Rivas et al.,
2018, and whole transcriptome, Koch and Guillaume, 2020).
The results to date paint a complex picture, with distinct
types of additive (e.g., Koch and Guillaume, 2020) and non-
additive (e.g., Yoshii et al., 2009; Arambourou and Stoks, 2015;
Piggott et al., 2015) effects of multifactorial environments,
and differences between traits and between genotypes. This
is an area that will, undoubtedly, know much progress in
the near future.

Adaptation to Complex Environments
Aside effects on phenotype expression, multifactorial
environments will obviously also affect adaptive evolution
in ways that might be unpredictable based on variation for single
environmental factors. Adaptation to novel combinations of
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environmental variables might be harder or impossible – for
example, if phenotypic change favored by one cue is at odds
with that favored in relation to the other cue. Such trade-offs are
illustrated by studies where adaptation to specific environments
entailed costs in performance in other environments (e.g.
Callahan et al., 2008; Nunney, 2016; Fox et al., 2019). In
natural populations, different environmental factors act in
concert as agents of selection, and can co-vary more or less
independently and unpredictably. The fact that associations
between environmental variables, as well as their dynamics, are
likely to change as a result of climate change further endorses the
interest in studying the impact of complex environments on the
tempo and mode of adaptive evolution.

Our understanding of the phenotypic and genotypic
change that accompanies adaptation of insects to complex
environments relies on different types of studies. Studies
of natural populations include both “snap-shot” and
longitudinal comparisons between populations living in
different environments (Reinhardt et al., 2014; Manenti et al.,
2017; Lerat et al., 2019; Kapun et al., 2020). While studies of
natural populations make it possible to detect genetic and
phenotypic differentiation and, sometimes, associate the two, it
is generally very difficult to know exactly which environmental
variables explain divergence and how. Conversely, in studies
of experimental populations forced to evolve in different
complex environment (e.g., Tomkins et al., 2011; Tobler
et al., 2015; Mallard et al., 2018), we typically know exactly
which environmental variables differ between selection lines
and can identify genetic differences between those lines, but
it is not always easy to know which organismal phenotypes
were altered and how. It will be valuable to be able to
integrate studies from different types of approaches, and
for different species and species groups, to have a better
understanding of the mechanisms and limitations of adaptation
to complex environments.

OVERVIEW AND PERSPECTIVES

Throughout the review, we highlighted what we believe are
some areas of particular interest for our understanding of the
relevance of thermal plasticity to climate change biology. In
light of the topic of this special issue, we discussed recent
studies on the genomics of thermal plasticity, distinguishing
between those identifying the genes whose expression depends on
temperature (and might underlie temperature-induced change
in developmental outcome), and in terms of the genes that
harbor allelic variants contributing to inter-genotype variation in
plasticity (and can feed the evolution of thermal plasticity) (see
Lafuente and Beldade, 2019). As data accumulates for different
systems, we can hope to deepen our knowledge about what
those genes are and about the overlap between them, as well
as the overlap between them and the those underlying thermal
tolerance and thermal adaptation. We also emphasized the
relevance of focusing on temperature in the context of complex
multifactorial environments, and the importance of considering

that variation in response to temperature can depend on genetic
and environmental context.

We focused on thermal plasticity in insects, its potential
role in response to climate change, its genomic basis, and
the interactions between temperature and other environmental
factors. Each of these issues, along with related topics that we did
not cover at all, is attracting substantial research attention and,
we expect, will know much progress in the near future. Below we
highlight the topics complementary to those we covered that are
also relevant for the discussion about the relevance of thermal
plasticity to climate change biology.

First, we focused primarily on developmental plasticity, which,
especially in holometabolous insects, often leads to fixed adult
phenotypes. We paid less attention to effects of temperature
directly on adult traits, which often lead to reversible phenotypes.
These include phenomena that are key to climate change biology,
such as acclimation, through physiological and/or behavioral
plasticity (Huey et al., 2003; Stillman, 2003). These can mitigate
the immediate effect of variation in thermal environments,
but can also constrain adaptation to permanent/directional
temperature perturbation.

Second, we focused on effects of climate change and
of multifactorial environments on molecular-level processes
(e.g., thermal plasticity in gene expression), organismal-level
processes (e.g., thermal plasticity in developmental outcomes),
and population-level processes (e.g., thermal adaptation in
experimental and natural populations). We did not discuss
supra-population effects of climate change or of multifactorial
environments (Fordyce, 2006), such as effects on the species
composition of communities (e.g., Chown et al., 2015; de Vries
et al., 2019) and on inter-specific interactions (e.g., Williams
et al., 2008; Cornelissen, 2011; Wernegreen, 2012; Cahill et al.,
2013), both of which can have substantial ramification effects
(Grimm et al., 2013).

Finally, we focused exclusively on insect examples, but effects
of climate change and multifactorial environments on phenotype
expression and adaptation are also being studied in other groups
(e.g., Byrne and Przeslawski, 2013; Gunderson et al., 2016; Lange
and Marshall, 2017). It will be crucial to integrate different
examples both to uncover unique responses, as well as to derive
general principles about biological responses to climate change.
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