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The Subhabitat Dependence of
Biogeographic Pattern
Ricardo A. Scrosati*, Matthew J. Freeman and Julius A. Ellrich

Department of Biology, St. Francis Xavier University, Antigonish, NS, Canada

We introduce and test the subhabitat dependence hypothesis (SDH) in biogeography.

This hypothesis posits that biogeographic pattern within a region differs when determined

with species abundance data from different subhabitat types. It stems from the notion

that the main abiotic factors that drive species distribution in different subhabitat types

across a biogeographic region often vary differently across space. To test the SDH, we

measured the abundance of algae and sessile invertebrates in two different subhabitats

(high intertidal zone andmid-intertidal zone) at eight locations along the Atlantic Canadian

coast. We conducted multivariate analyses of the species abundance data to compare

alongshore biogeographic pattern between both zones. For both subhabitat types,

location groupings based on community similarity not always responded to geographic

proximity, leading to biogeographic patchiness to some extent. Nonetheless, both

biogeographic patterns were statistically unrelated, thus supporting the SDH. This lack

of concordance was most evident for southern locations, which clustered together

based on high-intertidal data but showed considerable alongshore patchiness based

on mid-intertidal data. We also found that the ordination pattern of these eight locations

based on sea surface temperature data was significantly related to biogeographic pattern

for the mid-intertidal zone but not for the high intertidal zone. This finding supports the

rationale behind the SDH due to the longer periods of submergence experienced by the

mid-intertidal zone. Overall, we conclude that biogeographic pattern within a region can

depend on the surveyed subhabitat type. Thus, biological surveys restricted to specific

subhabitats may not properly reveal biogeographic pattern for a biota as a whole or

even just for other subhabitats. As many studies generate biogeographic information

with data only for specific subhabitats, we recommend testing the SDH in other systems

to determine its domain of application.
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INTRODUCTION

A central goal of biogeography is to understand species distribution patterns within biogeographic
regions. A first step typically involves describing biogeographic pattern in terms of spatial groupings
of locations based on species abundance data. Thus, many terrestrial and aquatic environments
have been surveyed around the world. However, for reasons related to scientific interest or logistical
constraints, comprehensive surveys are not always done. As a result, biogeographic patterns
for regional biotas are sometimes necessarily inferred based on subsets of data. For instance,
many biogeographic surveys have focused only on specific groups of organisms, such as birds
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(Hazzi et al., 2018), fish (Cowman et al., 2017), trees (Dick and
Pennington, 2019), algae (Stekoll, 2019), crustaceans (Brun et al.,
2020), or ants (Maravalhas and Vasconcelos, 2020), to name just a
few. To some extent, however, different groups of organisms may
differ in biogeographic pattern within a region, as the various
drivers of species distribution may vary in importance among
the groups (Qian et al., 1998; Hart and Chen, 2006; Chiu et al.,
2020). Hence, distribution data for subsets of organisms may not
properly reveal the biogeographic pattern for a regional biota as
a whole.

Biogeographic pattern has also been determined by surveying
only specific subhabitats, here understood as portions of a
habitat with characteristics of their own (e.g., tree canopies in
forest habitats, river beds in lotic habitats). Now, the main
environmental factors that drive species distribution in different
subhabitat types across a region (Pinzon et al., 2011; Whitworth
et al., 2019; Greiser et al., 2020; Looby et al., 2020) often vary
differently across space (e.g., soil properties affecting understory
subhabitats vs. wind patterns affecting canopy subhabitats). Thus,
biogeographic pattern determined with species abundance data
across a region might also depend on the surveyed subhabitat
type, which is hereafter referred to as the subhabitat dependence
hypothesis (SDH) in biogeography. Examples of subhabitats
surveyed to determine biogeographic pattern within a region are
tree canopies (Pettersson et al., 1995; Boudreault et al., 2002),
forest floor (Boudreault et al., 2002), phytotelmata (Trzcinski
et al., 2016), and tide pools (Badger et al., 2017), among
others. However, explicit tests of the SDH are largely lacking,
as that kind of studies typically surveyed only one subhabitat
type. When a comparison of biogeographic pattern between
subhabitats from the same region was done (Boudreault et al.,
2002), some differences did emerge, thereby supporting this
hypothesis, but surveys were restricted to a single group of
organisms (cryptogamic primary producers). Therefore, it is
of interest to test the SDH by considering a wider variety of
organisms from different subhabitats across a biogeographic
region. The present study does so using a rocky intertidal
model system.

Rocky intertidal habitats are those occurring on marine
rocky shores between the highest and lowest elevations
reached by tides (Menge and Branch, 2001). Because of the
daily alternation of high and low tides, intertidal habitats
experience alternating periods of submergence and aerial
exposure every day. Due to tide dynamics, the duration of
periods of aerial exposure increases markedly from low to high
intertidal elevations. As a result, physiological stresses related
to desiccation, thermal extremes, and osmotic potential also
increase considerably with elevation. Although such changes
occur gradually across elevations, average differences between
coarse elevation zones (e.g., different thirds of the full vertical
intertidal range) are pronounced (Eckersley and Scrosati, 2012;
Watt and Scrosati, 2013; Umanzor et al., 2019). Therefore,
such elevation zones represent different subhabitats especially
for sessile species, because such organisms are permanently
attached to the substrate and, thus, must cope with very
different conditions depending on elevation zone. In this context,
this study tests the SDH by comparing the biogeographic

pattern of two elevation zones along the Atlantic Canadian
coast using abundance data for sessile primary producers
and consumers.

As alongshore biogeographic pattern did differ between both
subhabitat types (see “Results”), we also use environmental
data to explore the theory underlying the SDH. In general,
temperature is a major factor influencing the distribution
of species (Pörtner, 2002; Körner et al., 2016). In marine
biogeography, sea surface temperature (SST) plays a particularly
important role (Sanford, 2014; Henderson et al., 2017; Vallée
et al., 2019). In intertidal habitats, since the duration of
submergence periods increases toward lower elevations, the
relationship between alongshore SST pattern and biogeographic
pattern should be stronger the lower on the shore a surveyed
assemblage of sessile species occurs. Therefore, this study also
tests the hypothesis that alongshore SST pattern is statistically
more related to alongshore biogeographic pattern for the lowest
of the two surveyed elevation zones.

MATERIALS AND METHODS

We determined alongshore biogeographic pattern for the high
and mid-intertidal zones (our two subhabitat types). For this
purpose, we surveyed eight rocky intertidal locations spanning
415 km of the Atlantic Canadian coast in Nova Scotia in the
summer of 2017 (Figure 1). For ease of interpretation, these
locations are hereafter referred to as L1 to L8, from north
to south (their names and coordinates are in Table 1). The
surveyed substrate was bedrock in all cases. These locations are
wave-exposed, as they face the open Atlantic Ocean without
physical obstructions. Daily maximumwater velocity (a proxy for
wave exposure) measured with dynamometers in these intertidal
habitats ranges between 6 and 12m s−1 (Hunt and Scheibling,
2001; Scrosati and Heaven, 2007; Ellrich and Scrosati, 2017). The
locations surveyed along this coast are all part of the same (cold-
temperate NW Atlantic) biogeographic region (Adey and Hayek,
2005, 2011).

At each location, we measured the abundance of macroalgae
and sessile invertebrates at the high and mid-intertidal zones.
The high intertidal zone was the upper third of the vertical
intertidal range, while the mid-intertidal zone was the middle
third of the vertical intertidal range. Surveying only sessile
species was particularly appropriate for this study because only
local environmental conditions (e.g., high vs. mid-intertidal
conditions) influence their abundance, as sessile organisms
cannot move away once their reproductive propagules settle
on the substrate. On the contrary, mobile intertidal species
(snails, crabs, etc.) move up and down the shore with the daily
changes in abiotic conditions at low tide (hot-vs-cold and dry-
vs-rainy weather), which makes their abundance less responsive
to the average environmental differences that characterize coarse
elevation zones (Burrows and Hughes, 1989).

At each location, we measured species abundance in 10
quadrats (20 cm × 20 cm) placed haphazardly following the
coastline at each of the high and mid-intertidal zones, avoiding
tide pools. The sampling device was a metallic frame with
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FIGURE 1 | Map showing the eight wave-exposed rocky intertidal locations surveyed along the Atlantic Canadian coast.

100 square subdivisions delimited with monofilament line.
Abundance may be measured with different metrics in ecology
(Veiga et al., 2020). We quantified abundance as percent
cover, a non-destructive approach normally employed for sessile
intertidal species (Menge et al., 2003; Catalán et al., 2020) that is
also adequate for clonal seaweeds that grow in dense stands, for
which the identification of individuals (as opposed to ramets) is
very difficult (Scrosati, 2005). For each quadrat, we determined
the percent cover of a species as the number of subdivisions
covered by half or more by that species when viewing the
quadrat perpendicularly to the substrate at low tide. When there
were macroalgal canopies covering understory organisms, we
first measured the percent cover of the canopy species and
then the cover of the understory species after carefully moving

away the canopies. If a species was present in a quadrat but
did not cover any subdivision by half or more, we recorded its
percent cover for that quadrat as 0.5%. We used field guides and
taxonomic keys to identify the organisms (Gibson, 2003; Sept,
2008; Mathieson and Dawes, 2017). The list of identified species
and their average abundance per location are provided inTable 2.
The two blue mussel species from this coast (Mytilus edulis
and M. trossulus) can only be identified with genetic markers
(Comesaña et al., 1999), so Table 2 refers to them asMytilus spp.,
although genetic samples from wave-exposed intertidal habitats
from this coast have shown a predominance ofM. trossulus (80–
85%) overM. edulis (Tam and Scrosati, 2011). The full data set on
species abundance is available from the figshare online repository
(Scrosati and Ellrich, 2020a).
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TABLE 1 | Basic information about the eight wave-exposed locations surveyed for

this study.

Location code Location name

(geographic coordinates)

Closest location with tide

data (geographic

coordinates)

L1 Glasgow Head (45.3203,

−60.9592)

Canso (45.3500, −61.0000)

L2 Deming Island (45.2121,

−61.1738)

Whitehead (45.2333,

−61.1833)

L3 Tor Bay Provincial Park

(45.1823, −61.3553)

Larry’s River (45.2167,

−61.3833)

L4 Sober Island (44.8223,

−62.4573)

Port Bickerton (45.1000,

−61.7333)

L5 Duck Reef (44.4913,

−63.5270)

Sambro (44.4833,

−63.6000)

L6 Western Head (43.9896,

−64.6607)

Liverpool (44.0500,

−64.7167)

L7 West Point (43.6533,

−65.1309)

Lockeport (43.7000,

−65.1167)

L8 Baccaro Point (43.4496,

−65.4697)

Ingomar (43.5667,

−65.3333)

We measured SST during the months when most of the
growth in cold-temperate intertidal sessile species typically
occurs (May to August). Using SST data for more than 1 year is
advantageous because sessile communities are the result of years
of thermal influences (Schiel et al., 2016). Thus, we measured
SST at each intertidal location every day during the months of
May, June, July, and August for a period that started on 1 May
2015 and ended on 21 June 2017, before we measured species
abundance. We measured SST with submersible loggers (HOBO
Pendant logger, Onset Computer, Bourne, MA, USA) that were
permanently attached to the substrate at the boundary between
the high and mid-intertidal zones using eye screws and plastic
cable ties, allowing almost no contact between the loggers and the
substrate. The loggers recorded temperature every 30min. From
the resulting time series of temperature, we extracted the values of
daily SST, considered as the temperature recorded closest to the
time of the highest tide of each day, when the loggers were fully
submerged in seawater. We determined the time of such tides
using information (Tide and Current Predictor, 2020) for the
tide reference stations that are closest to our surveyed intertidal
locations (Table 1). The full SST data set is also available from the
figshare online repository (Scrosati et al., 2020).

We determined biogeographic pattern separately for the high
and mid-intertidal zones through the multivariate ordination of
locations based on their species abundance data (Clarke et al.,
2014). All of the analyses reported in this paper were done with
Primer 7 with Permanova+ (Anderson et al., 2008; Clarke and
Gorley, 2015). For each elevation zone, we first calculated Bray-
Curtis similarity for each possible pair of quadrats and, based
on that information, we then calculated the multivariate distance
for each possible pair of location centroids. To determine
biogeographic pattern for each intertidal zone, we ran non-metric
multidimensional scaling (NMDS) to produce an ordination
of the corresponding eight location centroids with overlayed

clusters. To test the SDH, we statistically compared the two
resulting biogeographic patterns with a correlative RELATE
test followed by 5,000 permutations for significance testing. To
examine possible associations with the SST data, we first ran
NMDS to produce amultivariate ordination of the eight locations
based on their SST data and Euclidean distances between
locations. Then, separately for the high and mid-intertidal zones,
we used the RELATE technique to test if the centroid-based
biogeographic pattern was statistically related to the SST-based
ordination pattern, using 5,000 permutations for significance
testing for both tests.

RESULTS

We identified 22 sessile species in total, 12 of which occurred
at both elevation zones, one only at the high intertidal zone,
and nine only at the mid-intertidal zone (Table 2). Thus, the
high intertidal zone hosted 13 species (eight macroalgae and five
sessile invertebrates) while the mid-intertidal zone exhibited 21
species (17 macroalgae and four sessile invertebrates).

The multivariate ordination of the eight locations based on
species abundance data revealed biogeographic structure along
the coast for both the high and mid-intertidal zones (Figure 2).
However, the alongshore biogeographic pattern was not the same
for both zones. At the high intertidal zone, there was patchiness
along the northern half of the studied coastal range, as locations
L1 and L3 and locations L2 and L4 formed two distinctive
clusters, while the four locations on the southern half of the
studied coastal range (L5 to L8) formed a tight third cluster
(Figure 2A). At the mid-intertidal zone, the biogeographic
pattern along the northern half of the studied coastal range was
not too different from that at the high intertidal zone, as L2 and
L4 also clustered together while L1 and L3 also differed from
that cluster, although differing between themselves more. On
the southern half of the studied coastal range, however, there
were considerably higher differences among the locations, as
L6 differed from an L5–L7 cluster while L8 differed markedly
actually from all other locations (Figure 2B). Overall, alongshore
biogeographic pattern differed between the high and mid-
intertidal zones, as both patterns were statistically unrelated
(RELATE test’s r= 0.268, p= 0.179). On the other hand, the SST-
based ordination pattern of locations was significantly related
to the biogeographic pattern for locations only for the mid-
intertidal zone (r = 0.442, p = 0.022), as there was no significant
relationship for the high intertidal zone (r = 0.271, p= 0.113).

DISCUSSION

The biogeographic comparison of two intertidal elevation zones
along the Nova Scotia coast has supported the SDH, as both
subhabitat types differed in alongshore biogeographic pattern.
An important implication of these findings is that, in terms of
spatial groupings of surveyed locations, biogeographic pattern
for a regional biota as a whole may not be adequately inferred
from data measured for only one subhabitat type. This is a
potentially relevant concept for biogeography because, for a
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TABLE 2 | Abundance of sessile species (mean percent cover, with SE in parenthesis) found at the high and mid-intertidal zones at each of the eight surveyed intertidal

locations (L1 to L8).

High intertidal zone

Taxon L1 L2 L3 L4 L5 L6 L7 L8

Macroalgae

Chondrus crispus 0.70 (0.70) - 0.30 (0.21) 6.20 (3.13) 5.10 (2.00) 1.10 (0.80) 21.80 (5.25) 8.05 (2.68)

Corallina officinalis - - - 0.30 (0.21) 0.10 (0.10) - 0.05 (0.05) 0.20 (0.20)

Elachista fucicola 1.35 (0.74) 5.70 (1.37) 2.50 (1.07) 1.80 (0.76) 13.40 (1.77) 11.70 (1.86) 6.60 (1.25) 8.60 (2.12)

Fucus vesiculosus 9.70 (4.65) 88.30 (2.89) 30.10 (11.66) 97.20 (1.52) 87.50 (3.44) 63.8 (7.04) 85.20 (5.25) 52.60 (8.25)

Hildenbrandia rubra 3.30 (0.82) 3.95 (0.82) 9.00 (2.67) 2.07 (1.04) 19.00 (2.93) 22.30 (4.96) 10.90 (2.20) 10.70 (2.52)

Lithothamnion glaciale - - - 0.30 (0.21) - 0.20 (0.13) 2.15 (0.94) 3.70 (1.27)

Porphyra umbilicalis - - - - - 2.35 (0.94) - -

Scytosiphon lomentaria - - - 0.10 (0.10) - 0.10 (0.10) - -

Invertebrates

Dynamena pumila - 1.55 (0.71) - - - - 0.20 (0.11) -

Modiolus modiolus - - - - - - 0.10 (0.10) -

Mytilus spp. 0.15 (0.08) 2.25 (0.66) 0.70 (0.52) 0.25 (0.08) 10.45 (5.25) 13.80 (3.46) 7.90 (1.60) 4.00 (1.62)

Semibalanus balanoides 24.20 (6.54) 22.40 (2.82) 34.90 (9.90) 4.13 (0.69) 2.90 (0.69) 8.30 (3.37) 2.60 (0.58) 1.60 (0.54)

Urticina felina - - - - - - 0.05 (0.05) -

Mid-intertidal zone

Taxon L1 L2 L3 L4 L5 L6 L7 L8

Macroalgae

Chondrus crispus 3.70 (1.63) 9.40 (2.70) 5.40 (3.30) 18.10 (6.75) 37.80 (4.83) 5.20 (2.22) 63.30 (8.13) 89.50 (5.81)

Chordaria flagelliformis - - - - 0.70 (0.52) - - -

Cladophora rupestris - - - 1.50 (0.86) - - - -

Codium fragile 0.10 (0.10) - 2.40 (0.65) 0.25 (0.20) 1.20 (0.36) - - -

Colpomenia peregrina - - - - - - - 0.70 (0.52)

Corallina officinalis 0.10 (0.07) 1.75 (0.78) 0.45 (0.40) 4.40 (2.07) 4.55 (1.38) 0.50 (0.40) 2.55 (0.93) 1.50 (0.87)

Elachista fucicola 54.00 (8.84) 12.80 (2.51) 18.90 (8.10) 16.70 (4.163) 13.10 (3.80) 11.50 (2.10) 19.20 (6.07) 3.90 (1.65)

Fucus vesiculosus 18.60 (8.75) 100 (0) 11.40 (3.82) 76.50 (9.14) 49.50 (9.81) 73.70 (6.45) 46.20 (12.50) 2.10 (1.79)

Hildenbrandia rubra 10.00 (4.44) 12.10 (2.64) 18.20 (4.44) 20.10 (6.42) 13.90 (4.17) 38.70 (11.84) 5.70 (2.37) -

Laminaria digitata - 0.10 (0.10) - - - - - -

Leathesia difformis - - - - 0.10 (0.07) - - -

Lithothamnion glaciale 0.10 (0.10) - - 0.30 (0.21) 0.30 (0.21) 7.80 (4.07) 3.10 (0.95) -

Palmaria palmata - - - 0.10 (0.10) - 2.30 (1.15) - -

Polysiphonia stricta - - - - - 4.90 (2.19) 3.30 (1.69) -

Porphyra umbilicalis - - 7.80 (2.15) - 0.70 (0.25) 2.20 (0.98) 0.10 (0.10) -

Scytosiphon lomentaria 6.10 (2.27) - 2.30 (0.78) - 0.40 (0.40) - 0.20 (0.20) -

Ulva lactuca - - - - 0.30 (0.21) - - 0.20 (0.20)

Invertebrates

Dynamena pumila - - - 0.10 (0.10) - - 0.50 (0.40) -

Mytilus spp. 1.15 (0.36) 3.60 (0.64) 1.80 (1.39) 0.40 (0.10) 1.90 (0.56) - 3.95 (1.43) 11.20 (4.51)

Semibalanus balanoides 4.35 (2.37) 33.60 (4.40) 18.85 (6.49) 3.35 (0.84) 0.50 (0.11) 0.15 (0.08) 0.95 (0.58) -

Urticina felina - - - - - - 0.45 (0.30) -

number of terrestrial and aquatic systems, biogeographic pattern
within a region has been determined exclusively based on data
for specific subhabitats (Pettersson et al., 1995; Boudreault et al.,
2002; Trzcinski et al., 2016; Badger et al., 2017). While such an
approach was appropriate for the particular goals of those studies,

ultimately it is important to recognize that biogeographic pattern
for the entire biota might not be properly inferred from such
surveys. Therefore, an important next step in this research line
would be to test the SDH in other systems to identify factors
that might influence its domain of application. In this sense,
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FIGURE 2 | NMDS ordination plots of the eight location centroids with overlayed clusters for the (A) high intertidal zone and (B) mid-intertidal zone.

a comparison of biogeographic pattern between two terrestrial
subhabitats (tree canopies vs. forest floor) based on data for
cryptogams has also revealed a difference in pattern (Boudreault
et al., 2002), suggesting that the SDH might be applicable to a
variety of systems.

The SDH stems from the notion that the abiotic factors
that primarily drive species distribution for different subhabitat
types across a biogeographic region (Pinzon et al., 2011;
Whitworth et al., 2019; Greiser et al., 2020; Looby et al.,
2020) often vary differently across space. SST is an important
driver of marine species distribution in general (Sanford, 2014;
Henderson et al., 2017; Vallée et al., 2019) but, in intertidal

habitats, this factor is expected to have a larger influence on
the distribution of sessile species the longer time they spend
underwater, which is mainly determined by their elevation on
the shore (Menge and Branch, 2001). Thus, the occurrence of
a relationship between the SST-based ordination of locations
and biogeographic pattern for the mid-intertidal zone but not
for the high intertidal zone lends support to the rationale
behind the SDH. These are valuable results because they are
based on in situ SST data, as opposed to satellite SST data,
which are often less accurate for coastal environments (Smale
and Wernberg, 2009) and sometimes even unavailable for
some days.
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Besides its suitability to test the SDH, our data set has also
revealed species abundance trends in wave-exposed intertidal
habitats along the Nova Scotia coast (Table 2). Such patterns
had not been previously described and, thus, can be a
useful reference for future studies on biological invasions,
environmental impacts, or species distribution changes resulting
from climate change. Complex alongshore community patterns
have emerged, including species that predominate on northern
(the barnacle Semibalanus balanoides) or southern (the red
alga Chondrus crispus) locations and species that have a
more uniform, albeit patchy, distribution along the coast
(the brown alga Fucus vesiculosus). Identifying the abiotic
and biotic drivers of those alongshore changes necessarily
remained beyond this study’s reach. To address that goal,
it would be necessary to have location-specific information
on, for example, nutrient concentration (Kraufvelin et al.,
2006; Vinueza et al., 2014), influences of upwelling and
surf zone on planktonic food supply and larval transport
(Schiel, 2004; Menge and Menge, 2013; Shanks and Morgan,
2018), benthic disturbance (Cimon and Cusson, 2018), and
interspecific interactions (Menge, 1995; Harley, 2011). However,
the Nova Scotia coast lags behind other coasts of the
world on such details. Information on those factors is
becoming available for the Nova Scotia coast (Petzold and
Scrosati, 2014, Ellrich and Scrosati, 2016, Scrosati and Ellrich,
2018, 2020b,c), which should thus stimulate further studies
to ultimately explain the observed patterns of alongshore
species distribution.

In summary, the present study shows that biogeographic
pattern determined with species abundance data across a region
can depend on the surveyed subhabitat type. Thus, biological
surveys restricted to specific subhabitats may not properly
reveal spatial groupings of locations for a biota as a whole or
even just for other subhabitats. Having reliable information on
biogeographic pattern is not only important for the advancement
of biogeography as a discipline, but also for applied purposes
such as the design and management of protected areas (Reiss
et al., 2009; Sayre et al., 2020; van Niekerk et al., 2020). As noted

above, there is a wealth of biogeographic information based on
data only for specific subhabitats, and such studies will likely
continue to be done. It would thus be useful to investigate how
predictive biogeographic information for different subhabitats
can be for other subhabitats or for whole biotas. Therefore, we
recommend to test the SDH in other systems to determine its
domain of application.
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