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The honey bee (Apis mellifera) is an important pollinator as well as an important
test model for pesticide effects on other insect pollinators. Honey bees have been
experiencing high mortality in both the United States and worldwide. Pesticide exposure
has been identified as one of the many stressors causing this mortality. Effects of various
pesticides have been measured for multiple responses such as learning, memory
performance, feeding activity, and thermoregulation. These studies were conducted at
many different temperatures (11–35◦C); however, few studies compared toxicity of the
same pesticide to bees at different temperatures. It is possible that the same pesticide
might show different toxicity to honey bees at different temperatures. To reveal such
potential interactions, we administered low doses of two neonicotinoid insecticides
(imidacloprid and thiamethoxam) at three different temperature scenarios (35◦C, 24◦C,
and a varying temperature) and determined the effects on honey bee survivorship. We
discovered that honey bees are much more sensitive to the neonicotinoid pesticides
imidacloprid and thiamethoxam at a constant 24◦C or at a varying temperature (night at
13◦C and day at 24◦C) compared to bees at 35◦C. These results suggest that honey bee
colonies during winter time will be more sensitive to pesticides. Doses of neonicotinoids
that are safe to colonies during summer might kill them during the winter time.

Keywords: overwintering bees, temperature, neonicotinoids, pesticide toxicity, Apis mellifera

INTRODUCTION

Pollinators are responsible for the transfer of pollen between flowers, helping fruit and seed
production in approximately 88% of flowering plants (Ollerton et al., 2011). Whereas a wide variety
of animal taxa can work as pollinators (Ollerton, 2017), honey bees (Apis mellifera) are highly
efficient in pollen transfer and are used for the majority of pollination services in both cultivated
and wild plants (Willmer et al., 2017).

Pesticides are widely used in agriculture, but they can also be devastating to the health of many
non-target organisms (Desneux et al., 2007; Schäfer et al., 2012). Recently, great attention has been
paid to the effects of neonicotinoid pesticides on honey bees and their potential role in harming
the health of honey bee colonies all over the world (Matsumoto, 2013). These systemic insecticides
are strong agonists of the nicotinic acetylcholine receptors (nAChR), mainly circulated in the insect
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central nervous system, and can interrupt processes related
to cholinergic neurotransmission, such as olfaction, learning,
and memory (Jones et al., 2006; Williamson and Wright,
2013). Currently, 30% of the insecticides used worldwide are
neonicotinoids (Simon-Delso et al., 2015), and honey bees are
exposed to neonicotinoids both in the field and inside the hive
(Lambert et al., 2013). The sublethal effects of neonicotinoids
on honey bees have been extensively studied at many different
physiological levels (Aliouane et al., 2009; Henry et al., 2012;
Catae et al., 2014; Oliveira et al., 2014; Alburaki et al., 2015), but
whether this toxicity interacts with low temperature has not yet
been explored.

Honey bees are distributed in a wide geographic range, with
greatly differing climatic conditions (Ruttner, 1988). This wide
range includes many areas with cold and challenging winters.
Successful overwintering of honey bee colonies is crucial to meet
the pollination requirements of early spring blossoming crops
like as cherries, apples, and almonds (Doeke et al., 2015).

Honey bees survive cold winters through the development
of a special type of bees called “winter bees” (Maurizio, 1950;
Münch and Amdam, 2010). Winter bees have vital endocrine and
metabolic changes that differ from summer adult worker honey
bees, which may increase their lifespan by 6–8 times (Huang and
Wang, 2015). Numerous studies have found that winter bees have
low levels of juvenile hormone as compared to summer bees and
high levels of vitellogenin and total proteins in the hemolymph
(Fluri et al., 1982; Huang and Robinson, 1995; Hartfelder and
Engels, 1998); reduced protein synthesis, transportation through
the midgut, and catabolism (Crailsheim, 1990; Haszonits and
Crailsheim, 1990); and lesser activity of monooxygenase enzymes
that are essential for detoxification of pesticides (Smirle and
Winston, 1987). Yet, it remains ambiguous how the physiological
variations between summer and winter workers change pesticide
sensitivity. One study showed that winter bees are less sensitive
to a fungicide (imidazole) and an insecticide (pyrethroid) (Meled
et al., 1998), but another one showed higher sensitivity in winter
bees (in the spring, after winter was over) to thiamethoxam and
clothianidin compared to summer workers (Baines et al., 2017).
It is possible that near the end of the winter, these bees might be
more similar to summer foragers after their fat and vitellogenin
levels are depleted due to brood rearing.

Neonicotinoids have been widely studied for direct effects on
honey bees (Gill et al., 2012) as well as changes in behaviors,
such as learning (Decourtye et al., 2003; El Hassani et al., 2008;
Aliouane et al., 2009), memory performance (Alix et al., 2009;
Thompson, 2010), and feeding activity (Blacquière et al., 2012).
Effects of thiamethoxam and clothianidin have been shown to
affect survival at 29◦C (Wood et al., 2020) and thermoregulation
at 22 and 33◦C (Tosi et al., 2016); however, almost no studies
compared the toxicity of the same pesticide to bees at different
temperatures. Brood-nest temperature is usually regulated at
close to 35◦C (Li et al., 2016) but many pesticide toxicities are
conducted at room temperature (25◦C) (e.g., Burley et al., 2008;
Lushchak et al., 2018; and recommended as a standard method by
Medrzycki et al., 2013). It is possible that the same pesticide might
show different toxicity to honey bees at different temperatures but
this is not studies for neonicotinoid pesticides.

Honey bees can be exposed to pesticides via either
nectar/honey (energy source), or via pollen (protein source).
Honey samples have been shown to contain high enough
levels of neonicotinoids to affect honey bees (Mitchell et al.,
2017), with the average total concentration of the five measured
neonicotinoids at 1.8 ng/g in contaminated samples and a
maximum of 56 ng/g. Pollen samples are even worse: almost 60%
of samples contained at least one pesticide, with imidacloprid as
high as 206 ppb (Mullin et al., 2010). Because an individual honey
bee needs to consume about 11 mg of sugar (using honey) per
day (Huang et al., 1998) and bees will also consume pollen before
becoming winter bees (Maurizio, 1950), bees during winter will
also be exposed to pesticides through both of these pathways.

In this study, we tested the effects of sublethal doses of the
neonicotinoids thiamethoxam and imidacloprid, two commonly
used insecticides at different temperatures, representing different
conditions experienced by bees: constant 24 (room temperature),
constant 35◦C (brood-nest temperature), and 13◦C/24◦C
(representing common night and day time temperatures). The
objective of this study was to evaluate whether two neonicotinoid
pesticides show different toxicity to honey bees at different
temperatures. To meet this objective, we performed multiple
cage trials. Firstly, we examined the survival of honey bees
exposed to imidacloprid and thiamethoxam at 24◦C compared
to 35◦C, using bees from the brood-nest (Trial 1) and using older
workers from outside the cluster (Trial 2). Next, we compared
the survival effects of exposure to these two pesticides for older
workers at 35◦C compared to a constant low temperature (23)
and a normal winter temperature variation (ranging from 13◦C
to 24◦C, Trial 3).

MATERIALS AND METHODS

Three cage trials were conducted in November 2019 at the Honey
Bee Biology Lab, Michigan State University, United States (with
colonies at 42◦40′45.1′′N 84◦28′38.8′′W). In Trial 1, bees from
the brood-nest were used. In Trials 2 and 3, older workers near
the top of the winter cluster were sampled with an insect vacuum
and then brought into the lab. All bees were anaesthetized
with carbon dioxide and divided into cages. The wooden cages
(14 × 12 × 9 cm) had mesh in the bottom, a piece transparent
plastic sheet with holes in the front, two holes in the top with
space for inserting feeding vials, and a piece of cloth was fixed
at the center of each cage for possible clustering, if needed.
After collection of bees, prior to the start of each trial, the
bees were given a 24 h acclimatization period, during which
they received untreated 50% sucrose solution. Bees that died
during the acclimatization period were removed and excluded
from analysis.

In Trial 1 six cages with 40 young bees each were monitored,
and Trial 2 six cages containing 25 to 35 older bees, were
monitored (Supplementary Table S1). In each trial, three cages
were kept in an incubator set at 35◦C (brood-nest temperature)
and three cages were kept in an incubator set at 24◦C (room
temperature). Both incubators were maintained at 50% relative
humidity. At the end of both Trials 1 and 2 (end of 4 days),
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TABLE 1 | Recorded temperatures of one typical day (day 5) of the three trials.

Trial (Colony ID) Planned
temperature

Actual temperature
(◦C) (mean + SE)

1 (A) Brood-nest 34.75 ± 0.23

Low 23.76 ± 0.02

2 (B) Brood-nest 34.80 ± 0.03

Low 23.27 ± 0.10

3 (C, D, E) Brood-nest 34.43 ± 0.09

Low 23.28 ± 0.72

Varying Day: 24.19 ± 0.13
Night: 13.22 ± 0.01

N = 48 (every 30 min) for all data points except day and night (N = 24).

the bees that were kept at 35◦C were transferred to the 24◦C
incubator, and all bees were monitored for another day.

In Trial 3, 25 to 40 bees per cage were housed at three
temperatures (Supplementary Table S1), with 9 cages (3
treatments × 3 colonies) for each of the following three
different temperatures: 35◦C, 13 to 24◦C, and room temperature
(23◦C, insider a drawer in complete darkness). The 13–24◦C
treatment was a changing temperature setting with the incubator
programmed to have the temperature at 24◦C during the day

(7:00 am to 6:00 pm) and 13◦C at night (6:30 pm to 6:30 am)
to simulate the natural temperature variation during late fall or
early winter. Each temperature had three cages of bees (two with
pesticides and one control).

Bees were provided with 0.4 ng/µl (0.25 ppm) imidacloprid,
or 0.2 ng/µl (0.125 ppm) thiamethoxam (dissolved in acetone
then added to syrup) or no pesticide (control). Control bees
received the same amount of acetone (12.5 µl in 20 ml of sugar
syrup). In Trial 2, bees received a half dose of the pesticides
for the first day, i.e., 0.2 ng/µl (0.125 ppm) imidacloprid or
0.1 ng/µl (0.0625 ppm) thiamethoxam. After the first day we
adjusted to the same dose as Trials 1 and 3 for the remainder
of the experiment.

Statistical Analysis
Data in three trials were analyzed using R 3.5.2 using Kaplan–
Meier survival analysis and Log Rank Test test. For Trial
3, three-way ANOVA was also used to analyze the mortality
differences among the three temperatures, main treatment (two
pesticides and one control) and the three colonies. Mortality
data were first transformed [arcsine (square root of mortality)]
to make the data fit a normal distribution. Standard errors are
reported after the mean.
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FIGURE 1 | Results of Trials 1 and 2 showing Kaplan–Meier survival curves of bees fed with imidacloprid or thiamethoxam or sugar only (control) at 23/24 at 24◦C
(left, A,C) or 35◦C (right, B,D). Different letters at each line indicate significant differences with Log Rank tests at P < 0.05.
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RESULTS

Digital recordings of temperatures are presented in Table 1
during each of the three trials.

There was a significant negative effect of both neonicotinoid
insecticides on the survival of caged honey bees compared to the
control when kept at 24◦C (Log Rank Test; X2 = 63.5, df = 2, P
< 0.001, Figure 1A, Trial 1). This negative effect on survival was
not seen when bees were kept at 35◦C (Log Rank Test; X2 = 3.4,
df = 2, P = 0.2, Figure 1B).

Similar effects negative effects on survival were seen in older
workers (Trial 2). When the survival data were analyzed over
the 4 days, there was a significant negative effect of both
neonicotinoid insecticides on the survival of caged honey bees
at 23◦C; the survival of bees between the two pesticides was
also significantly different, with imidacloprid having a greater
negative effect on survival (Log Rank Test; X2 = 24.3, df = 2,
P < 0.001, Figure 1C). In contrast, there was no significant
difference in bee survival between the bees fed with either
pesticide and the control when bees were kept at 35◦C (Log Rank
Test; X2 = 3.8, df = 2, P = 0.1, Figure 1D). We explored a lower
dose (half compared to Trial 1) in Trial 2 for the first day, but no
mortality was observed so we adjusted to the same doses as Trial
1 on the second day and observed bees for another 4 days.

At the end of the 4-day survival trials (Trials 1 and 2), we
transferred the caged bees (and their food) that were at 35◦C
to 24◦C to determine if pesticides lost their effectiveness at the
higher temperature, explaining the differential mortality in bees.
In both trials, mortality of bees of a single day after temperature
change (from 35 to 24◦C, due to the transfer) was significantly
higher in the pesticide-treated bees (paired t-test, P < 0.05), but
not for the control bees (Table 2).

In Trial 3, survival of bees under low temperature (23◦C) was
similar to bees under varying temperature (13◦C–24◦C), showing
a strong negative effect of pesticides on survival (Log Rank Test;
X2 = 34.8, df = 2, P < 0.001 for 13–24◦C; Log Rank Test;
X2 = 136, df = 2, P < 0.001 for 23◦C). Bee survival at brood-
nest temperature (35◦C) was much higher with only one pesticide
(imidacloprid) showing a slight, but significant effect (Log Rank
Test; X2 = 10.3, df = 2, P = 0.006 for 23◦C, Figure 2).

TABLE 2 | Mortality (%) of bees before and after being transferred from 35◦C to
24◦C to determine whether pesticides were still active.

Mortality at 35◦C (4 days) Mortality at 24◦C (1 day)

Trial 1

Control 7.7 16.2

Imidacloprid 0.0 52.0

Thiamethoxam 15.0 41.1

Trial 2

Control 23.3 21.7

Imidacloprid 10.0 92.3

Thiamethoxam 25.7 92.3

Paired t-test (not including control bees) showed a significant difference between
the two temperatures (P = 0.018), despite of the fact that the mortality of 35◦C was
during 4 days and those at 24◦C were for 1 day only.

The total mortality over the 5 days were transformed and
analyzed by a three-way ANOVA. There were no significant
differences among the three colonies [F (2, 18) = 0.61,
P > 0.5] in mortality so further analysis did not include colony
in the model. There were significant differences among the
different temperatures [F (2, 18) = 121.1, P < 0.01], treatment
(pesticides or control) [F (2, 18) = 44.6, P < 0.01], and also
significant interactions between the temperature and treatment
[F (4, 18) = 11.0, P < 0.01]. Figure 3 shows the changes
of mortality among the three pesticide treatments at three
different temperatures.

DISCUSSION

To our understanding, no studies have been carried out on
the toxicity of neonicotinoids to winter bees at different
temperatures with the same doses. In our study, the major
findings are that the imidacloprid (0.25 ppm) and thiamethoxam
(0.125 ppm) are more harmful to Apis mellifera at a lower
temperature (25◦C, normally considered as “room temperature”
in many pesticide tests) compared to those at the brood-
nest temperature (35◦C). We clearly show that temperature
should be considered when evaluating risk of pesticides to
honey bees.

Honey bee declines have multiple causes and may include
parasites, pathogens, pesticides, nutrition/habitat loss/climate
change, and transportation (Goulson et al., 2015). Recent
attention has focused on how neonicotinoids affect honey
bees. Baines et al. (2017) revealed significant negative effects of
environmental concentrations of thiamethoxam and clothianidin
on winter adult worker bees’ survival under laboratory
conditions. More recently, another study reported chronic
exposure of thiamethoxam (0.0049, 0.0195, 0.0973 ppm) and
clothianidin (0.0042, 0.0167, 0.0832 ppm) significantly reduced
survival of winter workers as compared to the control at all
tested doses under laboratory conditions (Wood et al., 2020).
However, these studies used one single temperature (29◦C) for
testing. Honey bees are ectotherms when brood is absent, and
their body temperature and many of their biological functions
are dependent on the environmental temperature. Bees in the
center of broodless winter cluster experience a broad range
of temperatures (12–33.5◦C), with bees at the periphery of
the cluster reaching 6◦C (Fahrenholz et al., 1989). Numerous
studies have documented that the response to pesticides is
temperature dependent (Lushchak et al., 2018). Honey bees
show negative temperature coefficients in DDT (Ladas, 1972)
and cabamates (Georghiou and Atkins, 1964). Our data show
similar negative temperature coefficients for both imidacloprid
and thiamethoxam. However, we did not directly compare the
same breed of honey bees in summer and in winter. It is not
clear if they will show similar sensitivity but we postulate that
winter bees should be less sensitive because of their higher levels
of vitellogenin which reduces oxidative stress (Seehuus et al.,
2006), and winter bees already have consumed much pollen
which also increases their stress resistance (Huang, 2012). We
failed to find a difference though between Trial 1 (brood-nest
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FIGURE 2 | Results of Trial 3 showing Kaplan–Meier survival curves of bees fed with imidacloprid or thiamethoxam or sugar only (control) at 13–24◦C (left, A), 23◦C
(middle, B), or 35◦C (right, C). Different letters at each line indicate significant differences with Log Rank tests at P < 0.05.

bees, more likely to be winter bees) and Trials 2 and 3, with
old bees outside the cluster (more likely have already foraged
in the fall and not real winter bees). Future studies should have
better control on these aspects, e.g., with offspring from the same
queens, some tested during summer, and some tested as marked
real winter bees (e.g., those emerged in November in Michigan,
United States).

We found that only a slight decrease (about 11◦C) in
temperature significantly increased toxicity of both pesticides
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FIGURE 3 | Mean mortality (+SE) of bees exposed to the two pesticides or
sugar only (control) at a varying (13◦C at night and 24◦C during day), constant
low (23◦C), or brood-nest (35◦C) temperature. Control bees showed the
highest, intermediate, and lowest mortality, respectively, at 13–24◦C, 23◦C,
and 35◦C (all pairwise comparisons significant, t-test, P < 0.05). The two
pesticides showed similar high mortality at the two lower temperatures
(different from the control, P < 0.01); but at 35◦C, there was no significantly
difference in mortality among the three treatments (P > 0.05). Statistics done
on transformed data but figure here presented un-transformed data. *
Denotes significant difference (P < 0.05) between the control and the two
pesticides with Fisher’s Protected Least Significant Difference test.

to bees in all three trials. However, raising bees in a variable
temperature environment (day 24◦C, night 13◦C) did not
increase mortality significantly compared to a static cold
temperature (23◦C). We originally hypothesized that the variable
temperature setting should be even more stressful to honey
bees, because with presumably higher metabolic demands at
13◦C at night, bees might become even more sensitive to
pesticides. Instead, we did observe a significant increase of
control mortality at the variable temperature (63% + 0.04)
compared to 19.2% + 0.06 at 23◦C, and 6.7% + 0.03 at
35◦C, but no significant difference between the low and
variable temperatures, for both pesticides (Figure 2). It
is possible that even at 25◦C, the mortality was already
too high (92–93%) so no further increase was possible.
But the survival curves of the three different temperatures
(Figure 2) showed similar mortality for 23◦C and 13–
24◦C at days 2–4. These results suggest that a variable
temperature at day and night does not significantly change
honey bee sensitivity to pesticides compared to a constant low
temperature, but a reduction from the brood-nest temperature
does make honey bees more sensitive to pesticides. This
is rather intriguing because honey bee will forage fine at
lower temperatures; in fact, A. mellifera has a preferred
foraging temperature of 20◦C (Tan et al., 2012) or 23◦C
(Verma and Dulta, 1986).

One possibility of our observed low toxicity at 35◦C for both
pesticides is that the pesticides were degraded right away at this
high temperature. However, this is not the case because when we
transferred bees at 35◦C to 24◦C on day 5, the caged bees again
showed high mortality (Table 2), suggesting that the pesticides
were still present in sugar syrup. The low mortality of pesticide-
fed bees at 35◦C, therefore, must be due to higher tolerance of
bees at that temperature.

The one day that the bees received a smaller pesticide dose
(day 1, Trial 2) suggests that the differential sensitivity of bees at
different temperatures may be dose-dependent. During the day
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that the bees received a lower dose, we did not see mortality as we
did in Trial 1. The dose chosen for the trial was calculated based
on many studies (Decourtye et al., 2004; Yang et al., 2008; Eiri and
Nieh, 2012; Henry et al., 2012; Schneider et al., 2012; Teeters et al.,
2012; Derecka et al., 2013; Sandrock et al., 2014; Tan et al., 2014;
and Williamson et al., 2014). Because so little is known about
neonicotinoid exposures to winter bees in a diversity of contexts,
it will be important to evaluate these findings over a broad range
of doses and exposure scenarios. Further study is needed to
identify the effects of lower doses at a variety of temperatures,
as well as other realistic exposure scenarios including mixtures
of pesticides.

CONCLUSION

We conclude that bees are more sensitive to neonicotinoids
at lower temperatures, but a varying temperature does not
exacerbate this sensitivity. Honey bee colonies are maintained
at 35◦C when there is brood, but during the broodless
winter period honey bee colonies no longer regulate their
temperature to 35◦C (Jones et al., 2005). A dose that does not
kill honey bees might suddenly cause colony loss during the
wintering period. The higher resistance of bees at the brood-
nest temperature to neonicotinoid pesticide is intriguing, but
perhaps not surprising: workers might be more adapted at
this temperature compared to lower temperatures because it
is more commonly experienced. For example, it is possible
that their detoxifying enzymes show the highest activity at
this optimal temperature. Further experiments are needed to
study the mechanisms of this temperature-dependent pesticide
sensitivity in honey bees.
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