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INTRODUCTION

The Pycnogonida, or sea spiders, are essential arthropod taxa for understanding the early
evolutionary history of arthropods and relationships between primary clades of this phylum.
Studies based on both molecular and morphological data suggest that sea spiders have archaic
origins as old as the early Cambrian. They are also considered an early-branching lineage with
a deep split origin, which is implied by their incomplete early fossil records and relatively
recent diversification of extant members (Dunlop and Selden, 2009; Rota-Stabelli et al., 2013;
Sabroux et al., 2019; Lozano-Fernandez et al., 2020). However, their peculiar morphologies such as
extremely reduced trunk and 8–12 walking legs containing part of their digestive and reproductive
organs are highly derived and very unusual among arthropods (Sabroux et al., 2019). With a
combination of the molecular phylogenetic studies using the limited numbers of marker genes,
their peculiar adult and developmental morphologies had led the Cormogonida hypothesis (Zrzavý
et al., 1998; Giribet et al., 2001; Dunlop and Arango, 2005; Machner and Scholtz, 2010), which
places pycnogonids as a sister taxon to all other arthropods, as opposed to the monophyletic
Chelicerata hypothesis, which recognizes their sister taxon relationship with the Euchelicerata.
Unlike these molecular phylogenetics studies based on a few markers, numerous phylogenomic
studies based on thoroughly sampled expressed sequences tags repeatedly designated sea spiders
as basalmost chelicerates (Meusemann et al., 2010; Regier et al., 2010; Rehm et al., 2011). The
most recent phylogenomic researches incorporating significantly increased taxa and tested loci
based on the whole-genome or transcriptome data (Sharma et al., 2014; Ballesteros and Sharma,
2019; Lozano-Fernandez et al., 2019) have brought consensus on pycnogonids firmly nested in
the Chelicerata.

These recent phylogenomic studies provided newly sequenced chelicerate genomes or
transcriptomes, in addition to invaluable insights on the evolution of Euchelicerata (Sharma et al.,
2014; Ballesteros and Sharma, 2019; Lozano-Fernandez et al., 2019). However, studies using such
an approach on the Pycnogonida are currently very limited and fail to incorporate a de novo
assembled pycnogonid genome (Dietz et al., 2019; Ballesteros et al., 2020). This lack of pycnogonid
genome assembly is also a challenging obstacle for studies on the evolution of their distinctive
morphology that requires high-quality genome assemblies with reliable annotations (Garb et al.,
2018). To the best of our knowledge, no pycnogonid genome has been sequenced to date, and
there are only three cases of unpublished flow cytometry reports on pycnogonid species so far
(Animal Genome Size Database, https://genomesize.com). We aimed to provide an annotated
pycnogonid genome sequence using the PacBio long-read de novo genome sequencing to provide
useful information for understanding the evolution of unique pycnogonid morphological and
developmental characteristics. Here, we report a draft of the first high quality annotated genome
of a common sea spider species, Nymphon striatum, in Korean waters. This is the first de novo
sequenced and assembled genome that represents the Class Pycnogonida.
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RESULTS

The genome size of N. striatum was estimated at ∼607Mb,
while the genome survey result showed relatively high
(∼1.9%) heterozygosity ratios and prominent heterozygosity
peaks clearly separated from the homozygosity peaks
(Supplementary Figure 1). The almost equal distributions
of non-duplicated (1X) and duplicated (2X) K–mers at the
homozygosity peak further supported the highly heterozygous
nature of its genome (Supplementary Figure 3) that we
speculated the pooling of N. striatum specimens was likely
its main cause. The initial contig–level genomic assembly
of N. striatum was 1.26 Gb long, of which the total base
length exceeded twice those of the genome survey results
(Table 1A). Genome assembly assessment using Benchmarking
Universal Single-Copy Orthologs (BUSCO) (Simão et al.,
2015) also showed that 53.47% of BUSCO genes from the
initial assembly were duplicated, which further indicates the
presence of numerous redundant haplotypic contigs (Table 1B).
Therefore, these haplotypic contigs were reduced by applying
Purge Haplotigs (Roach et al., 2018) and Redundans (Pryszcz
and Gabaldoón, 2016). The Purge Haplotigs-curated contig–
level draft genome demonstrated prominent improvements
in its total length, which was reduced to 732.9Mb, and
contig N50 almost doubled to 360.90Kb, with its number of
contigs being reduced to 2,946 (Table 1A). Using arthropod
database, the BUSCO assessment of the revised contig–level
assembly resulted in a substantial improvement: the percentage
of complete, but duplicated BUSCO genes was reduced to
16.79% (Table 1B and Supplementary Figure 2). The K–mer
distribution analyses using the K–mer analysis toolkit (Mapleson
et al., 2017), further found that the ratios of heterozygous
haplotigs (indicated by 2X, or duplicated K–mers) were greatly
reduced at the homozygosity peak after running Purge Haplotigs
(Supplementary Figure 3). After conducting scaffolding and
gap closing, the final version of the scaffold–level draft genome
was composed of 1,638 scaffolds with scaffold N50 increased to
701.80Kb and a minute fraction (0.04%) of N bases (Table 1A).
We found that 31.9% of the genomic scaffolds were longer than
500Kb, and among them, 159 scaffolds were over 1,000Kb.
In particular, only seven scaffolds were shorter than 10Kb,
which indicated that our genome was highly contiguous
(Figure 1A).

An ab initio repeat element prediction resulted in a total
of 7.14% of the genomic sequences annotated as repetitive
sequences (Table 1C). Among these repeat elements, short
interspersed nuclear elements (SINEs) accounted for 28.20%
of the total length of the annotated repeat sequences, and
they were recorded as the most enriched repeats from the N.
striatum genome. The SINEs were followed by simple repeats
(24.09%), small RNAs (21.35%), and non-SINE interspersed
elements (20.82%), while satellites (0.36%) occurred the least
among the categorized repeat elements (Figure 1B). The final
N. striatum genome consisted of 28,539 genes which spanned
56.01% of the total genomic length. Additionally, 14,247
transfer RNA and 308 ribosomal RNA genes were annotated
(Table 1D). The summed repetitive element contents of 7.14%

and gene span of 51.06% were significantly different when
they were compared to those of other chelicerate genomes
used in the basic comparative analyses of this current study.
The ortholog analysis conducted using six ecdysozoan genomes
(Supplementary Table 3) resulted in 7,597 orthologous clusters
and 3,888 singletons for N. striatum, with 4,493 orthologous
clusters shared within four chelicerate species (Figure 1C).
Phylogenetic tree reconstruction strongly supported the earliest-
branching position of N. striatum nested in the monophyletic
Chelicerata (Figure 1D) with maximum bootstrap support
values (100%) and posterior probabilities (1.0). Nevertheless,
more terrestrial arachnid taxa are required to be sampled in
further analysis to provide a conclusion about a contentious
phylogenetic position of horseshoe crabs deeply nested in
the Arachnida that the recent phylogenomic studies on the
Euchelicerata have debated (Sharma et al., 2014; Ballesteros and
Sharma, 2019; Lozano-Fernandez et al., 2019). To sum up, we
suggest that the draft N. striatum genome that we assembled
is nearly complete and provides the first reference genome
representing pycnogonids.

MATERIALS AND METHODS

Sample Collection and Sequencing
We collected 40 individuals of N. striatum at Sacheon-hang,
(37.82609◦N, 128.93379◦E, at a depth of 32m, on 2018.07.12.,
NCBI BioSample accession ID: SAMN13567730), South Korea
by SCUBA diving. These 40 sea spiders were brought to the
laboratory alive, and then pooled together to compensate for the
small size of the organisms and to ensure that the amount and
quality of extracted DNA are acceptable for PacBio sequencing.
All 40 sea spider individuals were collected from a single
population at the same location tominimize the heterozygosity of
the sequenced genomic reads. These pooled sea spiders were then
buffered with RNAlaterTM (Thermo Fisher Scientific, MA, USA)
and lysed using QIAzol Reagent (Qiagen, MA, USA) according to
the manufacturer’s protocols. To isolate the DNA, the lysate was
centrifuged according to the QIAzol Reagent protocol. The DNA
sample was then extracted from the interphase of the lysate using
the MG Genomic DNA Purification kit (Macrogen Inc, Seoul,
Korea). The extracted DNA sample was quantified by NanoDrop
1000 spectrometer (Qiagen,MA, USA) and qualified using a 2100
Bioanalyzer (Agilent Technologies, CA, USA).

We generated and sequenced two copies of genomic Illumina
Paired–end (PE) libiraries (Illumina HiSeq X Ten, read-length
151 bp, insertion size 350 bp), five different insert–sized Mate
pair libraries (Illumina NovaSeq 6000, read-length 101 bp,
insertion sizes of 550 bp, 3 kb, 5 kb, 8 kb, 10 kb), and a single
PacBio library (PacBio Sequel, SMRTbell 20 kb library) for N.
striatum (Supplementary Table 1). These libraries for Illumina
and PacBio sequencing were prepared using their respective
manufacturer’s instructions. The Illumina platforms generated
136.28 Gb of genomic PE raw reads and 287.98 Gb of Mate pair
raw reads, and the PacBio Sequel (Pacific Biosciences, CA, USA)
platform generated 84.83 Gb of long–read sequences with their
N50 estimated as 19.43 Kb.
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TABLE 1 | Summary of genome assembly and annotation of Nymphon striatum.

Initial assembly Curated assembly Final assembly

A. Summary of statistics of the genome assemblies

Total bases (bases) 1,260,501,127 732,914,915 744,788,989

No. of contigs 8,733 2,946 2,946

Average contig length (bases) 144,337 248,783 248,783

Maximum contig length (bases) 2,477,793 2,479,102 2,479,102

Contig N50 (bp) 221,141 360,904 360,904

No. of scaffolds – – 1,638

Average scaffold length (bases) – – 454,694

Maximum scaffold length (bases) – – 3,927,965

Scaffold N50 (bases) – – 701,800

N’s (%) 0.00 0.00 0.04

GC ratio (%) 35.37 35.37 35.37

B. BUSCO validations of genome assemblies (arthropoda_odb9)

Initial assembly Curated assembly Final assembly

Complete BUSCOs (C = S + D) (%) 96.53 95.22 96.53

Complete & single-copy (S) (%) 43.06 78.42 78.80

Complete & duplicated (D) (%) 53.47 16.79 17.73

Fragmented BUSCOs (%) 0.94 1.69 0.94

Missing BUSCOs (%) 2.53 3.10 2.53

C. Brief statistics of genomic annotations

Total bases, repeat elements (bases) 52,434,830

No. of repeat elements (hits) 564,918

Genome coverage of repeats (%) 7.14

No. of predicted genes 28,539

Genome coverage of gene regions (%) 55.06

D. Gene annotations

Blast hits 27,086

No hits 1,453

Average gene length (bases) 2,130

Average intron length (bases) 1,311

Average exons/gene 10.33

Average introns/gene 9.33

No. of transfer RNAs 14,247

No. of ribosomal RNAs 308

De novo Assembly of N. striatum Genome
De novo sequenced genomic Illumina reads were assessed
using FastQC v0.11.7 (Marçais and Kingsford, 2011) and then
underwent adapter trimming and filtering (Q > 30) using our
in–house scripts. These genomic PE reads were subjected to the
genome survey by Jellyfish v2.2.10 using its configurations of
count step (-C -c 3 -s 100000000), merge step (default parameter),
histo step (-h 10000000000), and k–mer sizes (17, 21, 25 bp).
The HGAP 4 (Chin et al., 2013) assembly application was used
to assemble 84.83 Gb of PacBio subreads into contigs with its
default operating options for alignment, assembly, consensus,
and polishing using the Arrow application. These assembled
contigs were error–corrected by mapping filtered genomic PE
sequences using default parameters of Pilon v1.21, followed by
additional polishing by mapping PacBio reads using SMRT Link
(v6.0.0.47841) to obtain consensus genomic contig sequences.

To reduce these haplotypic contigs from our initial assembly,
Purge Haplotigs and the reduction module of Redundans were
applied with their default operating parameters, respectively.
The statistics and BUSCO assessments of the two alternatives
of curated contig-level assembly were then compared. Since the
Purge Haplotgis-curated contig-level genome showed superior
statistics of its assemblage (Supplementary Table 2A) and
duplicated complete BUSCO gene contents (16.79 vs. 34.8%,
Supplementary Table 2B) than those of Redundans curated
one, it was selected for the downstream analyses. The K–mer
analysis toolkit (Mapleson et al., 2017) was used to validate
contig–level assemblies before and after purging haplotigs by
mapping the PE reads against the genome assemblies with using
default parameters. The Scaffolding Pre-assembled Contigs after
Extension (SSPACE, Boetzer et al., 2010) program was used to
scaffold haplotig–purged contigs with mate pair reads of five
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FIGURE 1 | Characteristics of the Nymphon striatum genome assembly. (A) The length distributions of the gap–closed scaffolds; (B) ab initio predicted repetitive

elements and their subclass distributions; (C) a Venn diagram of the orthologous clusters among five chelicerate species; (D) the phylogenetic relationship of N.

striatum with other six ecdysozoan species; Caenorhabditis elegans was selected as an outgroup taxon for the analysis. For each node, its bootstrap support value

and the posterior probability are indicated at the base of the node.

insertion sizes. The gaps between genomic scaffolds were closed
using PBJelly (English et al., 2012) and GMcloser (Kosugi et al.,
2015). After gap closing, the scaffolds were polished once more
using the SMRT Link to finalize the scaffold–level of the draft
genome ofN. striatum. BUSCO v2 was applied to assess our three
versions of genome assemblies at each respective step (Table 1B)
using the eukaryote_odb9 and arthropoda_odb9 databases.
Repetitive sequences of the draft genome were annotated ab
initio and then masked for the gene annotation procedure using
RepeatMasker v4.0.6 (Tarailo-Graovac and Chen, 2009) with our

customized RepBase library (based on RepBase 24.03), which is
available in the online Supplementary Data.

Genomic Annotations
The NCBI reference genome datasets of three chelicerates
(Supplementary Table 3) were downloaded for the downstream
steps of genomic annotations.De novo transcriptome sequencing
was conducted, nevertheless the sequenced transcriptomic reads
were abandoned due to their low quality that the pooling
procedure of specimens potentially resulted in. Therefore,
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GeMoMa (Keilwagen et al., 2018) was used to predict open
reading frames with homology-based approach, based on the
gap-closed N. striatum genome and transcriptome datasets of
three reference chelicerate genomes. The Seqping v0.1.33 pipeline
(Chan et al., 2017) was used to conduct gene model prediction
and annotation, based on the direct evidence of reference protein
sets from three chelicerate genomes and ab initio predicted
gene models, which were trained using the evidence. Three
chelicerate protein sequences were manually curated to reduce
redundant copies, and then used as a reference. Two different
Seqping associated tools, GlimmerHMM and AUGUSTUS were
trained using these protein reference data, and they were
used to predict gene models. MAKER2 (v2.31.8) was used
to combine the homology–based and ab initio predicted gene
models to construct a consensus set of annotated genes (Holt
and Yandell, 2011; Chan et al., 2017). Then, these gene models
were functionally annotated using BLAST (v2.7.1+) against the
bioinformatics databases which were applied for the research of
theAmphibalanus amphitrite reference genome (Kim et al., 2019)
(Supplementary Materials).

Orthologous Gene Families Analysis and
Phylogenomic Assays
Six ecdysozoan reference genome datasets were selected and
downloaded (Supplementary Table 3) from NCBI for analyzing
orthologous genes using OrthoMCL v2.0.9 (Fischer et al.,
2011). Datasets of non–chelicerate species were excluded
for increasing the visual legibility of the Venn diagram of
analyzed orthologs (Figure 1C). To construct phylogenetic tree,
we curated 106 non–redundant orthologous genes that were
shared with all seven analyzed genomes. These orthologs were
aligned and then BeforePhylo (https://github.com/qiyunzhu/
BeforePhylo) was used to concatenate them into a supermatrix.
MAFFT was used to obtain an alignment of these concatenated
protein sequences (Katoh et al., 2017). To analyze phylogenetic
relationship using maximum likelihood and Bayesian inference

methods, RAxML 8.2.12 (Stamatakis, 2014) and MrBayes 3.2.7
(Ronquist et al., 2012) were used with 1,000 and 3,000,000
pseudoreplication values, respectively.
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