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Chironomid (Diptera: Chironomidae) larvae play an important role in a wide range
of aquatic ecosystems. The study focuses on Chironomidae trophic guilds and
morphological types as indicator traits in reconstructions of habitat changes in shallow
water bodies. Mentum and ventromental plates are important mouthparts whose shape
depends on food type and feeding behavior. Chironomidae larvae strongly vary in
the mode of life and feeding habits, representing almost every feeding group. Here
we classified the mentum types into 16 groups and tested if they indicated similar
past habitat changes as the Chironomidae functional feeding groups (FFGs), and
tribes/subfamilies. Paleoecological data of biotic and abiotic proxies were derived
from short sequences from a Late Glacial oxbow and a nearby medieval moat
located in Central Poland. The study revealed that the habitat substratum structure,
vegetation and physicochemical conditions are associated both with the feeding types
and morphological traits. This provides a valuable tool for future reconstructions of
habitat changes.

Keywords: Diptera, functional feeding groups, trophic guilds, paleoecology, paleolimnology, habitat
reconstruction, environmental changes, mouthpart morphology

INTRODUCTION

Chironomidae are one of the most abundant and ubiquitous groups of aquatic insects. Their
sensitivity to changing limnological conditions and species-specific environmental preferences
make them good ecological indicators (Armitage et al., 1995; Porinchu and MacDonald, 2003).
A variety of environmental variables affects Chironomidae larvae both in a direct and indirect
way. Among local-scale abiotic factors, some of the most important for chironomids are pH, lake
depth and water nutrient status (Walker, 2001; Brooks et al., 2007; Płóciennik et al., 2020). As
there are some truly rheophile taxa, chironomid subfossils can indicate a connection of peripheral
river valley water bodies to the main stream during overbank episodes (Gandouin et al., 2006;
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Howard et al., 2010; Kittel et al., 2016). They also indicate a
stagnant water level in a quantitative way (Luoto, 2009a).
While a relation of littoral versus profundal taxa reflects
lake-level changes, semi-terrestrial taxa indicate paludification
and terrestrialisation processes (Frouz, 1999; Brooks et al.,
2007; Lamentowicz et al., 2009). When pH drops below 6.0,
chironomid assemblages are mostly replaced by Chaoboridae
or Ceratopogonidae (Henrikson et al., 1982; Walker et al.,
1985). Even though most chironomid larvae prefer circum-
neutral pH, certain taxa are characteristic to acidic or slightly
alkaline conditions (Walker, 2001; Brooks et al., 2007). Generally,
water pH exceeding 7.5 eliminates many taxa, reducing species
richness. It is associated with increased eutrophication and
oxygen deficiencies (Brooks et al., 2007). The extraordinarily wide
spectrum of preferred water trophic states makes chironomids
good indicators of lake nutrient status (Saether, 1979; Walker,
2001; Porinchu and MacDonald, 2003).

Chironomidae are applied in inference models developed
as a tool for many quantitative climatic and environmental
reconstructions (e.g., Brooks et al., 2001; Luoto, 2009b; Heiri
et al., 2011; Kotrys et al., 2020). However, the use of chironomid
autecology for reconstruction of aquatic habitats is a time-
consuming method and requires high competition in subfossil
identification. The acquisition of necessary experience for
chironomid identification takes years of work and there are still
too few specialists to meet the needs of European paleoecological
projects. But, while standard analysis is impossible, the functional
trait approach may be applied. This method allows for
tracking past shifts in the functional groups of organisms,
and thus studying the long-term ecosystem response to past
environmental changes (Gregory-Eaves and Beisner, 2011). So
far, functional traits of several groups of organisms have been
studied according to their application in paleoecology (e.g.,
Vogt et al., 2010; Fournier et al., 2015; Nevalainen and Luoto,
2017). The functional traits carried by chironomid larvae have
so far been studied mainly by Serra et al. (2016, 2017). Here we
want to verify the applicability of this method in Chironomidae
subfossil analysis.

Functional traits are the features of organisms indicating
environmental changes (response traits) or driving such changes
in the ecosystems (effect traits) (Nock et al., 2016). They are
widely used in community ecology, studying the ecological niche
(Kearney et al., 2010), improving ecological process analyses and
quantifying the influence of assemblage shifts (Díaz and Cabido,
2001; Nock et al., 2016). Community-trait approach, which takes
into considering community weighted means of traits (CWMs),
is a noteworthy method (Garnier et al., 2007; Kleyer et al.,
2012). Several indices were constructed for functional diversity
calculation (reviewed in Pla et al., 2012), providing a broader
view for ecosystem complexity than species richness (e.g., Stuart-
Smith et al., 2013). The Chironomidae taxonomic and functional
diversity across various environmental gradients have been
already studied in several regions of the world (e.g., Milošević
et al., 2018; Jiang et al., 2019; Motta and Massaferro, 2019; Ni
et al., 2020), while Nevalainen et al. (2015) focused on the results
provided by the subfossil chironomid assemblages. Kivilä et al.
(2019, 2020) used chironomid functional feeding groups (FFGs)

to track not only recent habitat changes, but also climate warming
in northern Finland. However, food preferences of some taxa are
still not well-specified. To avoid loss of data, morphological traits
such as the mouthpart structure may serve as a good surrogate.
Several studies have proven that morphological features of some
organisms, such as testate amoebae (e.g., Fournier et al., 2015;
Lamentowicz et al., 2015), cladocerans (Nevalainen and Luoto,
2017) and plants (e.g., Woodward, 1987; Reitalu et al., 2015;
Carvalho et al., 2019) can be used to infer past environmental
changes, both on a micro- and macroscale. The study by Barboni
et al. (2004) indicates that plant response to climate changes
(reflected in pollen analysis) is more diagnostic in combinations
of traits rather than in individual traits. This assumption is likely
applicable to every biological proxy, including chironomids.
Consequently, future studies on shifts in habitat structure should
apply appropriate methods that take into consideration the
complexity of aquatic ecosystems.

Trait-based studies help researchers understand the
mechanisms of ecological processes and, therefore, their
potential in paleoenvironmental reconstructions cannot be
ignored (Marcisz et al., 2020). The studied organisms were
affected over time by a range of direct and indirect variables.
One of such indirect factors was human activity, which impacted
aquatic habitats in many ways. Therefore, the study includes
both truly natural and artificial water bodies. The results of the
previous study concerning the moat system of the motte-and-
bailey stronghold in Rozprza (Kittel et al., 2018a) were utilized. In
its case, human impact turned out to be one of the main factors.
The inhabitants caused the increase of water trophy, but also
changed water dynamics by creating artificial channels (Kittel
et al., 2018a). In order to check the applicability of the proposed
method in a natural ecosystem, the results of paleoecological
studies of the nearby paleo-oxbow were also included.

Morphological characters and well-established ecological
preferences are key traits in paleolimnology (Gregory-Eaves and
Beisner, 2011). The study focuses on the morphological traits
(mouthparts type) which are thought to be (at least partially)
dependent on feeding preferences, and thus also associated with
the habitat character. The habitat structure is expressed not only
by physicochemical features but also by biological variables, such
as macrophytes and diatoms, included in our study. Langdon
et al. (2010) state that biotic variables are even more important
than the abiotic ones in determining zoobenthos communities
in temperate shallow lakes, and chironomids are very good
indicators of past changes in the primary production, as well as
macrophyte abundance and structure. Our primary goal is to
recognize if the traits carried by the Chironomidae at different
organization levels indicate similar habitat changes in the context
of paleoenvironmental reconstructions.

Chironomidae vary not only in their environmental
preferences but also in their diet type. Although the larval
feeding behavior depends on many factors, such as larval size,
food quality, and availability (Berg, 1995), each species seems
to have specific preferences, often associated with its habitat
type. Representatives of almost every feeding group can be
found among chironomids. There are sediment collectors
such as Chironomus plumosus-type, phytophagous shredders
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such as Glyptotendipes caulicola-type, and scrapers (many
Orthocladiinae). Such a great variety is associated with their
diverse modes of life – some of them live in tubes built out of
sediment (e.g., Chironomus and Tanytarsini), while others are
free-living and predatory, such as Tanypodinae. Chironomids
include detritus feeders, parasites, commensals, and plant miners
(Berg, 1995; Walker, 2001; Beiger, 2004; Vallenduuk and Moller
Pillot, 2007; Moller Pillot, 2009, 2013; Schiffels, 2014).

Larvae morphology, especially their mouthparts, had to be
adapted to their diet and feeding behavior. The relationship
between mandibles and chironomid autecology was studied
using the geometric morphometrics approach (Ðurd̄ević et al.,
2017). Mandibles and labrum are important features, useful
in diagnostics, but they are often missing from the subfossil
material. Other mouthparts, likely related to the diet, are
mentum and ventromental plates. This is the reason for choosing
them as the key characteristics for morphological types in our
study. The shape of the mentum may be similar even between
taxonomically distant taxa. For example, the concave mentum
of predatory Cryptochironomus resembles the dorsomentum of
many Tanypodinae (e.g., Procladius), while striated plates are
often characteristic of filtrating Chironominae (Olafsson, 1992;
Moller Pillot, 2009).

Considering this, we can assume that some generalization
in the morpho-functional traits of Chironomidae can be done.
However, we need to be careful with some morphologically
close species which vary in their feeding behavior (Monakov,
1972). In paleoecological studies, chironomids are mostly
identified to the morphotype level, which usually includes closely
related species with similar ecology. On the other hand, it is
sometimes impossible to distinguish subfossil head capsules of
ecologically different taxa, such as Micropsectra insignilobus and
M. atrofasciata, Chironomus tenuistylus and Ch. plumosus, or
Stempelinella and Zavrelia (Brooks et al., 2007). Nevertheless,
chironomid mouthparts are closely related to their feeding
type, which often reflects the habitat structure. It raises the
question if the knowledge of certain species’ autecology is
always required for reconstructions of environmental conditions?
Perhaps some general assessments can be done, even by non-
specialists, on the basis of mentum shape. In this case, such
preliminary chironomid analyses based on the proposed mentum
classification could bring valuable insight into past ecosystems,
even when undertaken during a macrofossil analysis.

Mentum and ventromental plates are also the main differing
features between subfamilies and tribes. Although there are
eleven Chironomidae subfamilies, three of them are the most
species-rich: Chironominae, Orthocladiinae, and Tanypodinae
(Brooks et al., 2007; Ferrington, 2008). In this study, we focus
on these subfamilies, as their representatives were found in
examined sediments. Chironominae are usually characterized
by distinctive, striated, large ventromental plates and a slightly
convex mentum. The mentum of Orthocladiinae is often
strongly convex, their head capsules are usually smaller, and
ventromental plates are mostly inconspicuous. Tanypodinae have
a toothed ligula, a less developed mentum, and no ventromental
plates. Some chironomid subfamilies are divided into tribes.
In the studied sequences, taxa belonging to Macropelopiini,

Natarsiini, Pentaneurini, Procladiini, Tanypodini (Tanypodinae),
as well as to Chironomini and Tanytarsini (Chironominae), and
to Orthocladiinae were recorded. Among Tanypodinae, only
Macropelopiini, Procladiini and Tanypodini have dorsomental
teeth. Natarsiini and Pentaneurini are characterized by a bright,
elongated head and a membranous toothless mentum that
is not well-preserved in subfossil material. Chironomini have
relatively large, fan-shaped ventromental plates, while the plates
of Tanytarsini are usually bar-shaped and straight (Brooks et al.,
2007; Andersen et al., 2013). The Orthocladiinae are rarely
divided into tribes (Spies, 2005), so we left this group undivided
at the subfamily level.

Finally, the goal of this study is to check whether (and
how) some chironomid groups (mentum types, trophic guilds,
or tribes/subfamilies) are correlated with other indicators
within studied proxies (macrophytes and other plants, diatoms,
sediment type or geochemical components). The applicability of
morphological functional traits in paleoecological research was
verified. Presumably, they could serve as surrogate indicators
where it could be applicable.

STUDY AREA

The study area (51◦18′07′′ N; 19◦40′04′′ E; 182–183 m a.s.l.) is
situated in Central Poland, approx. 60 km south of Łódź. It is
located in the valley floor of the Luciąża River, a 3rd-order river
in the Vistula River basin.

The region is a part of the Odranian (Saalian) formerly
glaciated area – the last ice sheet was present here in the
Wartanian Cold Stage of the Odranian Glaciation (Marks, 2011).
Intense transformation of river valleys took place during the
Weichselian glacial period under periglacial conditions. While
the valley floor is strongly expanding in the Rozprza area, residual
terraces occur within the Holocene floodplain (Goździk, 1982;
Kittel et al., 2018b).

In the opinion of Wachecka-Kotkowska (2004a,b), the
morphology of the Luciąża valley floor was obliterated by
the deposition of modern overbank alluvium. However, this
landscape reconstruction has not been confirmed by a detailed
examination of surficial geology in the Rozprza area (Kittel
et al., 2018a,b). In the recent research, numerous subfossil
paleomeanders of different sizes have been discovered in the
valley floor (Figure 1). A large paleochannel (W4) was recorded
as a strong curvilinear magnetic anomaly with a width of ca.
10 m, and a radius of ca. 15 m. It is filled with organic mud
and coarse-detritus gyttja reaching 1.3 m thickness and underlain
by channel alluvia of sands and gravels with organic admixtures
and laminations of organic mud. Radiocarbon data evidences
the channel’s cut-off in the Late Allerød. The paleochannel
fill is overlain by the overbank alluvia of sandy organic mud
(Kittel et al., 2018b).

The Rozprza motte-and-bailey moat system was established
in the 1330s AD and is now filled with organic (gyttja and
peat) and partially inorganic deposits containing rich remains of
wood. The medieval age of the features has been confirmed by
dendrochronological and radiocarbon AMS date sets. The fill of
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FIGURE 1 | The geomorphological map of the vicinity of Rozprza archaeological site with the location of W4 (paleo-oxbow) and W3(2) (moat) profiles (marked as
yellow dots) (after Kittel et al., 2015, 2018b, modified). In the map of Poland, Rozprza is marked with an asterisk.

the main moat was a subject of a detailed paleoenvironmental
study (Kittel et al., 2018a). The accumulation of overbank silty
sandy organic mud took place within the moat ditch system as
late as in the 18th or 19th c. CE (Kittel et al., 2018a,b).

The potential natural vegetation of the Luciąża River valley
would have been mostly lime-oak-hornbeam forests representing
the Tilio-Carpinetum association and, to a lesser extent, the
Potentillo albae-Quercetum typicum. Immediate surroundings of
the water courses would have been overgrown by lowland ash-
alder and alder forests of Fraxino-Alnetum and Carici elongatae-
Alnetum associations (Matuszkiewicz, 2008).

The sediment cores were taken from the same area, but
they are dated to different time periods. The W3(2) sequence
originates from the Late Medieval moat, while the W4 core covers
the Late Weichselian paleochannel history (Figure 1).

MATERIALS AND METHODS

Fieldwork and Geochronology
The fieldwork in Rozprza was conducted in 2015–2016, as part of
a multidisciplinary archaeological investigation of the medieval
ringfort remnants. In order to choose proper sampling sites in

the field, not only was topography and geomorphology of studied
area thoroughly mapped but also the combination of other non-
destructive methods (including aerial photography, geophysical,
and geochemical survey) was used (Sikora et al., 2015, 2019;
Kittel et al., 2018b).

The sediments for paleoecological analyses were collected
from the trench walls as monoliths using metal boxes
(50 × 10 × 10 cm each). With this method, the undisturbed
structure of the sediments was preserved. Five selected samples
of bulk organic deposits collected from the W3(2) profile
and two bulk samples from the W4 profile were dated with
the radiocarbon (14C) method, using the liquid scintillation
technique (LST). Two samples of selected terrestrial plant
macrofossils from the W3(2) core and three samples from the W4
core were dated using accelerator mass spectrometry technique
(AMS). Moreover, a dendrochronological analysis was performed
to determine the age of the moat fill (Kittel et al., 2018a).

Geochemical and Sedimentological
Analyses
For geochemical analyses, samples from both cores were
dried at 105◦C and homogenized. The organic matter content
was obtained using the loss on ignition (Heiri et al., 2001).
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Carbonate content was determined using the volumetric method
with Scheibler’s apparatus, and pH by a mean potentiometric
method in distilled water. The ash samples were dissolved (with
HCl, HNO3, and H2O2) in Teflon bombs using a microwave
mineralizer. For the solution analyzed concentrations of such
elements as: Na, K, Mg, Ca, Fe, Mn, Cu, Zn, and Pb, the atomic
absorption spectrometry (AAS) was used. Grain size composition
of the ash samples, remaining after the solution was made
in accordance with Clift et al. (2019), was determined using
a Mastersizer 3000 laser particle-size analyzer (Malvern). The
relationship between the mean grain size and the sorting index
(the so-called coordinate system) follows Mycielska-Dowgiałło
and Ludwikowska-Kêdzia (2011).

Biotic Proxies
Chironomidae sample processing followed the methods outlined
in Brooks et al. (2007). The sediment volume ranged between 1
and 10.5 cm3 per sample. The sediments were passed through
a 63 µm mesh sieve. If necessary, kerosene flotation was used
according to the method of Rolland and Larocque (2007).
Processed sediment was put into a Bogorov counting tray and
scanned under a stereo-binocular microscope. Where applicable,
at least 50 (preferably 100) chironomid head capsules from each
sample were picked and mounted in Euparal R© on microscope
slides. Identification of chironomid head capsules followed
keys by Schmid (1993), Brooks et al. (2007), and Andersen
et al. (2013). Chironomidae taxa were classified in three ways:
taxonomically (subfamilies and tribes), morphologically and by
feeding group. Sixteen morphological types were distinguished
based on the larvae mouthpart structure, namely: the mentum
ratio (width/height), the median and lateral mentum teeth
structure, as well as the size and shape of ventromental
plates (Figure 2). Most types were distinguished within
Chironomini and Orthocladiinae. Tanypodinae with toothed
dorsomentum were grouped together with Cryptochironomus,
while for Pentaneurini and Natarsia (with toothless mentum)
a separate group was created. Tanytarsini were classified
into two types, depending on the shape and length of
ventromental plates (Table 1). The recorded taxa were also
divided into 12 functional feeding groups (FFGs): collector-
gatherers (C), collector-filterers (C/F), collectors/grazers
(C/G), shredders/filterers (S/F), shredders/collectors (S/C),
grazers/scrapers (G), grazers/collectors (G/C), filterers/collectors
(F/C), filterers/grazers (F/G), miners (M), predators (P), and
predators/collectors (P/C). The feeding preferences of identified
taxa are based mainly on Franquet (1999), Vallenduuk and
Moller Pillot (2007), Moller Pillot (2009, 2013), and Serra et al.
(2016). The stratigraphic diagrams were created with C2 software
(Juggins, 2007).

Samples for a plant macrofossil analysis were wet-sieved in a
200 µm mesh, then boiled with KOH to reduce the amount of
sediment and remove humic matter. The material was examined
under a microscope. Conservation of plant remains was done
with a standard mixture of alcohol, water and glycerine, with
addition of thymol. Fragments of plants were then dehydrated
in 50% ethyl alcohol. Macrofossils were identified using plant
keys, atlases (e.g., Greguss, 1945; Kats et al., 1965; Grosser,

FIGURE 2 | Chironomidae head capsule with mouthpart structure.

1977; Schweingruber, 1978; Berggren, 1981; Cappers et al.,
2006; Velichkevich and Zastawniak, 2006, 2008; Schweingruber
et al., 2011), scientific descriptions and publications, a reference
collection of modern seeds, fruits, wood and charcoal, and a
collection of fossil floras of the W. Szafer Institute of Botany,
Polish Academy of Sciences, in Kraków.

A diatom analysis was conducted according to the method
by Battarbee (1986). Samples of 1 cm3 each from the cores
were processed. Sediments were treated in 10% HCl to remove
calcium carbonate and washed several times in distilled water.
Afterward, the samples were boiled in 30% H2O2 to digest the
organic matter. Finally, the samples were washed several times
in distilled water. Microspheres were added to each sample in
order to determine the frequency of the diatoms in each sample
(Battarbee and Kneen, 1982).

Statistical Analyses
All statistical analyses were made in R software (R Core Team,
2020). Firstly, environmental data were standardized using the
robustHD package (Alfons, 2019). The corrplot package (Wei
and Simko, 2017) was used to compute Pearson’s correlation
matrix in order to check which environmental variables were
correlated (correlation >0.70) with each other (Supplementary
Figures 1, 2). The most autocorrelated predictors were removed
from the analysis. Finally, eight variables: pH, CaCO3, organic
matter (OM), K, sand, wood, Carex sp., and U. dioica were
included in further analysis (Supplementary Table 1). Next,
a dataset for each group of Chironomidae was square-root
transformed, in order to reduce the influence of outliers.
The “decorana” function from the vegan package (Oksanen
et al., 2019) was used to fit the best ordination analysis
to the datasets of each group. A Redundancy Analysis
(RDA) was performed for each Chironomidae typology using
the vegan package (Oksanen et al., 2019). To determine
collinearity between environmental factors shaping chironomid
composition, variance inflation factors (VIF) analysis was used
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TABLE 1 | Chironomidae morphological types.

Morphological type Description Morphospecies from this study Example

1 - One broad or several smaller median teeth
- Narrow plates with setae
- Mentum ratio > 3

Acricotopus, Diplocladius, Psectrocladius barbatipes-type,
P. flavus-type

Diplocladius 

2 - Two median teeth
- Broadening/narrow ventromental plates
- Mentum ratio 2.2–2.9

Chaetocladius piger-type, Metriocnemus fuscipes-type,
Heterotrissocladius marcidus-type, H. grimshawi-type,
Hydrobaenus conformis-type, Nanocladius rectinervis-type,
Psectrocladius sordidellus-type, P. limbatellus-type

Chaetocladius piger-
type 

3 - Large, fan-shaped plates
- One/trifid median tooth
- Mentum ratio 2.9–3.9

Glyptotendipes barbipes-type, G. pallens-type, Chironomus
plumosus-type, Ch. anthracinus-type

Chironomus 
anthracinus-type

4 - Fan-shaped plates
- Cluster of outermost lateral teeth

Cladopelma viridulum-type, Cladopelma goetghebueri-type

Cladopelma viridulum-
type

5 - Tanytarsini
- Long ventromental plates, close together

Micropsectra contracta-type, M. insignilobus-type,
M. pallidula-type, Tanytarsus chinyensis-type,
T. lactescens-type, T. lugens-type, T. mendax-type,
T. nemorosus-type, T. pallidicornis-type, Paratanytarsus
austriacus-type, P. penicillatus-type, P. type A,
Rheotanytarsus

Micropsectra contracta-
type

6 - Broadening/narrow ventromental plates
- Mentum ratio < 2.2

Corynoneura arctica-type, C. coronata-type,
C. edwardsi-type, Rheocricotopus effusus-type,
Eukieferiella coerulescens-type

Corynoneura arctica-
type

7 - One broad median tooth
- Narrow ventromental plates
- Mentum ratio ca. 2

Cricotopus bicinctus-type, C. cylindraceus-type

Cricotopus 
cylindraceus-type

8 - One median tooth
- narrow ventromental plates
- Mentum ratio 2–2.9

Cricotopus intersectus-type, C. laricomalis-type,
Orthocladius trigonolabis-type, O. type S, O. type I,
Metriocnemus terrester-type

Metriocnemus terrester-
type

9 - Concave mentum Cryptochironomus, Procladius, Tanypus, Psectrotanypus,
Derotanypus

Cryptochironomus

10 - Fan-shaped plates
- Mentum ratio 2–2.5

Dicrotendipes nervosus-type, D. notatus-type,
Glyptotendipes caulicola-type, G. severini-type

Glyptotendipes severini-
type

11 - No teeth on mentum Natarsia, Ablabesmyia, Clinotanypus nervosus,
Guttipelopia, Larsia, Krenopelopia, Monopelopia,
Paramerina, Thienemannimyia group, Zavrelimyia

Ablabesmyia

12 - Fan-shaped plates
- 3–4 median teeth higher than lateral ones
- Mentum ratio 2.9–4.1

Endochironomus tendens-type, E. impar-type,
E. albipennis-type, Phaenopsectra type A, P. flavipes-type,
Stictochironomus roesenschoeldi-type, Sergentia
coracina-type, Polypedilum sordens-type Endochironomus 

tendens-type 

(Continued)
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TABLE 1 | Continued

Morphological type Description Morphospecies from this study Example

13 - Fan-shaped plates
- 3–4 median teeth brighter than lateral ones
- Mentum ratio 3.2–3.7

Microtendipes pedellus-type, Paratendipes albipennis-type,
P. nudisquama-type

Microtendipes 
pedellus-type

14 - Large fan-shaped plates
- 2 median teeth
- First lateral tooth lower

Polypedilum nubeculosum-type, P. nubifer-type,
Lauterborniella, Zavreliella

Polypedilum 
nubeculosum-type

15 - Ventromental plates narrow or foot-shaped
- One broad median tooth or two median teeth
- 4–5 lateral teeth
- Mentum ratio ca. 3

Metriocnemus eurynotus-type, Parametriocnemus-
Paraphaenocladius, Smittia foliacea-type, Pseudosmittia,
Pseudorthocladius, Limnophyes, Paralimnophyes

Metriocnemus 
eurynotus-type

16 - Tanytarsini
- Broad, well separated ventromental plates

Constempellina-Thienemanniola, Stempelinella-Zavrelia

Constempellina
-Thienemanniola

(Fox and Weisberg, 2011). In addition, ANOVA was conducted
to determine statistically significant variables (Oksanen et al.,
2019). These variables were used in subsequent RDA analysis.
Adjusted R2 indicated how much variability was explained
by the RDA analysis. Eigenvalues of RDA axes (RDA1 and
RDA2) were computed to compare the proportions of variance
explained between each analyzed group of chironomids. Eight
environmental factors (pH, CaCO3, organic matter, K, sand,
wood, Carex sp., and U. dioica) were used in generalized
linear models (GLMs) as fixed effects to assess their influence
on the richness of chironomid tribes/subfamilies, mentum
types and feeding types. Models were selected using the
“dredge” function from the MuMIn package (Bartoń, 2018).
Next, the most parsimonious models (with 1AIC < 2) were
averaged into one model to determine statistically significant
environmental variables. In addition, the hier.part package
(Walsh and Mac Nally, 2013) was used to calculate the
independent effects of each variable on the richness as well as
its significance. Charts were created using the ggplot2 package
(Wickham, 2016).

RESULTS

Chironomidae Stratigraphy
From a short, Late Weichselian paleochannel sequence (W4),
1138 chironomid head capsules were collected and identified to
56 morphospecies. The chironomid fauna in the paleochannel
underwent significant fluctuations. After the favorable conditions
for chironomid assemblages in the Allerød and Younger Dryas,
their number suddenly dropped in the Holocene. Because of
a very low chironomid concentration in that period (<50
head capsules), further analyses were based only on the Late
Weichselian part of the sequence (ca. 13,000 – 12,200 cal. BP).
During this whole period, collectors, represented mainly by

Tanytarsini with mentum type 5, clearly dominated. Their relative
proportion ranged between 15 and 60%, with the peak in the Late
Allerød (194–198 cm b.g.l.). This was the time when the share
of subdominant grazers (G, G/C) dropped. Interestingly, in the
Younger Dryas (180–190 cm b.g.l.), the share of collectors (here
mentum type 5, predominantly Micropsectra) slightly decreased,
which coincides with the increase in the proportion of larvae
with mentum type 1 (mainly Acricotopus). Besides that, the share
of semiterrestrial taxa (grazers/collectors, mostly Limnophyes-
Paralimnophyes and Parametriocmenus-Paraphaenocladius) was
significant (Figure 3).

In the Late Holocene moat sequence [W3(2)], as many as 2488
head capsules of 83 Chironomidae morphospecies were recorded.
The sequence reveals clear shifts in chironomid composition. The
first phase is characterized by high complexity of chironomid
assemblages. Worth noting is a particularly high share of
predatory taxa (mainly Tanypodinae), shredders/collectors
(mainly Psectrocladius) and grazers (mainly Corynoneura),
but also many other groups, including grazers/collectors
represented here by Cricotopus. When the abundance of
chironomid larvae decreased in the 2nd half of the 16th century
AD, semiterrestrial grazers/collectors started to dominate,
accompanied by shredders/filterers (Polypedilum nubifer-
type and P. nubeculosum-type). In the last phase, very few
Chironomidae were found: firstly grazers/collectors, later
mainly collectors (mentum type 10), collector/filterers and
filterer/grazers (both representing mentum type 3) (Figure 3).
For detailed reconstruction of the moat development, see
Kittel et al. (2018a).

Tribes/Subfamilies
The ANOVA analysis for tribes/subfamilies showed that pH,
K and organic matter played a significant role in shaping
Chironomidae assemblages within analyzed cores (Table 2). The
RDA plot (Figure 4A) revealed that W4 samples were associated
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FIGURE 3 | Chironomidae stratigraphic diagrams of the W3(2) (top) and W4 (bottom) cores, according to three typologies: subfamily/tribe, functional feeding groups
and mentum types. Similar trends in some groups are outlined by the same graph color. The bar alongside W3(2) diagram represents three phases of the moat
development based on Chironomidae assemblages (Kittel et al., 2018a). The abbreviations used for functional feeding groups were as follows: C, collector-gatherers;
C/F, collector-filterers; C/G, collectors/grazers; S/F, shredders/filterers; S/C, shredders/collectors; G, grazers/scrapers; G/C, grazers/collectors; F/C,
filterers/collectors; F/G, filterers/grazers; M, miners; P, predators; and P/C, predators/collectors. The symbols used for morphological types are explained in Table 1.
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TABLE 2 | Variance influence factors (VIFs) and significance of eight environmental
factors selected from correlation matrices.

Variable VIF Significance

Tribes/subfamilies pH 2.323 0.001

CaCO3 1.267 0.092

OM 4.247 0.043

K 2.925 0.002

Sand 2.635 0.418

U. dioica 2.211 0.563

Carex sp. 1.969 0.579

Wood 2.098 0.064

Mentum type pH 2.324 0.001

CaCO3 1.267 0.033

OM 4.247 0.003

K 2.925 0.001

Sand 2.635 0.277

U. dioica 2.211 0.662

Carex sp. 1.969 0.326

Wood 2.098 0.028

Feeding type pH 2.324 0.001

CaCO3 1.267 0.275

OM 4.247 0.001

K 2.925 0.001

Sand 2.635 0.864

U. dioica 2.211 0.120

Carex sp. 1.969 0.283

Wood 2.098 0.001

Bolded variables were used in redundancy analysis.

with relatively low content of organic matter and K. Those
two factors were correlated with the RDA2 axis. The samples
from W3(2) core representing phases of moat development were
clearly separated in the plot. The first phase was influenced by
high pH and K values, as well as by abundance of Procladiini and
Pentaneurini. Samples from the second phase were characterized
by a dominance of Chironomini and high content of organic
matter. The third phase, in turn, was characterized by low pH.
The RDA explained 38% of variance from the analysis. While the
RDA2 axis explained 11% of variance, the RDA1 axis described
31% of total variance. GLMs for Chironomidae tribes/subfamilies
were initially calculated for eight predictors. Seven of them
(pH, OM, CaCO3, K, sand, wood, and Urtica dioica) were
included in the averaged model. Among them, only pH was
statistically significant and positively correlated with richness
(Figure 5A). On the other hand, hierarchical partitioning (HP)
revealed that both pH (independent effects: 70%) and Urtica
dioica (independent effects: 14%) were statistically significant and
had positive impact on tribes/subfamilies richness (Figure 6A).

Mentum Types
Five environmental factors: pH, organic matter, CaCO3, K, and
wood macrofossils were statistically significant in the ANOVA
analysis for mentum types (Table 2). The RDA analysis showed
that samples from different cores and phases were clearly
distinguished. Chironomids with mentum types 1 and 5 were

the most abundant in the W4 core, which may be associated
with low content of wood, organic matter and potassium (factors
correlated with the RDA2 axis). On the other hand, high pH
(correlated with the RDA1 axis) and K values impacted the
higher abundance of chironomids with 7, 8, 9, and 11 mentum
types in the first phase of W3(2) core. The second phase was
shaped by high content of wood, organic matter and low content
of CaCO3. Low pH values characterized phase 3 of the W3(2)
core. The first two RDA axes explained 21% (RDA1) and 14%
(RDA2) of variance, but with Adjusted R2, the whole RDA
analysis described 34% of variance. Six out of eight predictors:
pH, CaCO3, organic matter, K, sand, and wood macrofossils were
included in the GLMs for richness of Chironomidae mentum
types. However, only pH, organic matter and potassium were
statistically significant and positively correlated with richness
(Figure 5B). Hierarchical partitioning results for mentum types
were similar to those for tribes/subfamilies. They revealed that
both pH and Urtica dioica were significant and had positive
correlation with independent effects reaching 64% and 16%,
respectively (Figure 6B).

Feeding Groups
The ANOVA analysis revealed that four factors: pH, OM, K,
and wood were significant for the composition of chironomid
feeding groups (Table 2). RDA analysis supported the results
for other chironomid typologies, where samples representing
each core and phase created clear aggregations (Figure 4C).
W4 samples were characterized by a low content of organic
matter, wood and K (factors correlated with the RDA2 axis),
as well as high abundance of collectors (C). Samples from
the W3(2) core were distributed along the RDA1 axis. The
first-phase samples were under the influence of pH (correlated
with the RDA1 axis), with high abundance of S/C, P, and
F/C feeding types. High content of organic matter and wood
affected the aquatic organisms in the second phase, which
might be reflected in the abundance of shredders/filterers
(S/F). Phase 3 assemblages were shaped by low pH. The
coefficient of determination (Adj R2) for this dataset is 0.36.
The RDA axis 1 described 26% of variance, while the second
axis explained only 8%. Generalized Linear Models for feeding
type richness included seven predictors: pH, organic matter,
K, sand, Urtica dioica, Carex sp., and wood. However, only
pH, organic matter and wood were statistically significant and
showed positive correlation with richness (Figure 5C). Moreover,
hierarchical partitioning indicated pH, OM, Urtica dioica, and
wood (independent effect: 59, 11, 18, and 12%, respectively)
as significant for shaping chironomid feeding types. All these
factors were positively correlated with richness of feeding
groups (Figure 6C).

The VIF values of all environmental variables in
each RDA analysis were <10.0 (Table 2). Generally,
pH seems to be the main factor shaping Chironomidae
composition in each typology. Besides that, redundancy
analyses revealed the importance of K and organic
matter (Figure 4). In W3(2) samples, pH is strongly
correlated (0.88) with diatom concentration (Supplementary
Figure 1), while they are absent from the W4 sequence.
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FIGURE 4 | Redundancy Analysis for tribes/subfamilies (A), mentum types (B) and feeding groups (C) showing composition differences according to
selected environmental factors (blue) in samples within two cores [W3(2) and W4]. The abbreviations used for functional feeding groups were as follows:
C – collector-gatherers; C/F – collector-filterers; C/G – collectors/grazers; S/F – shredders/filterers; S/C – shredders/collectors; G – grazers/scrapers; G/C –
grazers/collectors; F/C – filterers/collectors; F/G – filterers/grazers; M – miners; P – predators; and P/C – predators/collectors. The symbols used for morphological
types are explained in Table 1. For full names of variables, see Supplementary Table 1.

This is the reason why, although they are an important
food source for some chironomid larvae, they were not
included in the analysis. Another important factor is
Urtica dioica, which reveals higher significance treated

individually in the hierarchical partitioning than in
the averaged GLMs.

All combinations of the most parsimonious models used
to compute average models for each analysis are listed in
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FIGURE 5 | Visualization of generalized linear models testing for effects of selected environmental factors on richness of chironomid tribes/subfamilies (A), mentum
types (B) and feeding type (C), where “n.a.” means that the factor was not included in the models, and “n.s.” that its explanatory power was not significant.

FIGURE 6 | Relative contribution of each predictor to shared variability of full models testing for effects of environmental factors and richness of tribes/subfamilies
(A), mentum types (B), and feeding types (C). A positive impact of environmental variables was marked with a plus (+) and negative impact with a minus (–).
Predictors with statistical significance of response variables are given in white. For full predictor names, see Supplementary Table 1.

Supplementary Table 2. For final values of each environmental
factor in averaged models, see Supplementary Table 3.

DISCUSSION

Chironomidae Habitat Preferences in the
Paleo-Oxbow and the Moat
Both generalized linear models (Figure 5) and hierarchical
partitioning (Figure 6) clearly show that the crucial factors
shaping Chironomidae functional composition are pH and
OM. However, each site is different, depending on the levels
of these factors. In the paleochannel (W4), pH was stable
and circum-neutral, as indicated by the geochemical analysis.

That provided favorable conditions for a complex, functionally
diverse ecosystem. In the moat system (W3), pH conditions
underwent significant change, from slightly alkaline in the first
phase of its development to slightly acidic in the following
phases. Those changes are associated with primary human-
induced eutrophication and water acidification after ringfort
abandonment (Kittel et al., 2018a; Figure 4). The K, OM, and
wood positively shaped Chironomidae assemblages in the first
phase of moat development, during human settlement in the
ringfort (Kittel et al., 2018a). Taxa typical of permanent stagnant,
partly overgrown water bodies (e.g., Paratanytarsus penicillatus-
type, Glyptotendipes pallens-type and Cricotupus intersectus-type)
were dominant. Mining chironomids were represented mainly by
Endochironomus tendens-type and Glyptotendipes pallens-type.
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In the group of eutrophic species that are mining several
macrophyte species (as Endochironomus impar-type in Berg,
1995; Beiger, 2004; Moller Pillot, 2009), many just live in coarse
organic detritus, without direct association with living plant
tissue (Bijlmakers, 1983). Tóth et al. (2012) state that the above-
mentioned chironomids are in fact mostly opportunistic in
selecting macrophyte species, while the structure of vegetation
is more important. They could also settle on decaying wood
particles, bark and small branches. Among terrestrial plants,
Urtica dioica is strongly correlated with chironomid community
richness according to its independent effect (Figure 6). This
is an indicator of wet, nitrogen-rich soil (Hill et al., 1999).
Urtica is often found in swampy habitats, but also in great
abundance in habitats where high trophic state is the result
of human impact (Šrùtek and Teckelmann, 1998). Both Urtica
abundance and Chironomidae species richness result from high
trophic conditions in the moat (high OM and pH) (Figure 6).
Potassium (K) that shaped communities with high significance,
indirectly marks denudation processes associated with human
influence on the moat, in its first stage of development (W3).
The ringfort surroundings were strongly exposed to trampling,
lithogenic elements were also moved from local gardens and
fields (Kittel et al., 2018a). Denudation processes influenced
moat bank habitats affecting chironomid communities even on
a high taxonomic level. These processes are associated with
the inwash of organic and inorganic suspension, including fine
particulate organic matter. Thus, the filtrators and collector-
gatherers were abundant. The moat history ends with a sudden
decrease of Chironomidae abundance and its transformation
into the semiterrestrial peaty habitat (low pH but high OM,
K, and wood accumulation) (Figure 4). It is associated with
the complete change of the conditions in the moat, which
were no longer favorable for most chironomid taxa. The
scarcity of water, acidification, and macrophyte composition
transformation meant that only taxa adapted to such conditions
could survive. Within the chironomid fauna of that time,
there were single individuals of Limnophyes-Paralimnophyes,
Pseudosmittia, and Pseudorthocladius (mentum type 15), along
with some Chironominae (mostly collectors) typical of muddy
bottoms of the retain ditch of the moat (Kittel et al., 2018a).

Whereas the samples from W3(2) are more scattered and
arranged according to depth, the W4 samples are aggregated
closely together in the ordination analysis (Figure 4). This results
from the habitat conditions in the paleochannel (W4) during
Late Weichselian, which were more uniform and stable for a
long time than in the moat habitat. They reveal significantly
lower importance of lithogenic elements (like K) than in
W3(2), indicating that Medieval human settlement in the valley
caused higher denudation than during Allerød-Younger Dryas
transition. Lower trophic state in this case does not follow
acidification like in W3(2) but comes from generally low OM
content in the Lateglacial landscape (Birks and Birks, 2004).
Initial plant communities (Feurdean et al., 2014) did not generate
much wood substrate for the mining chironomid communities.
The morphological traits varied across the CaCO3 gradient
from W3(2) to W4 mostly due to its high content in W4, as
opposed to low content in W3(2). The influence of this variable

on chironomids is associated with the periods of increased
leaching from the shallow groundwater. During the Late Glacial
oxbows in the regional river valleys were supplied by carbonate
groundwater (Płóciennik et al., 2015; Pawłowski et al., 2016a).
The water supply (precipitation, floods, and groundwater) is
important for the biota composition in river valley wetlands.
When groundwater seeps to the oxbows there appear taxa typical
to cold, alkaline springs and brooks (Płóciennik et al., 2015;
Pawłowski et al., 2016b).

Despite covering a similar timespan (ca. 600 years), out of
both studied cores, the W3(2) sequence was far more ecologically
diverse. Without doubt, human impact was crucial here. It
changed both physical and chemical water composition, and thus
also flora and fauna within the moat system and in its immediate
vicinity (Kittel et al., 2018a). Ringfort inhabitants supplied the
moat system with a significant amount of wood (mostly Quercus
sp.), which served as a hard substrate for periphyton, including
diatoms. This way, even if it was not a direct food source for
the xylophiles, it created a suitable microhabitat for a range of
trophic guilds, mostly scrapers. Such coarse organic matter is
important not only for phytophilous grazers and filter feeders
(such as Glyptotendipes pallens-type and Dicrotendipes nervosus-
type) but also for collector-gatherers and shredders, represented
here by larvae with mentum types 12 and 14 (Polypedilum,
Phaenopsectra, and Endochironomus). Lower habitat variability
and higher environmental stability (manifested here, e.g., by the
narrow pH gradient) in the paleo-oxbow implied lower diversity
of chironomid groups. In the W4 sequence, only 15 (out of 16)
mentum types and 10 (out of 12) functional feeding groups were
recorded (Figure 3).

Comparison of Typologies
It is not surprising that the results of ordination analyses based
on three Chironomidae typologies are to some extent convergent.
They reveal similar trends as they are based on the same data,
though classified differently. However, mentum types and FFGs
allow for a more detailed ecological interpretation than tribe
classification. As feeding ecology strongly influenced mouthparts
evolution, FFGs may aggregate taxa phylogenetically distant
but having similar mouthparts (Armitage et al., 1995). Among
the examples are Procladiini and Cryptochironomus with a
similar, concave mentum, belonging to two different subfamilies,
semiterrestrial Orthocladiinae representing different genera, and
phytophile taxa from mentum types 10 and 12. The mentum
shape fits feeding ecology across the taxonomic classification, as
can be seen in the stratigraphic diagrams presented in Figure 3.
The FFGs and mentum type stratigraphy are consistent, because
habitat transformations cause changes in the available food –
from suitable for P and G throughout G/C, C/F, and M typical
of eutrophic, overgrown shallow water, to C and C/F living in
wet moss and soil, and thus having a different food base. In fact,
chironomid communities often consist of taxa with a similar type
of mentum according to habitat conditions (pers. obs.).

Functional Groups as Habitat Indicators
Chironomidae functional traits have so far been studied mainly
by Serra et al. (2016, 2017), who developed a trait database for
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European genera, analyzed it for subfamilies and compared it
with the North American database (USEPA, 2012). However,
such a taxonomic level seems to be too general for several traits.
Creating such a database for larvae morphotypes, commonly
used in paleolimnology, is worth considering.

Birks (2020) indicates that the functional trait approach
in plant paleoecology has several limitations. While pollen-
based ecological information is generalized, as it often can be
identified only to the family or genus level, plant macrofossil
analyses are problematic because of mixed data types and
the possibility of ‘false absences’ (Birks, 2014, 2020). Here,
chironomid subfossils could play a significant complementing
role. The functional groups approach seems to work well in
microhabitat reconstructions. Chironomidae FFGs and mentum
types correspond to several environmental factors, such as
the substrate and vegetation type, as well as physicochemical
conditions. Although dividing taxa into groups is itself a
generalization and may lead to loss of some data, it is also
an easier and more systematized method to obtain comparable
results. As functional guilds work well in climate reconstructions
(see Kivilä et al., 2019), why not use them in tracking changes
in the habitat structure? The chironomids serve well at the
morphotype level as indicators of habitat complexity in terms of
plant richness and density (Langdon et al., 2010). In fact, their
association with vegetation is generally established within FFGs
and, most likely, also morphological groups.

In this study, we classified each recorded Chironomidae
morphospecies to a morphological group. The groups were
distinguished on the basis of mentum and ventromental plates,
as these elements are usually preserved well in the sediment.
Whereas this classification may be enhanced and complemented
in the future, it may serve as a good surrogate for functional
feeding groups in habitat reconstructions. However, we need to
be aware that, while the mouthpart type is strongly associated
with feeding behavior, it is not the only factor shaping it.
Mouthpart morphology is associated with many aspects of
species biology and ecology, so it is not as strong an indicator of
habitat changes as feeding groups. Moreover, as food preferences
may change throughout life of chironomid larvae, only the 3rd
and 4th instars should be included in such analyses. In fact, head
capsules of the 1st and 2nd instars of chironomid larvae hardly
ever preserve well in the sediment. In the future, the feeding
groups and morphological types should also be tested within the
contemporary assemblages ranging through measured ecological
gradients. It would give a picture of more direct linkages between
chironomid larvae and their habitat.

CONCLUSION

The results indicate that Chironomidae FFGs and morphological
types reveal similar reactions to the biotic and abiotic
environmental factors. Thus, they could serve as surrogate
indicators where applicable. A well-designed mouthpart typology
would be an easy and systematized method to obtain basic results
comparable with functional feeding groups. Chironomidae
morphological types can be easily recognized, e.g., during

plant or beetle macrofossil analysis, and pre-analyzed without
knowing the exact ecology of each taxon. If such preliminary
examination give promising results, further detailed analysis
should be undertaken by a specialist. Such an approach
would enable the implementation of Chironomidae analyses
in a wider range of paleolimnological and archeological
research. The trait-based approach in subfossil Chironomidae
studies is worth developing and can prove useful in the
future application in paleolimnology. The potential use of
morphological types should be checked during further studies
based on modern Chironomidae assemblages ranging through
known ecological gradients.

To conclude, such simplified para-taxonomic analyses based
on generalized morphological types never fully replace detailed
species-specific autecological approach. However, in cases
where a comprehensive chironomid study is not possible, the
proposed method can serve as a useful tool to obtain some
ecological information.
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The palaeoecological development and functioning of the Late Medieval moat –
multiproxy research at Rozprza. Centr. Poland. Quart. Int. 482, 131–156. doi:
10.1016/j.quaint.2018.03.026

Kivilä, E. H., Luoto, T. P., Rantala, M. V., and Nevalainen, L. (2020). Late-Holocene
variability in chironomid functional assemblages and carbon utilization in a

tundra lake food web. Hydrobiologia 847, 895–911. doi: 10.1007/s10750-019-
04151-7

Kivilä, E. H., Luoto, T. P., Rantala, M. V., Kiljunen, M., Rautio, M., and Nevalainen,
L. (2019). Environmental controls on benthic food web functions and carbon
resource use in subarctic lakes. Freshwater Biol. 64, 643–658. doi: 10.1111/fwb.
13250

Kleyer, M., Dray, S., Bello, F., Lepš, J., Pakeman, R. J., Strauss, B., et al. (2012).
Assessing species and community functional responses to environmental
gradients: which multivariate methods? J. Veget. Sci. 23, 805–821. doi: 10.1111/
j.1654-1103.2012.01402.x

Kotrys, B., Płóciennik, M., Sydor, P., and Brooks, S. J. (2020). Expanding the Swiss-
Norwegian chironomid training set by incorporating Polish data and assessing
its transfer function capability using temperature reconstructions from Lake
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