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Ecological communities vary considerably in space and time and understanding such
changes has fundamental relevance for ecology and conservation sciences. Mountains
provide an excellent scenario for studies addressing spatial and temporal variation,
as they vary in conditions and resources in a small geographic region. Here, we
aimed to understand the patterns of variation in ant metacommunity composition
across time and along an elevational gradient in a tropical mountain, focusing both
on the taxonomic and functional facets of diversity. We used a β-diversity metric and
broke it into nestedness and turnover to estimate short-term temporal changes in ant
metacommunity composition. We tested the following hypotheses: (i) taxonomic and
functional temporal β-diversity increase along the elevational gradient and (ii) turnover
is the main component driving taxonomic temporal β-diversity and nestedness for
functional temporal β-diversity. Rejecting our first hypothesis, we found that both
taxonomic and functional temporal β-diversity did not increase with elevation. Yet,
the values were always high, indicating that both species and functional traits are
highly variable over time. In accordance with our second hypothesis, we found that
turnover was the main component of taxonomic β-diversity. Yet adding complexity
to our hypothesis, the contribution of nestedness to functional β-diversity decreased
with increasing elevation. These results suggest that at low elevations, the turnover in
species composition may then cause changes in trait composition because of the loss of
some traits, yet preserving the most common functions (nested functional communities),
while at high elevations functional capabilities may change over time (turnover of traits).
In the context of global warming, where tropical mountain insects are expected to
change their distributional range upwards, it is extremely important to consider the
importance of the turnover on the temporal variation in functional traits and functions
of ant metacommunity at higher elevations.

Keywords: campo rupestre, metacommunity, beta-diversity, nestedness, species turnover, rupestrian grassland,
traits, environmental instability
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INTRODUCTION

Understanding how communities are structured in space and
time has fundamental relevance in ecology and conservation
science (Gaston, 2000; Sutherland et al., 2013). There is abundant
evidence in ecological studies that the spatio-temporal patterns
we see in nature cannot be disentangled (Schiesari et al.,
2019), as individuals and species can move both through
space and time, forming metapopulations (Levins, 1969) and
metacommunities (Leibold et al., 2004). Knowledge of complex
spatial metacommunity dynamics have been advanced by using
diversity partitioning analyses (e.g., Bishop et al., 2015; Heino
et al., 2015), that partition diversity into local (α), and regional (γ)
components, as well as the change among local communities (β)
(Crist et al., 2003). However, most studies of this kind are based
on one or a few samples in time, creating a gap in our knowledge
of the importance of temporal variation of individuals and species
in the structuring of metapopulations and metacommunities
(Datry et al., 2016; Ruhí et al., 2017). In a changing world (Lewis
and Maslin, 2015), there is an urgent need to understand the
spatial and temporal distribution of diversity and the underlying
mechanisms of these patterns, so we can predict and mitigate the
effects of global change on biodiversity, ecosystem functions, and
associated services (e.g., Legendre and Condit, 2019).

Since the classic work of von Humboldt and Bonpland (1805),
numerous studies have investigated species distributions and
the underlying mechanisms of these patterns along spatial and
environmental gradients (e.g., Peters et al., 2016). Mountains
are central to these studies, because they have significant
environmental gradients in a relatively small geographical area
(Körner, 2007). The small spatial scale means that all regional
species can potentially access the whole gradient, minimizing
the effects of the kinds of dispersal limitations seen over larger
geographical areas (Longino and Colwell, 2011). Yet, species
distribution patterns vary along mountains, with most taxa
showing a decline in diversity with increasing elevation and
associated changes in species composition (Fernandes et al., 2016;
Perillo et al., 2017; Mota et al., 2018; Li et al., 2019). In this
context, β-diversity metrics are useful for understanding how
species composition changes across habitats or elevations and
also attempt to reveal the assembly mechanisms that drive these
differences (Bishop et al., 2015; Castro et al., 2019). Differences
in habitat and resource use among species determine the spatial
structure and maintenance of the β-diversity in mountains, where
species turnover among elevations is the dominant component
driving taxonomic spatial β-diversity of plants (Mota et al., 2018),
birds (Li et al., 2019), termites (Nunes et al., 2017), dung beetles
(Nunes et al., 2016), ants (Castro et al., 2020), and benthic
invertebrates (Castro et al., 2019).

The abrupt spatial and temporal environmental changes in
mountains provide a good experimental setting to study spatio-
temporal dynamics of metacommunities. However, most studies
on patterns of species and community distributions in mountains
focus on the spatial rather than on the temporal dimension
(e.g., Fernandes et al., 2016; Lasmar et al., 2020). Yet, the
temporal variation in climatic conditions can be just as strong

as the spatial variation, regulating plant resource availability
and patterns of animal foraging in seasonal tropical systems
(e.g., Basset et al., 2015; Costa et al., 2018; Novais et al., 2019).
While the temporal variation in climatic conditions that is
driven by seasonal variation could be similar to the variation
found at different elevations in mountains (Rocha et al., 2016),
it is less clear which drivers shape temporal β-diversity of
communities on mountains. We have evidence that although
spatial taxonomic diversity at the regional scale (γ-diversity) is
mainly caused by differences in species compositions of local
communities (β-diversity component), the functional regional
diversity (γ-diversity) is mainly driven by patterns of local
diversity (α-diversity component; species composition changes
along the elevational gradient, but functions do not; Nunes
et al., 2016; Castro et al., 2020). In contrast, there is a lack of
information on how temporal variation structures communities
that are subjected to different climatic conditions at different
elevations, both taxonomically and functionally. In other words,
we need to explicitly address how the temporal taxonomic and
functional β-diversity within metacommunities vary in space, i.e.,
across the elevational gradient.

In this study, we explored the spatio-temporal dynamics of
metacommunities in tropical mountains by investigating how
communities respond to temporal variation in environmental
conditions on an elevational gradient in south-eastern Brazil.
We collected taxonomic and functional information on ant
metacommunity quarterly over 3 years, totalling 12 temporal
samplings at each of seven different elevations. We used ants
(Hymenoptera: Formicidae) as a focal taxon, because they
respond rapidly to changes in environmental conditions, both
spatially (Castro et al., 2020) and temporally (Bishop et al., 2014)
and perform important ecological functions such as nutrient
cycling and seed dispersal (Farji-Brener and Werenkraut, 2017;
Magalhães et al., 2018). We investigated how temporal taxonomic
and functional β-diversity of ants vary along the elevation
gradient and how turnover and nestedness contribute to overall
temporal β-diversity. We tested the following hypotheses: (i)
the temporal taxonomic and functional β-diversity increase with
increasing elevation along the gradient (Figure 1A); and (ii)
turnover is the main component driving taxonomic temporal
β-diversity and nestedness for temporal functional β-diversity
(Figure 1B). The first hypothesis predicts an increase in temporal
β-diversity with increasing elevation because temporal variation
in the environment is more pronounced at high elevations
than at low elevations. Harsh climatic conditions, climatic
instability, and lower resource availability (productivity) at higher
elevations are therefore likely to favor higher taxonomic and
functional variation of the metacommunity over time [e.g.,
Costa et al. (2018) for temporal variation in ant species activity
among seasons]. With decreasing habitat heterogeneity and
resource availability (e.g., during the dry season), we expect
to find communities of ants with longer legs, since these
communities would be composed mainly by generalist and
predator species that usually walk longer distances to forage
(Lenoir et al., 2009; Bishop et al., 2016; Fichaux et al., 2019).
Accordingly, the communities would be composed mainly by
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species with longer mandibles, usually found in omnivore
generalist and predator species (Gibb and Cunningham, 2013;
Bishop et al., 2015). In addition, in harsher environments or
seasons, we would expect higher polymorphism in ant colonies,
because this would help colonies to deal with temperature and
humidity variation through labor division (Lenoir et al., 2009).
The second hypothesis predicts a higher contribution of turnover
than nestedness to temporal taxonomic β-diversity, following the
spatial pattern found for mountain insects (Nunes et al., 2017;
Perillo et al., 2017; da Silva et al., 2018). Moreover, it also predicts
a lower contribution of turnover compared to nestedness for
temporal functional β-diversity, with communities showing a
functional redundancy over time, as demonstrated spatially for
insects in mountains (Bishop et al., 2015; Castro et al., 2020).

MATERIALS AND METHODS

Study Area
The study was conducted in the southern part of the Espinhaço
mountain range (Figure 2), in the permanent plots of the Long
Term Ecological Research Project Campos Rupestres (PELD
CRSC/CNPq Project) along a gradient of elevation in the
Serra do Cipó region, Minas Gerais State, Brazil (19◦22′01′′S,
43◦32′17 ′′W) (Silveira et al., 2019). The region has marked wet
and dry seasons, and the mean annual precipitation is 1,300–
1,500 mm, while the mean annual temperature is 20◦C (highland
tropical Cwb Köppen climate) (Fernandes et al., 2016). The Serra
do Cipó region comprises private areas under environmental
protection (APA Morro da Pedreira) and a National Park under
full protection (PARNA Serra do Cipó), as well as being part
of the Espinhaço Range Biosphere Reserve (Domingues et al.,
2011; Fernandes et al., 2018). At the study location, soil and
vegetation are very heterogeneous, with the core landscape being
a vegetation mosaic dominated by campo rupestre (rupestrian
grassland) intermingled by quartzitic outcrops, surrounding
forest patches, gallery forests, and mixing with dry forests and
cerrado at the lower elevations (Fernandes, 2016; Silveira et al.,
2016; Morellato and Silveira, 2018).

Sampling Design and Explanatory
Variables
We distributed our sampling sites every 100 m of elevation on
a gradient that ranged from 800 to 1,400 m a.s.l. (Figure 2). At
each of these sampling sites, we used three 200 m long transects
separated by at least 250 m, totalling 21 transects (three × seven
sampling sites). Within each transect, we placed five pitfall traps
separated by 50 m (15 traps per sampling site, 105 in total for
each temporal sampling) to collect ants foraging on the ground.
Traps consisted of a plastic pot with a diameter of 14 cm and
a depth of 9 cm, which was filled with 500 ml of a saline-
detergent solution. The pots were set at ground level and covered
with a plastic plate (20 cm from ground level) to prevent rain
from entering the trap. All pitfall traps remained in the field for
48 h per survey (Bestelmeyer et al., 2000). We sampled quarterly
(separated by 3 months), totalling 12 samples between April 2011

and January 2014 (January, April, July, and October); such that
the samples spanned the beginning and end of both the wet
and dry season each year. The transect represents independent
sample replicates because the spacing of 50 m between samples
is considered enough to avoid interference related to the foraging
range of ants belonging to the same colony (Leponce et al., 2004)
and we used five times this distance between transects. We pooled
data from the five pitfall traps for each transect and each month
(see Castro et al., 2020).

To explore the mechanisms behind the patterns we expected
with our hypotheses, we accessed information on climatic and
vegetation factors. For climatic factors, we used data from
meteorological monitoring towers (equipped with the Onset
HOBO R© U30 data-logger) located at every 100 m of elevation,
adjacent to the sampling sites of the PELD CRSC/CNPq Project
(Silveira et al., 2019), between January 2012 and January 2014
(January, April, July, and October). We recorded air and soil
temperature, humidity, and precipitation, and we calculated the
mean and coefficient of variation of these variables for the whole
sample period for each sample site (i.e., each elevation). We also
used vegetation data from the same project at each elevation
[see Mota et al. (2018) for more details] to assess the total plant
richness per sample site.

Identification of Species and Definition
of Functional Traits of Ants
To identify ants to species and morphospecies we used a
comparison method with the Collection of Formicidae from
campo rupestre of the Laboratory of Insect Ecology at the
Universidade Federal de Minas Gerais, Brazil. In addition,
all species were revised by experts of different ant taxa.
Classifications were based on Baccaro et al. (2015) and Bolton’s
Ants of the World catalog (Bolton, 2020) classifications.

For all ant species collected, we measured key functional
response traits related to diet, nesting ecology, foraging capacity,
thermoregulation, and habitat association (Leal et al., 2012;
Bishop et al., 2016; Paolucci et al., 2016; Tiede et al., 2017; Fichaux
et al., 2019). Specifically, we quantified the following seven traits
for each species: Weber’s length, femur length, mandible length,
predominant color (mesosoma), polymorphism, integument
sculpture, and functional groups (six morphological traits and
one ecological trait; Table 1).

Morphological measurements were taken following the guide
for identification of functional attributes for ants (The Global
Ants trait Database – GLAD; Parr et al., 2017), with exception for
the variable “color.” This trait was obtained from the HSV color
model using only the variable V (color brightness), as proposed
by Bishop et al. (2016). However, we performed the capture of
HSV values of the predominant color on the mesosoma of each
specimen, in contrast to Bishop et al. (2016), who considered the
predominant color between head, mesosoma, and gaster. Since
functional traits are not normally distributed (Arnan et al., 2018;
Fichaux et al., 2019), all continuous data, except Weber’s length
and color brightness, were divided by Weber’s length to correct
for individual body size.
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FIGURE 1 | Hypotheses of how temporal β-diversity and its turnover contribution varies in an elevational gradient. (A) Our first hypothesis is that both taxonomic
(green line) and functional (blue line) temporal β-diversities increase with elevation, because in more harsh, higher elevation environments, the temporal variation in
conditions and resources would be higher. (B) Our second hypothesis is that turnover (black bar) is the most important mechanism generating taxonomic temporal
β-diversity (green line) and that nestedness (gray bar) is the most important component of functional temporal β-diversity (blue line) in general and along all the
elevational gradient, because the communities would present functional redundancy over time.

FIGURE 2 | Left panel shows a map with the location of the Espinhaço mountain range in Brazil, with our sampling area in the southern Serra do Cipó region, Minas
Gerais. Right panel shows the distribution of the sampling sites along the elevational gradient.

Imaging was performed using Microscope Digital Camera
LC30 OLYMPUS R© mounted on a stereomicroscope SZ61
OLYMPUS R©. Measurements were made with a digital capture
micrometer (accurate to 0.01 mm) provided in the LC
Micro 2.2 OLYMPUS R© software. All measured specimens
were selected at random from our dataset. When possible,
at least six individuals were measured, and whenever it
was not possible, we measured all the available individuals.
Only minor workers were used, and a total of 2103 images

were captured from 701 individuals, with an average of 4.52
individuals per species. Categorical and ordinal morphological
traits (i.e., polymorphism and integument sculpture) were
attributed using genera/species information available at AntWeb1

and AntWiki website2 (Guénard et al., 2017) and from our
own observations.

1www.antweb.org
2www.antwiki.org
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TABLE 1 | List of response functional traits measured (morphological and ecological), their hypothesized ecological functions and the expected response of the traits to
environmental change.

Traits Measure Abbrev. /Unit Ecological functions Expected response

Morphological traits

Weber’s
length

Continuous WL (µm) Proxy for whole-length, related to metabolic
characteristics (Weber, 1938; Kaspari and
Weiser, 1999; Bishop et al., 2016).

As temperature decreases, we expect to
find a community with larger individuals
(e.g., Bishop et al., 2016).

Femur
length

Continuous HFL (µm) Foraging speed indicator, related to habitat
complexity (Feener et al., 1988; Yates et al.,
2014).

Longer femur let ants move out rapidly,
which allow then occurring in harsh
environment conditions, as seen in
seasonally flooded areas (Fichaux et al.,
2019) or desert environments (Lenoir et al.,
2009).

Mandible
length

Continuous ML (µm) Diet’s indicative (Brandão et al., 2009).
Longer mandibles are associated with
larger preys in predatory species (Gibb and
Cunningham, 2013).

Due to the decrease in the complexity of
the environment in the dry and cold season,
we expect communities composed by
species with larger mandibles; increase in
predatory species frequency (e.g., Bishop
et al., 2015).

Color
(Mesossoma)

Continuous V (%) * Thermal melanism hypothesis (Trullas et al.,
2007); Thermotolerance’s indicative and,
directly related to temperature variation and
solar radiation (Bishop et al., 2016).

Dark ectothermic individuals have a benefit
in cool climates compared to lighter ones
(Trullas et al., 2007). We expected dark
individuals in the dry and cold season
(Bishop et al., 2016).

Polymorphism Categorical 1 = monomorphic; 2 = dimorphic;
3 = polymorphic

Workers’ polymorphism, related to the
ability to develop different tasks in the
colony (e.g., protection, foraging, or
activities inside the nest; Wills et al., 2017).

Due to harsh conditions found in
mountains, we expect more polymorphic
species, which could be able to make
labour division at a different time of the day
in response to daily temperature variation
(Lenoir et al., 2009).

Integument
Sculpture

Ordinal 1 = cuticle smooth/shiny;
2 = superficial wrinkles/pits;
3 = surface heavily textured

Integument desiccation protection (Nation,
2008). Thickened cuticles enhanced the
dehydration tolerance (Terblanche, 2012).

An intermediate tegument sculpture is
expected, due to the lower temperatures
during the dry season than the wet season,
and due to the thermal amplitude
commonly described in mountains between
day and night.

Ecological trait

Functional
Groups

Categorical AA = Army Ants; AD = Arboreal
Dominant; AP = Arboreal Predator;
AS = Arboreal Subordinate;
CO = Cryptic Omnivores; CP = Cryptic
Predators; DD = Dominant
Dolichoderinae; EO = Epigeic
Omnivores; EP = Epigeic Predators;
Hatt = High Attini; Latt = Low Attini;
Opp = Opportunist; SC = Subordinate
Camponotini SH = Seed Harvester.

Functional groups based on ants’
global-scale responses to environmental
stress and disturbance. Indicative of
ecological tasks, like nesting, foraging, and
diet habits (Andersen, 1995; Leal et al.,
2012; Paolucci et al., 2016). All groups
were based on the classification used by
Paolucci et al. (2016). Exception for Seed
Harvester group (Johnson, 2015) here
represented by Pogonomyrmex naegelli,
which was not present in this list.

Calculating Temporal β-Diversity
We calculated the variation of the taxonomic (TD) and
functional (FD) composition of the ant community temporally
using β-diversity (βSOR) (Baselga, 2010). We used the data
collected over the 12 sampling periods to calculate temporal
TD and FD β-diversity for each transect (21 in total). We also
partitioned TD and FD into the components derived from species
turnover (βSIM) and species gain/loss or nestedness (βSNE). In
this step, we partitioned β-diversity for the whole gradient
and for each transect. In all β-diversity calculations, we used

Sørensen dissimilarity index based on a presence/absence species
composition matrix. To calculate temporal functional β-diversity,
we first generated a distance matrix of species based on their
functional traits using the Gower Distance, a useful method
for combining categorical and continuous traits (de Bello et al.,
2013). We then used this distance matrix to construct a functional
space, using Principal Coordinates Analysis (PCoA), which in
turn was used to calculate temporal functional β-diversity. We
used the “beta.multi” and “functional.beta.multi” functions of
the package “betapart” to partition TD and FD β-diversity,
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FIGURE 3 | Correlations between elevation and environmental variables. Mean air temperature, soil temperature, plant richness and the variation of air humidity
decrease with elevation, while mean air humidity and the variation of soil temperature increase with elevation. All presented Pearson correlations are significant under
α = 0.05. 1 is coefficient of variation while the other variables represent mean values. Numbers inside the plots represent the coefficient of correlation. Data of plant
richness from Mota et al. (2018). Data of climatic variables sampled using meteorological monitoring towers during 12 periods along an elevational gradient in Serra
do Cipó, Minas Gerais State – Brazil.

respectively (Baselga and Orme, 2012), in the software R
(R Core Team, 2019).

Statistical Analyses
We ran Pearson correlation analyses with all the environmental
variables against elevation using the “psych” R package (Revelle,
2017). As elevation was correlated with mean air and soil
temperature, air humidity, plant richness and the temporal
variation of air humidity and soil temperature (see details in
section “Results”), we used elevation as a proxy for all these
variables in our analyses. To test our first hypothesis, we ran
linear mixed-effect models (LMMs), one with TD β-diversity as
response variable and other with FD β-diversity (βSOR), and both
had elevation as an independent variable and sampling site as
a random variable. To test our second hypothesis, we used the
turnover contribution (βSIM/βSOR) as the response variable and
also ran separate LMMs for TD and FD, with elevation as an
independent variable and sampling site as a random variable. We
checked for the error distribution and over-dispersion of the data.
All statistical analyses were performed in R (R Core Team, 2019).

RESULTS

We recorded a total of 155 ant morphospecies (species hereafter),
belonging to eight subfamilies and 49 genera. Myrmicinae was the

most representative subfamily with 25 of the identified genera,
followed by Ponerinae (eight), Dolichoderinae (five), Dorylinae
(four), and Formicinae (three). The subfamilies with the highest
species richness were Myrmicinae (85 species), Formicinae (23
species), Ponerinae and Dolichoderinae (12 species each). These
four subfamilies accounted for 85% of the species sampled.
The genera with most species were Pheidole with 25 species,
Camponotus 20 species, and Solenopsis with eight species. Across
all samples, we recorded 13 doubletons and 23 singletons (23.2%).

We found that mean air and soil temperatures, plant richness,
and coefficient of variation of air humidity were negatively
correlated with elevation, whereas mean air humidity, and
coefficient of variation of soil temperature were positively
correlated with elevation (Figure 3 and Supplementary Table 1).
That is, mean air and soil temperature, plant richness and
the temporal variation of humidity decrease with increasing
elevation, while air humidity and the temporal variation of soil
temperature increase with increasing elevation (Figure 3). We
also found that precipitation dropped from ∼170 mm to close
to 0, while mean air temperature dropped from 21.1 to 17.2◦C
in the beginning of the wet season to the beginning of the dry
season, respectively (Figure 4). Air and soil humidity mirrored
this pattern of decrease from the wet to the dry season (Figure 4).

The main driver of temporal taxonomic β-diversity was
the turnover component (βSIM) with 86% of contribution. In
contrast, nestedness (βSNE) was the main component to temporal
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FIGURE 5 | Contribution of turnover and nestedness components to
temporal taxonomic and functional β-diversity of ant metacommunity in Serra
do Cipó, Minas Gerais State – Brazil. Data from 12 sampling periods between
April 2011 and January 2014.

functional β-diversity with 67% of contribution across the entire
gradient (Figure 5).

Neither temporal taxonomic nor functional β-diversity were
influenced by elevation [TD: χ (1,19) = 1.02, p = 0.31; FD: χ

(1,19) = 1.86, p = 0.17; Figure 6A]. Turnover (βSIM) was the
main driver of temporal taxonomic β-diversity with a consistent
pattern along the entire elevation gradient [contribution always
higher than 80%; χ (1,19) = 0.24, p = 0.62; Figure 6B]. In
contrast, temporal functional turnover contribution increased
with elevation [χ (1,19) = 5.22, p < 0.05, pseudo-R2 = 0.22], going
from less than 20% in lower elevations to more than 50% in
higher elevations (Figure 6B).

DISCUSSION

We found that ant communities had remarkably high temporal
taxonomic and functional β-diversity. Contrary to our first
hypothesis, values of temporal taxonomic and functional
β-diversity are high irrespective of their position along the
elevational gradient. Partially in line with our second hypothesis,
turnover was the main component of temporal taxonomic
β-diversity along the gradient (above 80% of contribution).
However, the contribution of nestedness to temporal functional
β-diversity decreased significantly with elevation. We propose
that ant activity is very sensitive to temporal variation in
environmental conditions, and mainly temperature (Costa et al.,
2018; Castro et al., 2020). The effect on ant community
composition is then the same along the elevational gradient,
with both species and functional traits highly variable over time
at all elevations. Although ant metacommunities are changing
over time, at low elevations the turnover in species composition

may cause changes in trait composition because of the loss
of some traits, but probably preserving the most common
functions (nested functional communities). In contrast, at higher
elevations, the turnover in species composition cause changes
in the set of functions performed over time (i.e., temporal
turnover of traits).

The campo rupestre has two well-defined seasons: a wet season
that is also hot (∼170 mm/month and mean temperature of
21.1◦C), and a dry season that is cold (close to 0 mm/month
and 17.2◦C). The changes in temperature and humidity impose
changes in plant productivity (Rocha et al., 2016) and animal
activity (especially the ectothermic animals; e.g., Costa et al.,
2018). Indeed, temporal changes in temperature, humidity
and resource availability are known to influence ant foraging
activity (Calazans et al., 2020) and consequently the diversity
and composition of communities. However, we found high
levels of species and trait composition changes along the entire
elevation gradient, contrary to our expectations. We propose
two non-exclusive hypotheses to explain this result: (i) the
sensitivity of ant communities in tropical mountains to changes
in environmental conditions (Longino and Colwell, 2011; Castro
et al., 2020; Lasmar et al., 2020) are enough to impose drastic
changes in species and trait composition; ii. ant communities
are regulated by the minimum humidity at low elevations, while
the highland ant communities are regulated by the minimum
temperature, consistent with our finding that the variation of
temperature increases with elevation, while the variation in
humidity decreases. Bishop et al. (2017) found that ants are
constrained more by the critical thermal minimum temperature
(CTmin) than by the maximum in a southern African mountain.
Accordingly, Calazans et al. (2020) found, in a study in campo
rupestre, that ant activity increased with temperature, but most
species were not active under 20◦C. Although highland ants
would probably have a lower CTmin, the higher variation on
temperature at high elevations could filter different species and
traits in different seasons.

We found that turnover was the main mechanism generating
temporal taxonomic β-diversity, as expected based on the spatial
pattern for ants and many other organisms (Perillo et al., 2017;
da Silva et al., 2018; Kaltsas et al., 2018; Castro et al., 2020).
The spatial variation in conditions and resources provide an
environmental filter for species that have pre-adaptations to
survive in different places (Heino and Tolonen, 2017; García-
Llamas et al., 2019) leading to high rates of turnover of species.
In this sense, the same processes would be occurring to generate
the temporal pattern but related to ant activity: environmentally
filtering ant species to be active in different seasons along all
the elevational gradient. In contrast, functional β-diversity is
generated by a higher contribution of nestedness in spatial
patterns (Nunes et al., 2016, 2017; Castro et al., 2020) especially
on elevational gradients, showing high functional redundancy. In
our study, at lowlands the temporal pattern mirrors the spatial
and nestedness contributes 80% of functional β-diversity (i.e.,
20% turnover, Figure 6B). However, the importance of turnover
in functional diversity increases with elevation, reaching more
than 50% in some highlands. The changes in species composition,
caused by a change in the set of active species, lead to creation
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FIGURE 6 | Temporal taxonomic (green dots) and functional (blue triangles) β-diversity of ants along a tropical elevational gradient in Brazil. (A) Values of temporal
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(βSIM/βSOR) to β-diversity was always high for taxonomic diversity whereas it increased with elevation for functional diversity. Data from ant communities sampled in
12 periods along an elevation gradient in Serra do Cipó, Minas Gerais State – Brazil. The figure represents four separated models (see section “Materials and
Methods”).

of subsets of traits among seasons, with a more complete set
in hot and dry season and a subset of the most common traits
in dry and cold season. However, at higher elevations on the
gradient, increasing trait turnover can create a greater variation
in trait combinations over space and time. This means that lower
elevation ant metacommunities are more functionally resistant
to changes in species composition, having greater functional
redundancy over time while higher elevation metacommunities
are more functionally sensitive to changes in species composition
across the seasons.

Contextualizing our results within the metacommunity
framework, we can propose that ant diversity is explained
by a combination of the species sorting and the mass effect
models (Leibold et al., 2004; Soininen, 2014). We found a high
β-diversity and turnover contribution in our study, showing that
environmental conditions and resources are filtering the species
comprising the ant metacommunity (i.e., species sorting; Leibold
and Chase, 2018). Due to high environmental heterogeneity
across the elevational gradient, if we are looking at different
sites (e.g., different elevations or different habitats) or different
times (e.g., different seasons) we expect to find different ant
species compositions. Conversely, generalist ant species may have
access to different habitats with different conditions through
dispersal and can establish long term populations (e.g., Neves
et al., 2020), maintaining the mass effect. Therefore, although
environmental filters are strong in spatially and temporally
regulating the ant metacommunity (species sorting), some ant
species can disperse, overcoming local niche limitations and
establish populations in different sites following close-to-optimal
conditions (mass effects). In both cases, we observe a greater
importance of environmental than dispersal-related factors, a
pattern expected when there is high environmental heterogeneity
(e.g., He et al., 2020).

Implications for Conservation
Our study builds on growing evidence that montane tropical
insects are highly sensitive to local climatic and environmental

changes (e.g., Longino and Colwell, 2011; Lasmar et al., 2020).
The studied ant metacommunities are highly variable over
time along the entire elevational gradient. Montane insect
assemblages are thought to be very vulnerable to global
warming (Laurance et al., 2011), because with increasing
temperature, these organisms are expected to shift their
elevational ranges, leading to mountaintop extinctions (Colwell
et al., 2008). As there is growing evidence that climate change
affects both temperature and precipitation regimes (e.g.,
Romero et al., 2020) and also the occurrence and intensity
of extreme climatic events (e.g., Fischer and Knutti, 2015;
Patricola and Wehner, 2018), we may expect that such increase
in climatic variation and instability will drastically affect
ant metacommunities. With this higher temporal variation
in conditions and resources, we might lose the rarer and
specialized species (Davies et al., 2004) that cannot survive
the new environmental filter, leading to the homogenisation
of the metacommunity (Newbold et al., 2019). In plants,
generalist species tend to be functionally closer, i.e., have
high functional redundancy (Denelle et al., 2020), and in
assemblages with homogenized species composition we
may observe a loss of functional traits and consequently,
ecological functions (Newbold et al., 2019). In addition, species
that show temporal shutdown in their activity, are likely
to be more active year-round as the climate warms (Costa
et al., 2018), potentially increasing competition, although the
outcome of competitive interactions will likely be influenced
by the prevailing combination of temperature and humidity.
Furthermore, as we identified an increasing importance of
functional temporal turnover along the elevational gradient,
we expect that the higher climatic variation associated with
climate change (Fischer and Knutti, 2015) will favor generalist
species within communities. This, in turn, will result in
the homogenisation of the set of functions performed in
different seasons. With mountaintop extinctions, elevational
range shifts, and taxonomic and functional homogenisation
of assemblages, ecosystem functions provided by ants
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will be severely jeopardized in tropical mountains under global
climatic changes.
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