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Biodiverse environments contribute to human health through a wide range of
ecosystem services: from providing food and medicines to filtering our air and water.
Exposure to biodiverse, airborne microbial communities (aerobiomes) contributes to
the development of healthy human-immune function. This overlooked but potentially
powerful ecosystem service is akin to nature’s provision of traditional medicines and
pharmaceutical compounds. But urban environments appear to support less diverse
aerobiomes, suppressing this ecosystem service and potentially contributing to urban-
associated diseases through altered immune function. Here, we synthesize the known
relationships between aerobiome biodiversity and health and present the experimentally
demonstrated mechanisms that connect aerobiome exposure to immune function.
We then summarize what is currently known about the effect of urbanization on
aerobiomes and identify several important knowledge gaps in this field, including
a lack of rigorous, experimental, multi-scale studies demonstrating the mechanistic
pathways between urbanization, altered aerobiomes and human health. We offer
practical approaches that can close these knowledge gaps and will facilitate the transfer
of knowledge and technology between microbiologists, urban ecologists and public-
health practitioners. This synthesis should stimulate interdisciplinary research efforts
to advance our understanding of how urbanization is impacting aerobiome ecosystem
services, and what that means for human health.
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BACKGROUND

Biodiverse ecosystems provide health benefits across all categories of ecosystem services. Biodiverse
environments supply provisioning services including food, fresh water, medicine, fiber and clean
energy, and exciting research has been revealing the powerful health benefits of supporting,
regulating and cultural ecosystem services as well. For example, biodiverse communities can
filter pollutants and toxins from our air and water, and mitigate flooding, climate change
and infectious disease transmission (MEA, 2005). Interacting with biodiverse environments
also provides opportunities for socialization, cognitive restoration and physical activity that
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have cascading effects on physical, cognitive, and emotional
health (Aerts et al., 2018; Lai et al., 2019).

An emerging field examines the way microbial communities
(e.g., bacteria, fungi, protozoans, and viruses) move across
biomes and in particular, how humans acquire microbes from
the natural environment (Clarke et al., 2020). This exchange has
direct implications for human health because of the intimate
relationship between the microbiome and multiple health
outcomes. For example, our own internal microbiomes have been
linked to diseases as disparate as depression (Foster and McVey
Neufeld, 2013), irritable bowel disease (Knights et al., 2013),
and autism (Lammert et al., 2018). Internal microbiomes are
strongly influenced by the environmental microbial communities
to which we are exposed (e.g., through food, soil, air) (Braun-
Fahrländer et al., 2002; Ege et al., 2011; Claesson et al., 2012;
Liddicoat et al., 2020), and thus environmental microbiome
exposure has important implications for human health outcomes.
Aerial microbiomes, or aerobiomes, are particularly important
as our skin, nasal, oral and respiratory surfaces are constantly
exposed to the cocktail of microorganisms present in the
atmosphere; people living in cities inhale approximately 108

microbial genomes every day (Després et al., 2007), with direct
implications for the health of urban residents.

Urban environments typically have limited vegetated areas
(“green spaces”), and altered and degraded ecosystems which are
less able to provide ecosystem services (MEA, 2005). This loss
of ecosystem services has direct and indirect effects on human
health (Figure 1). In cities, for example, reduced regulating
services contributes to higher levels of air pollution, and less
green spaces means less opportunities for outdoor recreation (a
cultural service). These reduced ecosystem services also impact
biotic communities with indirect impacts on health. Cities can
have a homogenizing impact on animal (Johnston et al., 2014;
Concepción et al., 2015; Morelli et al., 2016) and microbial
communities (Alenius et al., 2009; Schnorr et al., 2014; Qian
et al., 2017; Flies et al., 2020) though the effect on plants is less
clear (Concepción et al., 2015; Groffman et al., 2017; Kondratyeva
et al., 2020). Exposure to less biodiverse microbial communities
appears to negatively impact immune development and has been
tied to increased levels of allergies and asthma and other urban-
associated diseases (Ege et al., 2011; Hanski et al., 2012; Rook,
2013; Ruokolainen et al., 2015; von Hertzen et al., 2015; Flies
et al., 2019). It is likely that reduced diversity in aerial microbiome
exposure is a key component of this phenomenon; however,
this remains understudied because aerial microbiomes are harder
to measure than the microbes of living organisms, surfaces,
soil or water. If we are to protect sensitive populations from
the impacts of reduced diversity in urban aerial microbiomes
(UAMs), and design cities to better maintain this ecosystem
service, we require a much stronger understanding of how cities
affect aerial microbiota and what that means for human health.

The last few decades have brought a revolution in microbiome
techniques, which provide a promising avenue for advancing
understandings and applications of biodiverse aerial microbiome
exposure to improve human immune function and health.
However, aerial microbiome studies have been published
disparately in climate, ecology, medical, or occupational health

and safety journals, among others, and these divergent fields have
been developing knowledge and technical advances separately.
There is a clear need for increased awareness of the important
linkages between aerobiome composition, urbanization and
human health as an ecosystem service to stimulate research
activity and to ensure aerobiomes’ inclusion in urban design.
We seek to contribute to that effort through a synthesis of the
knowledge and gaps in (1) aerial microbiome impacts on human
health, (2) urbanization impacts on aerial microbiomes, (3) urban
aerial microbiome (UAM) methodology, and (4) how future
UAM studies can better resolve these knowledge gaps.

AERIAL MICROBIOMES AND HUMAN
HEALTH: KNOWLEDGE AND GAPS

Clearly, contact with airborne pathogens can cause disease (Kim
et al., 2018): SARS-CoV-2, influenza, anthrax, tuberculosis and
other pathogens can be airborne. Furthermore, exposure to high
levels of specific fungi or bacteria can contribute to allergies
(Jaakkola et al., 2010), asthma (Karvala et al., 2010; Tham et al.,
2014 and citations therein) and systemic disease (Cronholm,
1980; Rylander, 2006; Smit et al., 2006).

However, there is emerging experimental evidence that, in
contrast to the effect of exposure to microbial communities with
high levels of specific pathogenic or allergenic microbes, exposure
to biodiverse microbial communities is an important ecosystem
service that can reduce allergy, asthma and inflammatory
responses. The concept that biodiversity benefits immune
development is called the biodiversity hypothesis (Hanski et al.,
2012; Rook, 2013; von Hertzen et al., 2015, 2011). A growing
body of research has now established support for a linkage
between exposure to diverse soil microbiomes and healthy
immune system development (Wall et al., 2015; Li et al.,
2018) and some of the mechanisms involved. For example,
Ottman et al. (2018) demonstrated that soil-acquired microbes
alleviate TH2-driven inflammation, a key aspect of allergic
diseases. Similar mechanistic pathways are likely to operate
with respect to aerobiome exposure (Hanski et al., 2012; Rook,
2013), particularly given the intimate connections between soil
microbiome and aerial microbiome composition (Barberán et al.,
2015; Mhuireach et al., 2016).

The mechanistic connections between aerial microbial
diversity and immune function remain much less studied than
those for the soil microbiota but are beginning to be clarified
through experimental studies. Table 1 presents some of the
immune mechanisms demonstrated to be altered by the diversity
and/or abundance of aerobiome exposure. To date, the number
of studies testing mechanistic linkages between aerobiome
exposure and immune response is small, and most use in vitro
or in-mouse models. Furthermore, most use collected or settled
dust (from bedrooms or mattresses) as a proxy for airborne dusts
and the affiliated microbes. While this has been demonstrated
to be an indicative proxy for environmental exposure to
airborne microbes (Ege et al., 2011), more precise exposure
information could be acquired with filtered personal sampling
devices (Wang et al., 2015) or real-time testing of aerobiomes
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FIGURE 1 | A conceptual diagram of how urbanization alters ecosystem services, aerobiomes and human health. Urban areas generally have less vegetation (green
spaces) and altered ecosystems that result in reductions to many ecosystem services with direct and indirect impacts on health. Both reductions in regulating
services (e.g., resulting in reduced air quality/greater air pollution) and supporting services (e.g., resulting in reduced maintenance of genetic diversity) impact the
composition, and microbial diversity and abundance of aerobiomes. Additionally, less biodiverse and/or less extensive green spaces in cities limits outdoor recreation
opportunities (a cultural ecosystem service). This reduced exposure to biodiverse aerobiomes for urban-dwelling people stifles the provisioning service that
biodiverse microbiome exposure has on healthy immune development and function, leading to poor health outcomes. We highlight knowledge gaps in red and
potential solutions to advance this field in green.

(Nasir et al., 2019) would help link microbial exposure with the
immune system response. Nonetheless, the evidence to date
clearly demonstrates connections between characteristics of
the aerial microbiome (e.g., the diversity and/or abundance of
microbes) and immune system proxies that are consistent with a
protective immune system effect.

However, the characteristics of airborne microbial
communities are shaped by the environment and cities appear
to be a homogenizing force for aerial and human microbiomes
(Alenius et al., 2009; Schnorr et al., 2014; Ruokolainen et al.,
2015; Ying et al., 2015; Qian et al., 2017; Flies et al., 2020). In
line with biodiversity hypothesis predictions, cities have higher
rates of allergies, asthma and other immune dysfunction diseases
(Flies et al., 2019). The few experimental studies comparing how
human immune function responds differently to urban and rural
aerial microbiomes (a subset of those in Table 1) have found
UAM exposure to drive immune function toward a more allergic
response (Roy et al., 2003; Alenius et al., 2009). Specifically,
Roy et al. (2003) found that dust from urban homes had lower
endotoxin levels (associated with bacteria) than dust from rural
homes, and that this led to altered immune-modulatory effects.

Alenius et al. (2009) reported that exposure to (less biodiverse)
urban house dust drove monocyte-derived human dendritic cells
toward an allergic (Th1-dominated response), while exposure
to (more biodiverse) farm barn dust drove these cells toward
a Th2-type response. These outcomes reinforce that exposure
to biodiverse airborne microbiomes, such as those typically
found in rural areas, can support healthy (i.e., less allergic, less
inflammatory) immune function.

Overall, these studies suggest that diverse aerobiome exposure
is an important ecosystem service with direct implications
for human health. However, many knowledge gaps remain:
the evidence base is limited and more research is needed to
tease apart the impacts of aerobiome abundance and diversity,
and the role of community composition. For example, is it
specifically diversity that is important, or is it the species/genera
that occur in biodiverse communities? We also need to know
more about the importance of age and frequency of aerobiome
exposure, “trade-offs” in the potentially positive and negative
health impacts of exposure to some aerobiome components, and
how urban environmental factors like air pollutants interact with
aerobiomes. All of these questions must be answered before these
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TABLE 1 | Selected experimental studies demonstrating the immunological effect of exposure to diverse aerial microbial communities in mice and humans.

Relationship between aerial microbiome diversity and/or abundance and immune function Organism or tissue Citation

Endotoxin levels (related to microbial abundance) of dust samples collected from children’s
mattresses were inversely related to allergy and asthma rates and a down-regulation of children’s
immune response (indicated by leukocyte production of IL-10, IL-12, tumor necrosis factor α and
interferon-γ).

Human (allergy, asthma
rates) and blood

Braun-Fahrländer et al., 2002

Dust from farm barns contained more endotoxin than dust from urban homes. The DNA from the
endotoxin-enriched farm barn dust stimulated immune-modulatory effects (release of IL-10 and
IL-12 cytokines from peripheral blood mononuclear cells); DNA from the endotoxin-depleted urban
dust did not.

Human blood Roy et al., 2003*

Urban house dust contained a lower diversity of bacteria than farm barn dust. Exposure to the less
diverse urban house dust drove monocyte-derived human dendritic cells toward an allergic
(Th1-dominated response) while exposure to the highly diverse barn dust drove these cells toward a
Th2-type response.

Human blood Alenius et al., 2009*

Greater diversity of Acinetobacter on the skin was associated with higher secretion of the
anti-inflammatory cytokine IL-10.

Human blood Hanski et al., 2012

Mice exposed to dog-associated house dust (greater in abundance and diversity than the dust in
non-pet homes) had reduced allergy markers (IL-4, IL-13 and IgE). This effect was maintained when
mice were exposed to similar amounts of dust, suggesting the diversity or composition, especially
enrichment with Lactobacillus johnsonii, of the dust was key to the protective effect.

Mouse Fujimura et al., 2014

Children exposed to higher levels of biologically diverse farm dust had proportions, phenotypes,
and functions of innate immune cells linked to lower asthma and allergy rates. In mice, exposure to
microbially-diverse dust inhibited airway hyper-reactivity and eosinophilia.

Human and mouse Stein et al., 2016

In all cases the immunological response found is consistent with diverse aerobiome exposure reducing allergic or inflammatory immune system responses. Studies
indicated with a * incorporate comparisons between rural and urban aerobiomes.

concepts can be applied to support urban design for healthy
aerobiome exposure.

HOW URBANISATION IMPACTS AERIAL
MICROBIOMES: KNOWLEDGE AND
GAPS

Land use has a strong impact on aerial-microbiome composition,
which changes substantially with urbanization. In urban
locations, aerial bacteria include species common in soils
and plants as well as those associated with important human
pathogens: Actinobacteria, Proteobacteria, Acidobacteria,
Cyanobacteria (which includes chloroplasts), Firmicutes, and
Burkholderiales among others are all found in urban air (Shaffer
and Lighthart, 1997; Brodie et al., 2007; Bowers et al., 2011a,b;
Bertolini et al., 2013). However, UAMs are neither static nor
uniform, adding complexity to efforts to unpack exactly how,
where and why urbanization impacts the aerobiome and thus the
ecosystem services it can provide.

Spatially, UAMs can vary at fine scales (<50 m) due to
differences in land use and land cover (Shaffer and Lighthart,
1997; Chandra Mouli et al., 2005; Lymperopoulou et al., 2016;
Mhuireach et al., 2016). Each microbial component of the UAM
has a distinct source: for example, soil, leaf surfaces, man-made
materials, and feces in urban parks contribute to the UAM
and these sources vary at fine scales across a cityscape (Bowers
et al., 2011b; Lymperopoulou et al., 2016; Mhuireach et al.,
2016). For example, parking lots can have substantially more
Acetobacteraceae, which oxidize sugar and ethanol to acid, than
urban parks, which have more Acidobacteriaceae, a common
soil microbe – although the human health implications of this

difference remain unclear (Mhuireach et al., 2016). The intra-
city distribution of vegetation also has an important effect; aerial
microbial and fungal communities that exist above vegetated
areas are distinct from those above non-vegetated urban areas,
even at a proximity of 50 m (Adams et al., 2013; Mhuireach
et al., 2016). Overall, urban land use thus strongly mediates both
urban aerobiome diversity and ecosystem service provision at
fine intra-city spatial scales.

Weather and season also have a major influence on aerial
microbiomes (Brodie et al., 2007; Bowers et al., 2011a,b; Woo
et al., 2013; Rathnayake et al., 2017). In particular, total fungal and
bacterial counts are often higher after rain events (Chandra Mouli
et al., 2005) and during the summer (Bertolini et al., 2013; Niazi
et al., 2015) or autumn (fungi; Frohlich-Nowoisky et al., 2009),
compared to the winter in temperate environments. However,
despite the documented importance of temporal variation, many
UAM studies either leave it unaddressed, or poorly account for
it in their study design, and thus the implications for ecosystem
services remains a key gap in UAM research.

Importantly, despite significant inter-site and temporal
variability, UAMs appear to be, in general, less diverse than
rural aerial microbiomes (Flies et al., 2020): for example, one
study of aerial bacterial diversity in samples of fine particulate
matter reported a Shannon-Weaver diversity index of 1.07
for urban samples compared to 1.25 for rural aerial samples
(Després et al., 2007). Microbial abundance also varies across
habitats within cities, between cities, and between urban and
natural areas (Shaffer and Lighthart, 1997; Burrows et al., 2009;
Lymperopoulou et al., 2016).

Overall, the evidence suggests that urbanization leads to (a)
less diverse UAMs, regardless of whether the metric used is
richness and/or a diversity index (Flies et al., 2020); and (b)
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altered composition. With respect to the latter, there is some
evidence that UAMs tend to have fewer bacterial taxa that have
been associated with protective immune effects (e.g., Vestergaard
et al., 2018); however, we lack sufficient evidence to make robust
generalizations about compositional trends. With respect to both
diversity and composition, many questions remain about how,
where and why these effects are manifested. Addressing these
gaps with rigorous multi-scale, eco-epidemiological studies (Flies
et al., 2018b) will be vital if we are to understand how to protect
UAM ecosystem services.

In summary, UAM composition is strongly dependent on the
different ways that urbanization impacts (a) soil, (b) plant and
animal communities, (c) climate (e.g., urban heat island effect),
(d) the abundance of soil, water and man-made objects (e.g.,
concrete) exposed to the air and (e) the amount and size of
particulate matter in the air. However, because of the spatial and
temporal complexity within and among cities, it is not yet clear
the precise effects these components of urbanization have on
UAM composition and therefore health. As we describe in the
following section, this is further confounded by the diversity of
methods used to collect, process and analyze UAM samples. This
will be important to clarify so urban design can promote UAMs
that contribute to healthier resident human populations.

UNIFYING UAM METHODOLOGY TO
FILL KNOWLEDGE GAPS

Sample Collection
Achieving a robust, systematic and representative sampling
regime has been – and remains - a core challenge in
characterizing and determining the drivers of UAM diversity
and composition in a way that enables application for healthy
urban design. The extent of the challenge derives from the
size range and morphological diversity of the microbes, their
vulnerability to sampling damage, and the spatial and temporal
variability of UAMs. Together, these factors mean that there is
no single optimal sampling method that is appropriate for all
aerial microbiome studies. Instead, there has been a proliferation
of sampling devices, each of which have their own advantages,
disadvantages and limitations.

Aerial microbiome samplers (typically termed bioaerosol
samplers) can be categorized into several main functional types
(Supplementary Figure S1, see Ghosh et al., 2015; Haig et al.,
2016; Lindsley et al., 2017 for comprehensive overviews). Within
each functional type, samplers tend to have a set of common
advantages and limitations (see Supplementary Table S1).
For example, filters tend to have high collection efficiencies,
but poor potential for the maintenance of biological viability.
However, even within categories, the available samplers are
highly diverse and can have variable sampling characteristics
(such as flow rate, collection efficiency, and collection medium;
Kesavan and Sagripanti, 2015; Wang et al., 2015; Haig
et al., 2016). A comprehensive list of bioaerosol samplers,
together with their particle size range and application suitability
(culture, microscopy or immunological/chemical/other assay) is
provided in Lindsley et al. (2017).

Sampler choice will strongly affect the outcomes of aerial
microbiome studies. Results from studies using different
samplers are not easily comparable, and in some cases
inappropriate sampler choice may render a study’s conclusions
invalid. This is particularly important in the context of infectious
disease monitoring; Kesavan and Sagripanti (2015), for example,
show that inadequate sampler selection can result in a serious
underestimate of risk. Although sampling technologies are
continuing to advance and evolve, standardization remains
unlikely given that sampler choice will remain guided by
study design and aims. However, the obstacle of different
sample collection techniques for understanding UAMs for
ecosystem service provision can be minimized if techniques for
downstream genetic and statistical analysis are unified and data
sharing is implemented.

Genetic Analysis
Traditionally, all bioaerosol studies were done using culture
and/or microscopic identification. Today, unless specifically
interested in the live bacteria/fungi (e.g., Urbaniak et al.,
2018), genetic techniques better demonstrate the diversity of
microbial communities (Mbareche et al., 2017). However, the
method of DNA extraction can have a significant impact on
the microorganisms that get amplified and therefore appear
to characterize the community (Willner et al., 2012; Mbareche
et al., 2017). For example, extraction kits that use a mechanical
bead-beating step, rather than purely enzymatic and chemical
lysis, have been found to improve detection of more resilient
microbes (e.g., Staphylococcus, Streptococcus) and pollen in
samples (Willner et al., 2012) which is beneficial for UAM
studies. During the gene amplification and sequencing, most
studies use the same gene regions to search for the species
and communities of interest (e.g., 16S for bacteria/archaea, ITS
for fungi etc.) but the segment of the gene amplified varies,
as do the primers used, and sequencing read depths, all of
which can influence apparent community composition (Jovel
et al., 2016). For maximum comparative potential, we suggest a
unification of genetic methods, for example using the detailed
online protocols from the Earth Microbiome Project (Gilbert
et al., 2014) and adhering to Caporaso et al. (2012) for standard
sequencing methodology.

Statistical Analysis of UAM Communities
Another challenge of UAM studies is the diversity of
statistical ways to characterize microbial communities, and
the drivers shaping them. Studies designed to compare microbial
communities often use a combination of simple community
metrics (e.g., alpha and beta diversity), phylogenetic distances
(e.g., UniFrac), statistical models, and visualizations.

If genetic techniques are used, the phylogenetic relatedness of
“species” [i.e., operational taxonomic units (OTUs), or amplicon
sequence variants (ASVs)] within a community can be calculated
and different communities can be compared using UniFrac
distinctness or the Bray-Curtis Dissimilarity index. There are
also many approaches for visualizing compositional similarities
across communities, typically underpinned by cluster-based
ordination approaches like non-metric multidimensional scaling
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(NMDS; Kembel et al., 2012), principal components analysis
(PCA; Bertolini et al., 2013) and constrained analysis of principle
coordinates (CAP; Mhuireach et al., 2016) to group/split sites
along multiple (dis)similarity axes. Some of these statistical
models can uncover environmental effects on compositional
differences (Erb-Downward et al., 2012; Mhuireach et al., 2016).

The challenge in this field is then comparing across studies;
simple abundance and diversity metrics can be easy to compare
but they (or especially their errors and sample sizes, required for
formal meta-analysis) are not always reported and are influenced
by the bioinformatics pipeline used. Accurately comparing
communities across studies or locations would require access to
the complete metagenomic data used to calculate community
metrics. These sorts of big-data comparisons are only possible
when all metagenomic data is made open access, as is done
with the Earth Microbiome Project (Gilbert et al., 2014) and the
Biomes of Australian Soil Environments (Bissett et al., 2016). We
encourage other researchers to make their data available through
these platforms for across-study comparisons and a clarification
of general trends.

FUTURE DIRECTIONS AND
CONCLUSION

Exposure to biodiverse aerial microbial communities can provide
an under-recognized ecosystem service for human health.
Urbanization appears to be reducing the diversity of airborne
microbes in cities (Flies et al., 2020), with potentially important
impacts on asthma, allergies and urban-associated diseases (Flies
et al., 2019). Fortunately, the actions that could increase the
biodiversity of UAMs and human exposure to them rely on
increasing urban biodiversity overall and human interaction with
urban green spaces, both of which have co-benefits for many
urban ecosystem services and health. Actions that could improve
exposure to biodiverse UAMs include the creation of biodiverse
urban green spaces (Flies et al., 2017, 2018a), restoration of
urban habitat (Mills et al., 2017), and public health policies that
encourage active use of biodiverse urban green spaces. Given
the intimate linkages between the soil and aerial microbiomes,
specific efforts to cultivate diverse soil microbiota in both public
and private urban green spaces could provide further benefits
(Wall et al., 2015; Li et al., 2018). All of these policies are likely
to be highly beneficial, though we note that much more research
into the linkages between urbanization and UAM composition
is needed if we are to develop specific policies to support UAM
ecosystem service provision.

With this article we intend to raise awareness about the role
of airborne microbiomes as an ecosystem service for health to
facilitate a closing of the knowledge gaps in this field (Figure 1).
We have outlined how exposure to different types of aerial
microbial communities influence immune function in mice and
in humans, with microbial diversity as an important link (Ege
et al., 2011; Hanski et al., 2012). However, whether it is the
diversity of the microbes per se or the species or (functional)
families of microbes contained in biodiverse microbiomes, or
if biodiversity is an indicator of other characteristics of the

microbiome is yet unclear. We encourage studies investigating
the features of urban landscapes that influence UAM biodiversity
and composition, and further examination of how various
features of aerial microbiomes impact human health.

Differences in methodology have made it difficult to make
inter-study comparisons of microbial communities to understand
how communities differ across space, time and methodologies
and to connect those differences with human health. Along with
further studies that compare aerial microbiomes across a diversity
of land uses, geographies and urban regions, while controlling
for critical confounding variables like weather, it is crucial that
studies make their data open access so as to facilitate cross-study
comparisons using a common suite of standardized analytical
methods and bioinformatics pipelines (Figure 1).

Importantly, though microbial diversity appears to benefit
immune function (Ege et al., 2011; Hanski et al., 2012;
Ruokolainen et al., 2015; Stein et al., 2016), this is unrecognized in
many aerial microbiome fields and diversity is often not reported
in analyses. Further experimental studies are needed to clarify
how microbial abundance and microbiome composition impact
human health and the immunological mechanisms driving
those health effects. We encourage studies testing the impacts
of exposure to UAMs with specific characteristics (microbial
abundance, diversity, and community compositions) on immune
characteristics in mouse models and human tissues. In order to
best clarify the mechanisms involved, we recommend that such
studies test the impact of targeted features of the aerobiome,
rather than (or in addition to) simply comparing immune
responses to urban and rural UAM samples. The specific
characteristics of UAMs that support healthy immune system
function are critical to clarify if we want to foster biodiverse
UAMs that have a positive impact on health.
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