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Invasive species can be powerful models for studying contemporary evolution in natural
environments. As invading organisms often encounter new habitats during colonization,
they will experience novel selection pressures. Threespine stickleback (Gasterosteus
aculeatus complex) have recently colonized large parts of Switzerland and are invasive
in Lake Constance. Introduced to several watersheds roughly 150 years ago, they
spread across the Swiss Plateau (400–800m a.s.l.), bringing three divergent hitherto
allopatric lineages into secondary contact. As stickleback have colonized a variety
of different habitat types during this recent range expansion, the Swiss system is a
useful model for studying contemporary evolution with and without secondary contact.
For example, in the Lake Constance region there has been rapid phenotypic and
genetic divergence between a lake population and some stream populations. There is
considerable phenotypic variation within the lake population, with individuals foraging in
and occupying littoral, offshore pelagic, and profundal waters, the latter of which is a very
unusual habitat for stickleback. Furthermore, adults from the lake population can reach
up to three times the size of adults from the surrounding stream populations, and are
large by comparison to populations globally. Here, we review the historical origins of the
threespine stickleback in Switzerland, and the ecomorphological variation and genomic
basis of its invasion in Lake Constance. We also outline the potential ecological impacts
of this invasion, and highlight the interest for contemporary evolution studies.

Keywords: adaptive radiation, contemporary evolution, lake constance, invasive species, stickleback

INTRODUCTION

Colonizing species that invade new environments may experience novel selection pressures and
adapt rapidly to local conditions, potentially culminating in divergent phenotypes between distinct
habitats in the invaded range (Schluter, 2000; Reznick and Ghalambor, 2001; Sakai et al., 2001;
Shine, 2012). In this way, invasive species provide a powerful opportunity to study evolution in
action during colonization, population growth, and range expansion. When the invaded range
includes unique environments that allow for niche expansion beyond what is observed in the native
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range, we may also learn about how populations respond to novel
ecologically based divergent selection and witness processes
akin to the earliest stage of adaptive radiation. Contemporary
phenotypic evolution following anthropogenically facilitated
invasions often results from selection on standing genetic
variation rather than de novo mutations (Hendry et al., 2007;
Barrett and Schluter, 2008; Prentis et al., 2008). Therefore,
the nature of standing genetic variation in the invading
population may have a strong influence on the dynamics of the
invasion process.

The ability of a species to invade, colonize, adapt, and
diversify can depend on whether the invasion derives from
a single introduction, repeated introductions from the same
source population, or from multiple distinct source populations
(Ehrlich, 1989; Barrett and Husband, 1990; Sakai et al., 2001;
Kolbe et al., 2004; Frankham, 2005; Lavergne and Molofsky,
2007; Lucek et al., 2010). Secondary contact between distinct
lineages can generate potentially adaptive allelic variation
through admixture (Anderson and Stebbins, 1954; Barton, 2001;
Seehausen, 2004; Mallet, 2007; Prentis et al., 2008; Abbott
et al., 2013; Seehausen and Wagner, 2014; Williams et al.,
2014; Roy et al., 2015; Marques et al., 2019b), and this
can even result in speciation through recombination of old
genetic variants (Marques et al., 2019b). Such speciation can be
driven by ecological (Marques et al., 2019b) or non-ecological
(Schumer et al., 2015) processes. While single-source invasions
are useful to investigate how a population responds to novel
selection pressures during colonization of new environments,
invasions with multiple genetic origins allow us to study the
role of secondary contact and hybridization (or lack thereof) in
ecological expansion and diversification.

The threespine stickleback superspecies (Gasterosteus
aculeatus species complex, Linnaeus, 1758) is a popular model
taxon in ecology and evolutionary biology research (Foster and
Bell, 1994; McKinnon and Rundle, 2002; Hendry et al., 2013).
Stickleback are known for their propensity to rapidly diversify
through habitat dependent divergent selection, and this makes
them a particularly useful model for addressing questions about
how ecological divergence occurs in invasive species. There
is strong evidence for repeated events of adaptive population
divergence by stickleback during postglacial colonization of
freshwater habitats (McKinnon and Rundle, 2002; Hendry et al.,
2009). For such cases, the populations closely resembling the
presumed ancestors of derived freshwater stickleback are still
extant in the form of marine and anadromous populations with
a Holarctic distribution (Baker et al., 2015; Fang et al., 2018).
This allows for phenotypic comparisons between freshwater
populations and their putative ancestral state. Such comparisons
must be made with caution however, as marine populations
are also diverging, and can be grouped into several genetically
distinct clusters as well (DeFaveri et al., 2012; deFaveri and
Merilä, 2014; Fang et al., 2018, 2020a; Morris et al., 2018).
Furthermore, geographically adjacent marine and freshwater
populations and species do not necessarily share the same
common ancestor (Dean et al., 2019; Marques et al., 2019a).
Within freshwater, ecotypic diversification occurs frequently
along a lake-stream axis of divergence and rarely along a

benthic-limnetic axis within lakes, where the latter has been
found exclusively in coastal sectors of British Columbia, Canada
(Bentzen and McPhail, 1984; Schluter and McPhail, 1992; Foster
and Bell, 1994; McPhail, 1994; McKinnon and Rundle, 2002;
Gow et al., 2008; Willacker et al., 2010; Østbye et al., 2016). Both
the rapid adaptation of stickleback to freshwater, and subsequent
ecotypic differentiation within freshwater habitats, has often
occurred through selection on standing genetic variation present
in oceanic populations (Colosimo et al., 2005; Barrett and
Schluter, 2008; Schluter and Conte, 2009; Jones et al., 2012a,b;
Terekhanova et al., 2014; Marques et al., 2017b; Bassham et al.,
2018; Haenel et al., 2019; Fang et al., 2020a; Rennison et al., 2020).
With regards to defensive morphology, freshwater stickleback
typically show a reduction in plate numbers compared to the
marine form (Foster and Bell, 1994; Barrett et al., 2008; Wootton,
2009), and occasional loss of pelvic spines (Morris et al., 1956;
Bell, 1974; Reimchen, 1983; Campbell, 1985; Shapiro et al., 2004;
Chan et al., 2010; Lescak and von Hippel, 2011), potentially in
response to differences in predation regime between freshwater
and the Ocean (Barrett, 2010). Alleles for low plated phenotypes,
for example, are at low frequencies in oceanic populations but
have increased in frequency in freshwater populations multiple
times, independently (Colosimo et al., 2005; Barrett and Schluter,
2008). Other adaptations to freshwater habitats, such as the loss
of the pelvic girdle (Chan et al., 2010; Xie et al., 2019) and
the increased capacity to synthesize essential fatty acids (i.e.,
Docosahexaenoic acid) through duplications of the FADS2 gene
(Ishikawa et al., 2019) have arisen from de novomutations.

European threespine stickleback populations in general (Fang
et al., 2020a), and Swiss populations in particular (Kottelat
and Freyhof, 2007; Lucek et al., 2010; Marques et al., 2019a),
provide an interesting setting to observe how secondary
contact between lineages can affect ecotype formation in
freshwater environments. In Switzerland natural colonizations of
freshwater catchments from two divergent lineages represented
in Europe (Fang et al., 2018) coincide with recent anthropogenic
introductions of other European lineages among and between
catchments (Kottelat and Freyhof, 2007; Lucek et al., 2010;
Marques et al., 2019a). In Lake Constance, for example, there
is ongoing debate about the origin of the lake and stream
stickleback populations, and the importance of secondary contact
for ecotype formation (Lucek et al., 2010, 2012, 2013, 2014b;
Moser et al., 2012; Roesti et al., 2015; Marques et al., 2016, 2019a).
In light of this previous work, and recent observations, there
is mounting evidence for three major stickleback ecotypes, two
of which are observed in the species complex globally, namely
an entirely lacustrine form that breeds within the lake, and a
stream resident form. The third form may be rather unique:
a potamodromous form that lives in the lake but migrates to
streams to reproduce, resembling anadromous ecotypes of the
oceans. Some of these ecotypes persist in the face of gene flow,
with migratory lake ecotypes (i.e., potamodromous ecotype)
breeding in sympatry and parapatry with resident stream
ecotypes, suggesting that some populations of Lake Constance
stickleback are in the incipient stage of ecological speciation,
despite their very recent history in the system (Marques et al.,
2016).
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In the present paper, we review the genetic, genomic,
and phenotypic research to date on threespine stickleback
in Central Europe, focusing on Switzerland and the invasion
of the Lake Constance region. By providing a review of
the existing literature on stickleback populations within Lake
Constance and drawing on additional stickleback research
from elsewhere, we summarize what is known in this system,
highlight knowledge gaps and the utility of this system for
studying the genomics and ecology of invasion, range expansion,
contemporary ecological diversification, and the evolutionary
consequences of secondary contact.

HOW STICKLEBACK DIVERSIFY

The G. aculeatus superspecies of threespine stickleback most
likely originated in the Western Pacific Ocean (Fang et al.,
2020a), and colonized marine habitats around the northern
hemisphere during the Pleistocene (Ortí et al., 1994; Mäkinen
and Merilä, 2008; Fang et al., 2018, 2020b; Ravinet et al., 2018).
It expanded around the Northern Pacific Ocean and through the
Bering Sea Strait into the Arctic Ocean, and would have arrived
in the Atlantic Ocean between 300 and 50 Kya (Fang et al.,
2018, 2020b). After this widespread colonization of the Holarctic
Ocean, the ancestors of the AtlanticG. aculeatus complex initially
split into colonists of freshwaters in Southern Europe and the
Atlantic Ocean population between ∼100 and ∼25 Kya (Fang
et al., 2020b). These Southern European populations colonized
freshwater habitats during the Pleistocene, and persisted in
freshwater glacial refugia during the Last Glacial Maximum
(Mäkinen and Merilä, 2008; DeFaveri et al., 2012; Lucek and
Seehausen, 2015; Sanz et al., 2015; Fang et al., 2018), while the
Trans-Atlantic clade colonized freshwater habitats in Northern
Europe, and Eastern North America much later during the
Holocene (Ortí et al., 1994; Mäkinen et al., 2006; Ravinet et al.,
2014; Fang et al., 2018, 2020b). Within the Trans-Atlantic clade,
multiple geographically structured subclades exist, including
Baltic Sea, Barents Sea, North Sea, and mainland European
lineages that diverged 27-11 Kya. In the mainland European
clade, lineages diverged 17-5 Kya between large river catchments
such as the Rhine, Loire, Vistula etc., likely following deglaciation
of Central Europe (Fang et al., 2018).

Despite these advances in understanding phylogenetic
relationships in the threespine stickleback superspecies, and
despite the evidence for many biological species within it
(McKinnon and Rundle, 2002; Dean et al., 2019), the diversity
of forms is taxonomically treated by most authors under the
singular name Gasterosteus aculeatus (Wootton, 1976; Th and
Bakker, 1988; Bell, 1995). This “convenient solution” follows a
taxonomic history in which over 40 species had been described,
often based on phenotypic traits that may well be informative
for delimiting two species within a given locale, but not for
delimiting local species against all others across the global range
(Bertin, 1925; Münzing, 1959, 1963; Penczak, 1966; Miller and
Hubbs, 1969; Wootton, 1976; Bell, 1995; Denys et al., 2015). In
the European context, for example, Gasterosteus gymnurus was
described by Cuvier (Cuvier and Valenciennes, 1828; Cuvier,

1829) based on landlocked stickleback from Northern France
and Southern England that had lateral plating restricted to the
structural plates. Given the historical West-East separation of
these plate morphs across much of Europe (Münzing, 1963),
others later applied this name to any stickleback from anywhere
in Europe and beyond that shared this plating phenotype
(Gordon, 1902; Koch and Heuts, 1943; Kottelat and Freyhof,
2007; Denys et al., 2015). Others recognized that this practice had
led to a highly polyphyletic nature of G. gymnurus and lumped
it further with the mostly marine fully plated form into a single
taxon, G. aculeatus (Wootton, 1976; Paepke, 1983; Bell, 1995;
Denys et al., 2015), pending a thorough taxonomic revision that
takes biological species into account and that has yet to happen.
As a result, the G. aculeatus superspecies currently contains
both deeply divergent geographical lineages and reproductively
isolated biological species within Europe (Jones et al., 2006;
Mäkinen et al., 2006; Mäkinen and Merilä, 2008; DeFaveri et al.,
2012; Lucek and Seehausen, 2015; Pérez-Figueroa et al., 2015;
Berner et al., 2017; Fang et al., 2018; Dean et al., 2019; Marques
et al., 2019a).

Phylogeographic and population genetic studies revealed
that freshwater ecotypes and species have evolved many times
in parallel from marine ancestors, although some freshwater
clades have clearly also expanded their ranges across multiple
catchments, such that adjacent catchments often share the same
lineage, species or ecotype (Mäkinen et al., 2006; Lucek and
Seehausen, 2015; Fang et al., 2018; Ishikawa et al., 2019; Marques
et al., 2019a). Evidence from the fossil record in Western
North America and Eastern Russia shows that members of the
family Gasterosteidae have been colonizing freshwater habitats
from the Pacific Ocean since the Miocene, so there have been
repeated cycles of colonization, adaptation, and extinction over
the evolutionary history of the group (Bell, 1977; Bell and
Haglund, 1982; Bell et al., 2006, 2009).

Throughout the northern hemisphere, habitat-specific
adaptation in allopatry or parapatry is responsible not only for
the parallel evolution of freshwater stickleback from marine
or anadromous ancestors (Jones et al., 2006, 2012b), but also
for most of the parallel evolution of recurrent ecotypes within
freshwaters (Hendry et al., 2009;Willacker et al., 2010), albeit this
is more pronounced in the Pacific than in European populations
(Fang et al., 2020a). Sympatric pairs of benthic and limnetic
stickleback are observed in a handful of British Columbian
coastal lakes and nowhere else, despite intensive research
(McPhail, 1984; Schluter and McPhail, 1992; Baker et al., 2005).
These sympatric pairs are thought to have evolved through serial
colonizations from the ocean rather than sympatric speciation
from a single source population (Hendry et al., 2009; Bolnick,
2011) and this is deemed the “double-invasion hypothesis”
(Schluter and McPhail, 1992; McPhail, 1994; Kassen et al.,
1995; Taylor and McPhail, 1999). Models predict that sympatric
speciation in stickleback is possible, though unlikely, as pressures
from disruptive selection and assortative mating tend to be too
weak to result in sympatric speciation (Bolnick, 2004, 2011), and
indeed no strong case is known. An incipient sympatric species
pair has recently been described from a small lake in Switzerland
but this pair evolved within the hybrid zone between the Eastern
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and the Western European lineages (Marques et al., 2017a), and
it is currently unclear whether it emerged in sympatry from a
hybrid population or represents persistence of the hybridizing
and nearly collapsed pre-existing lineages.

Evolution of lake-stream ecotypes and species pairs in
parapatry has occurred much more frequently in stickleback
than the evolution of species that can persist in sympatry
(Reimchen et al., 1985; Lavin and Mcphail, 1993; Hendry et al.,
2002, 2009; Hendry and Taylor, 2004; Berner and Grandchamp,
2009; Deagle et al., 2012; Kaeuffer et al., 2012; Moser et al.,
2012; Roesti et al., 2012; Lucek et al., 2013, 2014b). This is
not surprising given that much weaker selection is sufficient
to retain phenotypic distinctiveness when the opportunity for
gene flow is geographically constrained (Doebeli andDieckmann,
2003). Active matching habitat choice between lake and stream
may in some ecotonal situations also facilitate the persistence of
differentiation (Edelaar et al., 2008; Edelaar and Bolnick, 2012).
Stickleback residing in different habitats often show divergence in
foraging traits and performance (Arnegard et al., 2014; Best et al.,
2017; Schmid et al., 2019), body size (Hendry et al., 2002; Sharpe
et al., 2008), migration behavior (Harvey et al., 1997; Kitano et al.,
2012), life history (Moser et al., 2012), nuptial coloration (Hagen
and Moodie, 1979; Reimchen, 1989; Jenck et al., 2020), and/or in
defense traits and defense performance (Reimchen, 1983, 1992b,
1994, 2000; Lucek et al., 2013).

Strong reproductive isolation rarely evolves between
parapatric ecotypes of stickleback, and this is likely the chief
reason for the extreme rarity of sympatric species persistence
(Räsänen et al., 2012). In the few cases where reproductive
isolation has been demonstrated, it can result either as a
by-product of divergent adaptation to different habitats or
ecological niches that lead to assortative mating preferences
(Rundle et al., 2000; Boughman, 2001), or from ecological
selection that puts hybrids at a fitness disadvantage and may
lead to reinforcement (Rundle and Schluter, 1998; Lackey
and Boughman, 2017). Previous work on crosses of sympatric
benthic and limnetic stickleback demonstrated that hybrids are
not at any intrinsic disadvantage, but they may perform worse
than either of the parental types in the parental niche (Schluter,
1994, 1995, 2003; Schluter et al., 1996; Hatfield and Schluter,
1999; Vamosi et al., 2000; Jones et al., 2006; Gow et al., 2007;
Arnegard et al., 2014; Laurentino et al., 2020). This opens the
possibility that hybrids could invade novel (non-parental) niches
if the opportunity arises.

THE ENVIRONMENTAL CONTEXT OF THE
STICKLEBACK INVASION IN LAKE
CONSTANCE

Lake Constance is a peri-alpine lake on the northern edge of the
European Alps, and is the third largest lake by surface area in
Central Europe (after Lakes Balaton and Geneva), and the second
by volume (after Geneva). The lake is part of the Rhine catchment
and is located at the intersection between Germany, Switzerland,
and Austria (Figure 1). Lake Constance consists of a pair of lakes
joined by a 4.5 km stretch of river called the Seerhein. Upper Lake

Constance is a large (surface area = 472 km2), deep (max. depth
= 254m,mean depth= 101m) andmonomictic lake, while lower
Lake Constance is considerably smaller (surface area = 63 km2)
and more shallow [max. depth = 46m, mean depth 13m; (Petri,
2006)].

The geological history of the lake indicates that it was formed
by the process of glacial erosion (Müller and Gees, 1968)
through the expansion of the Rhine glacier from the inner Alps
into the Central European lowlands during the Würm ice age,
roughly 115,000–11,700 Kya (Keller and Krayss, 2000). During
this period, Lake Constance was covered by ice and its entire
surface became ice-free only ∼14,500 ybp (Keller and Krayss,
2000). Thus, all extant freshwater fish species of the lake must
have colonized or have been introduced following glacial retreat
(Behrmann-Godel et al., 2004). The lake is presently fed by the
Alpine Rhine to the south, and drains into the North Sea through
the Rhine. Capture of the outflow of Lake Constance by the Rhine
formed roughly 7,000–8,000 ybp (Wessels, 1995). Prior to this
river capture, Lake Constance drained via the Danube into the
Black Sea (Keller and Krayss, 2000). Although this connection no
longer exists [with the exception of the underground Danube-
Aach system; (Hötzl, 1996)], several freshwater fish species have
evidently colonized Lake Constance via the Danube (Nesbø et al.,
1999; Bernatchez, 2001; Behrmann-Godel et al., 2004; Gum et al.,
2005; Barluenga et al., 2006; Vonlanthen et al., 2007; Hudson
et al., 2014; Gouskov and Vorburger, 2016; Lucek et al., 2018).

Naturally oligotrophic, Lake Constance experienced intensive
eutrophication beginning in the first half of the 20th century and
peaking in the 1980’s as a result of human population expansion,
agriculture, and industry (Petri, 2006). Total phosphorus
concentrations began rapidly increasing from the 1930’s
primarily from agriculture and sewage runoff. Following
concerns of environmental degradation and loss of water
quality, the International Commission for the Protection of Lake
Constance (IGKB) was formed in 1959 by water management
organizations of the bordering countries (Petri, 2006). Efforts to
reduce phosphorus concentrations and return the lake to near
its original oligotrophic state have eventually been successful in
the second decade of the 21st century (Petri, 2006; IGKB, 2018).
These rapid shifts in nutrient profiles have had strong impacts on
the ecosystem, particularly with regards to primary productivity
and oxygen availability in the profundal zone (Numann, 1972;
Gaedke and Schweizer, 1993; Sommer et al., 1993; Kümmerlin,
1998; Stich, 2004; Stich and Brinker, 2010), which led to the
extinction of at least one endemic fish species (Vonlanthen et al.,
2012).

Aside from eutrophication, humans have also facilitated the
colonization of many invasive species in the lake. Both the upper
and lower Lake Constance have been colonized by considerable
numbers of non-indigenous species of fish, crustaceans, and
molluscs over the past two centuries, some of which have
established large populations (Rey et al., 2005; Alexander et al.,
2016). As we discuss in more detail below, threespine stickleback
are not native to Lake Constance, but are currently hyper-
abundant, representing ∼28% of the total fish biomass, and are
the second most abundant fish species in the lake (Zimmermann,
2002; Alexander et al., 2016). Large populations of stickleback
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FIGURE 1 | Map of Lake Constance drainage with sampling locations for the 2014 Projet Lac biodiversity sampling campaign. Note the location of Vorarlberg in the
southeast of the Lake, where stickleback were first reported by Heller (1871).

are known from other large oligotrophic lakes within their
natural range, e.g., in Greenland, Alaska, and the West Coast
of Canada (Greenbank and Nelson, 1959; Reimchen, 1992a;
Bergersen, 1996; Jeppesen et al., 2017), but such a hyper-
abundance is rare in quantitative assessments of lakes that are
as large and species rich as Constance. As such, understanding
the invasion and establishment of the lake Constance population
is also of considerable interest for ecosystem management
and conservation.

ORIGINS OF THE THREESPINE
STICKLEBACK IN LAKE CONSTANCE

Switzerland lies at the edge of the natural range of threespine
stickleback in Europe (Fang et al., 2018). Threespine stickleback
historically had a disjunct and very limited distribution in
Switzerland, being only represented by two divergent native
clades at opposite ends of the country. The first, part of the
mainland European and thus Trans-Atlantic clade, was restricted
to Rhine tributaries near Basel (Leuthner, 1877; Fatio, 1882;
Schulze, 1892; Göldi, 1914) and outside of Switzerland in the
Rhine, and parts of Northern France. The second, part of the
Adriatic and thus South European clade, was restricted to Lago
Maggiore and its tributaries in the Adriatic catchment, and found
otherwise in Northern Italy. Recent work suggests that the low
plated stickleback of the upper Rhine belong to the same clade as
those of Northern France (Mäkinen et al., 2006), which has been
referred to as G. gymnurus, whereas the low plated stickleback of

Lago Maggiore belong to the highly divergent yet taxonomically
undescribed South European clade (Mäkinen et al., 2006; Cano
et al., 2008; Fang et al., 2018, 2020b).

Currently, there are two additional clades that have invaded
and colonized Switzerland. First, a lineage colonizing via the
middle Rhône that is now dominant in Lake Geneva is a
genetically distinctive member of theWest European clade (Fang
et al., 2018; Marques et al., 2019a). Second, an Eastern European
lineage originating from the Baltic Sea Catchment currently
dominates Lake Constance (Marques et al., 2019a). However, the
history of stickleback in Lake Constance in terms of their time
of arrival, source of colonization, and the mode of diversification
into lake and stream ecotypes has been debated recently (Roesti
et al., 2015; Rösch et al., 2017; Marques et al., 2019a). Notably,
some authors proposed a natural postglacial colonization of the
Lake Constance basin from the Danube about 9,000 years ago,
similar to some other freshwater fish species of which Danube
populations inhabit Lake Constance as a consequence of river
capture by the Rhine catchment (Nesbø et al., 1999; Bernatchez,
2001; Behrmann-Godel et al., 2004; Gum et al., 2005; Barluenga
et al., 2006; Vonlanthen et al., 2007; Hudson et al., 2014;
Gouskov and Vorburger, 2016; Lucek et al., 2018). According
to this hypothesis, the invading lineage was a stream ecotype
that first colonized the tributaries of Lake Constance. These
stream populations became isolated from each other because the
intermittent lake habitat was presumably ecologically unsuitable
(termed “ecological vicariance”). At a later point in time, the lake-
adapted population emerged and reconnected previously isolated
stream populations through gene flow (Roesti et al., 2015).
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Other authors proposed that two or three divergent European
lineages of stickleback were introduced into the Lake Constance
region in the last 150 years, from catchments south of the Baltic
Sea, the upper Rhine, and the Rhône (Lucek et al., 2010; Marques
et al., 2019a). In this hypothesis, secondary contact between
genetically distinct and previously allopatric lineages resulted
in hybridization and variable extents of genetic admixture in
different stream populations (Lucek et al., 2010; Roy et al., 2015;
Marques et al., 2016, 2019a). The divergent freshwater lineages,
including low plated stickleback from Western Europe [i.e., the
nominal species referred to asGasterosteus gymnurus (Cuvier and
Valenciennes, 1828; Cuvier, 1829)] and a fully plated stickleback
from Eastern Europe, formed a hybrid zone across the Swiss
midlands including the western end of Lake Constance. As such,
the lake populations in the Constance system are predominantly
of East European origin, while stream populations around Lake
Constance vary in their genetic composition: ranging from
predominantly West European with introgression from the
East European-derived lake form, to mainly East European-
derived with some genomic islands of putative stream adaptation
recruited from West European stickleback. In this latter case,
introgression of alleles into the East European lineage has
probably facilitated ecological speciation into stream vs. lake
ecotypes within the East European-derived lineage (Marques
et al., 2019a). We review these different hypotheses in the light
of the historical ichthyological evidence, phylogeographic, and
genomic data.

Historical ichthyological records describe the fish community
of Lake Constance dating back to 1557 (Mangolt, 1557). Herein,
Mangolt used 76 different common names to refer to the species
found in the lake, though many are duplicates or regional names
for the same species, of which there are 27 unique species
described in total (Ribi, 1942). This text does not include any
mention of the threespine stickleback, however he does describe
other small fish such as minnows (“Cyprinus phoxinus” referring
to the genus Phoxinus), suggesting that he did not neglect species
of the same size as stickleback that have no commercial value.
In the same period, an encyclopedia titled Historiae animalium
(1551–1558) was published by the Swiss naturalist and physician
Conrad Gessner (Gessner, 1558) that attempted to describe the
animals of the world in detail. Within the Historiae Piscium
& Aquatilium Animantium Natura (1558) volume, Gessner
includes a brief account of the threespine and the ninespine
stickleback with text and illustrations that are taken from
Guillaume Rondelet’s “De Piscibus” (Rondelet, 1554; Figure 2)
and Albertus Magnus’ 13th century text “De Animalibus”
(Magnus, 1999; Kitchell Jr. & Resnick translation), referring to
them as “Pisiculus aculeatus” and “Pisiculus pungitius,” along
with other common names. In the corollary added by Gessner,
he states that: “They are found elsewhere in Strasbourg [France],
Wittenberg [Germany], and in the Alb River [a tributary of
the Rhine in Germany]. None are among us.” (Gessner, 1558),
providing strong evidence that G. aculeatus was well-known by
natural historians at the time, but absent from Lake Constance.
By 1828, Cuvier and Valenciennes write that “Gessner alone
says there are [no stickleback] in Switzerland; but we know
the opposite” (Cuvier and Valenciennes, 1828), however they

do not indicate the regions of Switzerland where stickleback
have been found and their information may relate to the native
populations from Basel or Lago Maggiore. Further ichthyological
descriptions of Lake Constance fish species come from two 19th
century fish atlases (Nenning, 1834; von Rapp, 1854) describing
28 and 30 species, respectively [there are presently 42 fish species
recognized, of which 11 – includingG. aculeatus – are introduced
(Alexander et al., 2016)], and again make no mention of the
stickleback. Given our thorough investigation, and the early
interest in describing the fish species of Lake Constance, it seems
unlikely that stickleback would have gone unnoticed for so long
had the species been present.

The earliest report of stickleback in the region documents
their appearance upstream of Lake Constance in Austria just over
150 years ago when they were observed in a tributary to the
Alpine Rhine in Vorarlberg (Heller, 1871). In the following years,
the presence of stickleback is further noted by both German
and Austrian statistical reports (Krafft, 1874; Wittmack, 1875)
stating that they are observed in the dead arms of the Alpine
Rhine (Wittmack, 1875), and breed in Lake Constance from
April to June (Krafft, 1874). Even after these previous sightings,
Fehling et al. (1881) writes that “In the river area of the Danube,
the stickleback is completely missing, even in Lake Constance
it has not been found,” suggesting that perhaps the introduced
population was at that point in time still isolated in the south-
eastern part of the lake and its tributaries. Other documents
noted that the stickleback was absent from the upper Danube
system until the late 19th century (von Siebold, 1863; Münzing,
1963; Ahnelt, 1986) and most authors agree that the only natural
population in Switzerland north of the Alps resided near Basel
(Figure 3; Schinz, 1837; Wittmack, 1875; Leuthner, 1877; Fehling
et al., 1881; Schulze, 1892; Rauther, 1926; Scheffelt, 1926; Muckle,
1972; Ahnelt, 1986; Ahnelt and Amann, 1994; Ahnelt et al.,
1998; Paepke, 2002; Altman et al., 2013), that also served as a
popular source location of stickleback for aquarium fish traders
in Switzerland (Steinmann, 1936). This historical record implies
that stickleback were present in the Lake Constance basin before
they established in the upper Danube (Vogt and Hofer, 1909;
Gaschott, 1941; Berinkey, 1960; Balon, 1967; Ahnelt, 1986; Cakić
et al., 2000; Holcik, 2003; Polačik et al., 2008; Lisjak et al., 2015),
making a natural colonization from the Danube unlikely.

In the mid-19th century, aquarium keeping emerged in
central Europe as a means of popularizing natural sciences
(Rossmässler, 1857). Early on, stickleback became popular
among European aquarium enthusiasts for their colouration
and behavioral displays (Schinz, 1837; Prévost, 1861; Fehling
et al., 1881), so it would not be surprising that some unwanted
pets would be released into the wild. Indeed, in a previous
review of stickleback occurrence in Lake Constance, Muckle
(1972) describes a conversation with an aquarist who claims
that a fish breeder released some stickleback in a stream that
flows into Lake Constance near Allensbach in the late 1920’s,
originating from a pond in Germany inside the autochthonous
range of low plated Rhine stickleback. Muckle (1972) also
describes “a release in the years 1933 and 1934 by the “friends
of aquaria fish Konstanz” group, of fish imported from a pond
near Freiburg im Breissgau [Rhine, Germany],” again within
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FIGURE 2 | Latin descriptions of the threespine and ninespine stickleback from Guillaume Rondelet’s 1554 volume “De Piscibus” accompanied by an English
translation.

FIGURE 3 | (A) Native low plated specimen belonging to the West European
lineage collected in Basel, Switzerland in 1935; (B) A fully plated specimen
collected in Lake Constance near Langenargen, Germany in 1963; (C) A large,
fully plated pelagic female captured from Lake Constance near Meersburg,
Germany during the 2014 Projet Lac survey.

the native range of low plated Rhine stickleback. Together with
the references above regarding introductions to the eastern
end of Lake Constance, these historical records provide direct
evidence for the introduction of stickleback to the east and west
of the lake, and very probably from multiple distinct source
populations. Within the same time period that stickleback were
first sighted in Lake Constance, a population from the Western
lineage of the middle Rhône that was collected from a small
stream called Seillon near Vichy was deliberately released into
a stream connected to Lake Geneva in Hermance, Switzerland

in 1872 by Professor François-Isaac Mayor of Geneva (Fatio,
1882). A few decades later, further introductions and releases
were documented in the Lake Neuchâtel catchment and in the
upper Rhône upstream of Lake Geneva in the early 20th century
(Blanc, 1922; Bertin, 1925).

More recently, analyses of genomic data have been central
to the debate over the source location(s), the phenotype of the
founding population(s), and timing of stickleback colonization in
Lake Constance (Roesti et al., 2015; Marques et al., 2016, 2019a).
The ecological vicariance scenario’s (Roesti et al., 2015) proposal
of a natural colonization of Lake Constance via the upper
Danube drainage, was motivated by the genetic and phenotypic
similarity between Lake Constance and contemporary upper
Danube populations (Moser et al., 2012; Roesti et al., 2015).
However, it is noteworthy that there is evidence that these
latter populations were themselves also introduced (Ahnelt, 1986;
Ahnelt and Amann, 1994). Based on demographic modeling
of population genomic data and assuming that the lake and
stream populations originated from a single colonization of the
Constance system, a colonization time as far back as∼9,000 years
ago was estimated, suggesting an early split between lake and
stream ecotypes within the Constance catchment (Roesti et al.,
2015). Basal placement of stream populations in a phylogeny,
increased linkage disequilibrium, and extended selective sweep
signatures in lake stickleback genomes were further interpreted
in support of this scenario (Roesti et al., 2015). According to this
scenario, the Constance stickleback population would represent
a natural range expansion from regions close to the Black Sea to
freshwater following Pleistocene glacial retreat 12 Kya (McPhail,
1994; McKinnon and Rundle, 2002). Such a colonization route is
in principle, plausible, because geological and biological evidence
indicates that the Danube drainage was previously connected
to Lake Constance (Nesbø et al., 1999; Keller and Krayss,
2000; Bernatchez, 2001; Behrmann-Godel et al., 2004; Gum
et al., 2005; Barluenga et al., 2006; Vonlanthen et al., 2007;
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Hudson et al., 2014; Gouskov and Vorburger, 2016; Lucek et al.,
2018). Today, the only possible corridor connecting the two
drainages is the undergroundDanube-Aach system, whichmakes
contemporary natural colonization by surface water dwelling
fishes implausible. However, an early postglacial colonization of
threespine stickleback is at odds with the historical ichthyological
records described above.

A recent integrative analysis of the phylogeography and
demography of Lake Constance basin stickleback in a broader
European-wide context (Marques et al., 2019a) supports the
hypothesis involving secondary contact between divergent,
previously allopatric lineages. Individuals from the Lake
Constance catchment possess mitochondrial haplotypes
belonging to at least three divergent stickleback lineages
contemporarily found in four main Central European river
catchments draining into the Baltic Sea, the North Sea, the
Mediterranean Sea, and the Black Sea. This is in stark contrast
to the ecological vicariance model, where a single threespine
stickleback lineage would have colonized the Black Sea from
the Mediterranean Sea through the Bosphorus strait after
its formation roughly 7,000 ybp (Gökaşan et al., 1997; Fang
et al., 2018), continuing into the Danube, and onward into
Lake Constance. If this were the case, we would expect Lake
Constance stickleback to exhibit a high frequency of Black Sea
haplotypes (Mäkinen and Merilä, 2008; DeFaveri et al., 2012;
Lucek and Seehausen, 2015; Sanz et al., 2015; Vila et al., 2017),
but such haplotypes are absent in both the Lake Constance
catchment as well as in the upper Danube. Instead, the lake
population itself is dominated by a haplotype from the Baltic Sea
catchment in Poland (Lucek et al., 2010). Further mitochondrial
analyses revealed the presence of four additional mitochondrial
haplotypes within the Lake Constance catchment, in stream
habitats at low to moderate frequencies (Lucek et al., 2010; Moser
et al., 2012;Marques et al., 2019a). These haplotypes are otherwise
known from populations native to the North Sea, the Rhine
catchment, and the Rhône catchment (Mäkinen and Merilä,
2008; Lucek et al., 2010; Marques et al., 2019a). This secondary
contact model suggests that introduced stickleback from two or
three ancient European lineages met in the Constance basin and
have introgressed, facilitating differentiation between lake and
stream ecotypes via retention of historical lineage differentiation
and/or likely adaptive recruitment of western lineage alleles
into stream populations (Marques et al., 2019a). Genome-wide
RAD-sequencing data showing admixture between Rhine,
Rhône, and Baltic lineages in Lake Constance, a higher Rhine
and Rhône ancestry in stream stickleback, and an enrichment
of genomic islands of differentiation for Rhine lineage alleles in
stream ecotypes support this view (Marques et al., 2019a).

Phenotypic analyses also support the secondary contact
scenario. Stickleback native to the Rhine and Rhône originating
from natural colonization from the Sea (Lucek et al., 2010),
including Rhine populations from Basel (Figure 3), were
historically fixed for the low plated phenotype (Fatio, 1882;
Münzing, 1963), prior to hybridization and introgression with
the introduced Eastern European lineage (Lucek, 2016). In
contrast, Baltic Sea freshwater populations were fixed for the fully
plated phenotype until recent introductions of low plated fish

from Western Europe (Bańbura, 1994) and the likely introduced
freshwater populations in the upper and middle Danube which
contain a mix of low and fully plated morphs (Ahnelt, 1986).
Lake Constance is dominated by fully plated stickleback, while
the populations in inlet streams to the North and West of the
lake are polymorphic with high frequencies of low plated fish.
In contrast, streams to the south of Lake Constance have low
frequencies of low plated fish. These phenotypic patterns are in
line with the inferences from mitochondrial and genomic data
of an origin of lake stickleback from the Baltic region and an
admixed origin of stream stickleback north and west of the lake,
supporting the secondary contact hypothesis.

In summary, the historical ichthyological evidence,
phylogeographic analysis in a European context, and
demographic modeling of genomic data, all suggest that
the most plausible scenario for the origin of stickleback in Lake
Constance is that beginning in the late 1800’s stickleback were
introduced by aquarium hobbyists or fishermen from multiple
sources (Heller, 1871; Fatio, 1882; Steinmann, 1936; Muckle,
1972) that represent at least three different European lineages
and a minimum of three different introductions (Marques et al.,
2019a). Following these introductions, the lake population then
underwent an expansion, becoming abundant by the 1960’s
(Laurent, 1972; Numann, 1972; Deufel, 1985; Zimmermann,
2002; Alexander et al., 2016), and has experienced fluctuations
in density over the past 50 years. This debate, and growing
support for the “secondary contact scenario,” reveals the value
of integrative analyses of invasion dynamics that include
inferences about historical fish occurrences from ichthyological
records (where available), historical colonization pathways from
geomorphological evidence, and both demographic history and
phylogeographic patterns from genomic data.

In the following sections, we review general patterns of
ecological and evolutionary diversification in the G. aculeatus
species complex, and develop contemporary parallels associated
with the invasion of Lake Constance.

EXAMINING THE LAKE CONSTANCE
STICKLEBACK POPULATION FROM A
GLOBAL PERSPECTIVE

Their historical and geographic origins notwithstanding, Lake
Constance stickleback are unique among central European
freshwater populations in that a high number of individuals
are foraging in the pelagic zone of the lake, and appear
to be phenotypically adapted for a lifestyle in large pelagic
environments. A lake-wide fish diversity survey of Swiss lakes,
conducted in 2014, demonstrated that lacustrine stickleback
are not only hyper-abundant within Lake Constance (Table 1),
but are also distributed along a variety of habitats throughout
the water body, with some individuals found foraging in the
profundal zone as deep as 40m (Alexander et al., 2016). Similar
distribution patterns in freshwater lakes are only known from
Lake Michigan, where stickleback invaded the ecosystem on
a comparable time scale, occupy qualitatively similar depth
ranges (Stedman and Bowen, 1985), and consume a diet that is
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mostly zooplankton and mysids (Turschak and Bootsma, 2015).
During the breeding season, lacustrine stickleback have been
observed to spawn both within lakes along the shoreline, and
in adjoining streams (Snyder, 1991; Harvey et al., 1997; Lucas
et al., 2001). We observe this pattern in Lake Constance as
well, though it remains to be investigated whether these resident
and potamodromous lacustrine fish constitute a panmictic
population or are reproductively isolated. Potamodromous
individuals migrate in large numbers several kilometers up into
streams in April, where the males build nests and where they
breed before they leave the streams again in May/June, much
like anadromous marine stickleback. These potamodromous
individuals demonstrate genomic differentiation from stream
residents in both sympatry and parapatry (Marques et al.,
2016), and differ from the stream populations in an array of
phenotypic traits. Lake fish have elongated gill rakers and a
distinct head shape that allows feeding on small planktonic
prey, as opposed to stream resident individuals, which feed
predominantly on larger benthic prey (Berner et al., 2010;
Lucek et al., 2012, 2013; Moser et al., 2012, 2015; Karvonen
et al., 2015; Roesti et al., 2015; Marques et al., 2016, 2019a).
Lake and stream ecotypes also differ in defensive morphology,
with lake stickleback possessing elongated spines and a set of
tall bony lateral plates that cover most of the body, whereas
stream resident fish have shorter spines and a reduced plate
coverage which they achieve by having either fewer, or shorter,
lateral plates (Berner et al., 2010; Moser et al., 2012; Lucek
et al., 2013, 2014b; Marques et al., 2016). Lastly, the ecotypes
differ in life history, where lake resident and potamodromous
fish live longer and start to reproduce on average 1 year later
than stream residents (Lucek et al., 2012; Moser et al., 2012,
2015). Lake-stream divergence has been reported elsewhere in
Switzerland (and in other locations globally; Table 2) but is
much less pronounced in other large Swiss lakes (Lucek et al.,
2013, 2014b). This suggests that naturally colonized systems and
anthropogenic introductions of threespine stickleback have the
underlying process of ecotypic differentiation in common, but
that the rate at which phenotypic and genetic divergence occur,
and its dimensionality, are system specific.

In a recent assessment, sticklebacks in Lake Constance
represent ∼28% of the fish biomass, and accounted for 96%
of fish captured in the pelagic zone of the upper lake during
the Projet Lac survey (Alexander et al., 2016). Despite being
identified as hyper-abundant from the 1960’s to the 70’s
(Numann, 1972), and again in littoral habitats almost two
decades ago (Zimmermann, 2002) threespine sticklebacks were
first recorded as bycatch in the pelagic zone of Constance by
commercial fisheries in 2013 (Rösch et al., 2017). Previous reports
(Numann, 1972; Deufel, 1985) indicate that stickleback have been
a nuisance to fishermen in the past, with populations reaching
high abundances, but then declining rapidly, presumably from
parasitic infections (e.g., whitespot disease Ichthyophthirius
multifiliis and carp louse Argulus foliaceus), though evidence of
this is largely speculative.

The massive recent increase in stickleback abundance
coincides with a sharp decline in pelagic whitefish (Coregonus
wartmanni, Bloch, 1784) yields, both in the number of

individuals caught, and their weight-at-age (Rösch et al., 2017).
Previous work has speculated that the invasive stickleback
population could have a negative impact on whitefish growth
and abundance, and shows that stickleback will prey on whitefish
larvae in laboratory foraging experiments (Roch et al., 2018;
Ros et al., 2019) or following stocking (Roch et al., 2018).
However, the first stickleback population expansion during the
eutrophication period in Constance coincides with population
size increase in whitefish (Numann, 1972), so the relationship
between whitefish and stickleback abundances is either mediated
by some other factors in the environment, or it is not causal. It has
been proposed that either competition for pelagic zooplankton
resources such asDaphnia - that have declined in abundance with
the re-oligotrophication of Lake Constance (Straile and Geller,
1998; Stich and Brinker, 2010; Rösch et al., 2017) - or direct
predation on whitefish eggs and larvae (Roch et al., 2018; Ros
et al., 2019) are responsible for this reduction in yield. Predation
by sticklebacks on eggs and juveniles of their own species occurs
frequently (Whoriskey and FitzGerald, 1985; Hyatt and Ringler,
1989; Smith and Reay, 1991; Foster and Bell, 1994; Manica,
2002; Mehlis et al., 2010) along with predation on larvae of
other fish species (Hynes, 1950; Manzer, 1976; Delbeek and
Williams, 1988; Kean-Howie et al., 1988; Gotceitas and Brown,
1993; Nilsson, 2006; Kotterba et al., 2014; Byström et al., 2015),
while previous studies on stickleback populations in the Baltic
Sea have suggested that intraguild predation on eggs and juvenile
fish is responsible for the observed declines in perch (Perca
fluviatilis, Linnaeus, 1758) and pike (Esox lucius, Linnaeus, 1758)
recruitment (Nilsson, 2006; Bergström et al., 2015; Byström et al.,
2015; Nilsson et al., 2019; Eklöf et al., 2020). It is possible that
the same is occurring with Lake Constance whitefish populations,
although evidence for this is currently lacking. Our analysis of
stickleback gut contents (see below) did not detect any whitefish
eggs or larvae in wild stickleback, nor did other studies (Lucek
et al., 2012; Moser et al., 2012; Roch et al., 2018), though
intraspecific egg predation was observed. However, no study to
date has sampled lacustrine stickleback during or shortly after
whitefish spawning season, so the hypothesis about whether
direct predation on whitefish eggs by invasive stickleback is
responsible for population declines requires further testing.

For piscivorous predators, increased stickleback abundance
may provide a new food source that could be particularly
important for overwintering birds. In a similar fashion, the
presence of introduced zebra mussels in Lake Constance
(Dreissena polymorpha, Pallas, 1771) has resulted in a 4-fold
increase in overwintering molluscivorous waterbird densities
since their introduction in the 1960’s (Werner et al., 2005).
Following environmental protection legislation under the EU
Birds Directive, a breeding population of great cormorants
(Phalacrocorax carbo, Linnaeus, 1758) has established in lower
Lake Constance since 1997, and has grown steadily despite
population culling (Gaye-Siessegger, 2014). Both cormorant,
and great crested grebe (Podiceps cristatus) populations have
increased since 2010, and it has been suggested that the
abundance of stickleback in the lake is responsible for this
change (Werner et al., 2018). Stomach content analysis of great
cormorants from lower Lake Constance between 2011 and 2013
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TABLE 1 | Stickleback caught during the Projet Lac sampling campaign, and other Swiss lakes where they are known to occur but were not captured.

Lake Information Stickleback catch per unit effort

(Projet Lac)

Habitats occupied by stickleback

Constance - upper Projet Lac 2,527 Littoral/benthic/limnetic (< 47m)

Constance - lower Projet Lac 249 Littoral/benthic/limnetic (< 42m)

Biel Projet Lac 63 Littoral/benthic (< 5m)/limnetic (< 25m)

Geneva Projet Lac 24 Littoral/benthic (< 10m)

Lucerne Projet Lac 2 Littoral (1.5m)

Maggiore Projet Lac 1 Littoral (1.6m)

Murten (Zaugg and Huguenin, 2018) + EAWAG 0 Littoral

Neuchâtel (Zaugg and Huguenin, 2018) + EAWAG 0 Littoral

Zug (Zaugg and Huguenin, 2018) 0 Littoral

Zurich (Zaugg and Huguenin, 2018) 0 Littoral

during the autumn andwinter seasons showed that 19.1% of birds
had eaten stickleback, and 24.3% of fish eaten were threespine
stickleback. This indicates that cormorants frequently target G.
aculeatus, although they only contribute a small proportion of
total diet content by weight (Gaye-Siessegger, 2014). A later
study (Rey and Becker, 2017) documented an increase in the
proportion of cormorant stomachs containing stickleback in
comparison to the previous survey, with 39% of individuals
hunted in the spring of 2016 containing G. aculeatus. Thus, it
is possible that these abundant prey items in the pelagic zone
(Eckmann and Engesser, 2018) are particularly beneficial when
other species of dietary importance, such as Perca fluviatilis,
move to deeper water to overwinter (Wang and Eckmann, 1994;
Eckmann and Imbrock, 1996). Many other avian species in the
region such as grebes, herons, mergansers, kingfishers, gulls, and
terns are known to consume threespine stickleback (Foster and
Bell, 1994; Werner et al., 2018), so we may observe an increase
in their abundance, or changes in migration patterns as well in
response to increased pelagic stickleback densities in the future.

In addition to their high abundance, broad habitat use, and
interactions with other species, one of the most compelling
characteristics of the Lake Constance stickleback is their
exceptional body size. In freshwater, G. aculeatus typically attains
between 30 and 80mm in standard length (SL) (Wootton and
Wootton, 1976; Foster and Bell, 1994) and has an average lifespan
of 2–4 years (Pennycuick, 1971; Moodie, 1984; Baker, 1994).
Stickleback caught in Lake Constance during the Projet Lac
survey demonstrated large body sizes and complete defensive
complexes (Figure 3), with the largest individual measuring
101mm in SL (Alexander et al., 2016; Figure 4). Since many
individuals captured during this survey were above the typical
size range of the species, we compiled data from our own
work, along with published sources on body size distributions
of freshwater stickleback populations from around the globe
(Figure 4). This data shows that their large body size is not
necessarily unique for the species, but that Lake Constance
individuals are larger than those from most other European
freshwater populations. There are two other regions where
freshwater stickleback have been measured at comparable body
sizes, the Haida Gwaii archipelago (British Columbia, Canada),

and Lake Towada, Japan. In Haida Gwaii, stickleback in a small
number of very distinctive populations or species (the giant
threespined stickleback) have been observed to grow up to
106mm in SL (Gambling and Reimchen, 2012) and can live to be
8 years old (Reimchen, 1992a), while in an introduced Japanese
population in Lake Towada females with a SL > 100mm have
been collected (Mori and Takamura, 2004). Furthermore, marine
individuals of threespine stickleback have been reported at sizes
up to 110mm (Muus and Nielsen, 1999), and evidence from
the fossil record suggests that such “gigantism” in stickleback
has evolved previously, with fossilized individuals measured at
110mm (Bell, 1984). Large body size hence is repeatedly observed
but uncommon in the G. aculeatus species complex, especially in
freshwater populations.

What could be responsible for this pattern of gigantism, and
how do Lake Constance stickleback compare to other systems?
For Haida Gwaii, Gambling and Reimchen (2012) suggest that
large body size has evolved in order to escape gape-limited
piscivores that are abundant in the ecosystem, but this is not
the case in Lake Towada because there are no predatory fish
(Mori and Takamura, 2004). Instead, Mori and Takamura (2004)
suggest that either an abundant supply of planktonic prey or
greater fish longevity are responsible for the large sizes they
observed, although they did not directly measure stickleback ages
in their study. In Lake Constance stickleback the majority of lake
breeding fish are 2 years of age when they first reproduce (Moser
et al., 2012), but fish of 3 years of age are also common and
occasionally they are older (Lucek et al., 2012; Moser et al., 2012).
There is some experimental evidence that predation pressure on
Swiss stickleback populations can select for faster growth rates
(Zeller et al., 2012), and that the lake population in Constance
grows faster than one of the stream populations when reared on
limnetic prey, although they grow at a similar rate when reared on
benthic prey (Lucek et al., 2012). This latter experiment suggests
that the lake ecotypes are better adapted to grow quickly on
limnetic prey than are stream ecotypes. However, whether the
larger body sizes of the lake populations are due to adaptations
allowing sustained rapid growth under limnetic food resources,
or the result of selection for larger body size as a mechanism to
escape predation is still unknown.
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TABLE 2 | Mechanisms of ecotype formation in threespine stickleback.

Ecotypes Mechanism of selection Location Publications

Lava and nitella Predation by arctic char,
substrate background matching

Iceland Kristjansson et al. (2002), Doucette et al.
(2003), Ólafsdóttir and Snorrason (2007,
2009), Millet et al. (2013)

Lake and stream Divergent selection in trophic
niche and habitat use

Throughout European
and North American
populations

Lavin and Mcphail (1993), Hendry et al.
(2002), Hendry and Taylor (2004), Berner
and Grandchamp (2009), Deagle et al.
(2012), Kaeuffer et al. (2012), Moser et al.
(2012), Lucek et al. (2013), Ravinet et al.
(2013), Feulner et al. (2015), Marques
et al. (2016), Hanson et al. (2017), Stuart
et al. (2017), Paccard et al. (2019),
Rennison et al. (2019)

Benthic and limnetic Divergent selection in trophic
niche and habitat use

Pacific North West,
Canada and Alaska

Bentzen and McPhail (1984), McPhail
(1984, 1994), Schluter and McPhail
(1992), Foster and Bell (1994), Baker et al.
(2005), Gow et al. (2008), Willacker et al.
(2010), Østbye et al. (2016)

White and common Sexual selection, assortative
mating associated with male
color polymorphism, lack of
parental care in white ecotype

Atlantic North East,
Canada

Blouw and Hagen (1990), Haglund et al.
(1990), Jamieson et al. (1992a,b);
Macdonald et al. (1995), Blouw (1996),
Samuk et al. (2014), Haley et al. (2019)

Benthic and limnetic Female preference for male
shape and size promotes sexual
isolation between ecotypes

Pacific North West,
Canada

Head et al. (2013)

Benthic and limnetic Female preference for male
nuptial coloration in different light
environments

Pacific North West,
Canada

Boughman (2001)

Blackwater and clearwater Predation and sexual selection,
aquatic light environment
influences color vision evolution

Pacific North West,
Canada

Hagen and Moodie (1979), Reimchen
(1989), Flamarique et al. (2013), Rennison
(2016), Marques et al. (2017b)

Red and orange nuptial
colouration morphs

Female preference for male
throat colouration promotes
sexual isolation between morphs

Switzerland Feller et al. (2016), Marques et al. (2017a)

Brackish and oceanic Reduced gene flow along
thermal and salinity gradients

Baltic Sea deFaveri et al. (2013), Guo et al. (2015)

Benthic and limnetic Differential predation pressure
produces divergent body
pigmentation between ecotypes

Pacific North West,
Canada

Gygax et al. (2018)

Lake and stream Sexual selection, females use
male MHC olfactory cues to
assortatively mate

Germany Eizaguirre et al. (2011), Andreou et al.
(2017)

Plate morphs Calcium availability, salinity, and
predation regime

North Uist, Scotland Giles (1983), Cresko et al. (2004), Spence
et al. (2012, 2013), Magalhaes et al. (2016)

Adaptive radiation in body size
and defensive complex

Predation regime, ecosystem
size, and light spectrum

Pacific North West,
Canada

Reimchen et al. (2013)

Understanding variation in dietary niche and metabolism
might yield insights into the uniqueness of the Constance
population with respect to European and Global populations. In
Swiss populations, there is some evidence for differences in the
dietary niche between the West European and East European
lineages, but insufficient data to quantitatively compare dietary
niche variation between the native and introduced range.
These lineages have colonized freshwater independently, with
populations diverging in the late Pleistocene (Fang et al., 2020b)
or early Holocene (Marques et al., 2019a), many thousands of
years before their introduction to Swiss lakes and before any

known instances of secondary contact. As a result, the lineages
have a different evolutionary history of adaptation to freshwater
environments. In light of this, previous work has suggested
that the Constance population has a more pelagic phenotype
and feeds more efficiently on plankton than the population of
Lake Geneva (Best et al., 2017), which originates from the West
European Lineage (Fang et al., 2018) that invaded Switzerland
from the middle Rhône. Indeed, in our analysis of stomach
contents from 253 individuals, following similar methods as
Lucek et al. (2012), and Anaya-Rojas et al. (2016), and presented
here for the first time, we confirm that individuals in both
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FIGURE 4 | Mean standard length of stickleback captured in the Constance drainage (highlighted in gray) with standard deviation compared to body sizes of other
freshwater populations around the globe. Open circles represent maximum body sizes, when available from the data. We obtained body size data from published
studies (Supplementary Table 1) and calculated means for each region by pooling all individuals and both sexes. For studies that did not provide raw data, we
re-calculated mean and standard deviation values by combining means between studies using standardized methods (Altman et al., 2013). *Haida Gawii populations
are represented by the top 10 largest individuals of each sex from 98 populations (Reimchen et al., 2013), and thus the distribution is right-skewed, Newfoundland
populations are measured as total length and not SL.

upper and lower Lake Constance are predominantly feeding
on plankton (e.g., cladocerans and copepods; Figure 5), and
a low proportion of chironomid larvae. We also found some
evidence for within-lake dietary niche variation between the
upper and lower lake (Figure 5): Individuals caught in the lower
lake consumed a higher proportion of bosmina (two-tailed z-test,
z = 2.45, p = 0.012; upper lake N = 232; lower lake N = 21)
compared to those from the upper lake. Furthermore, within the
upper lake, pelagic individuals consumed a higher proportion of
bythotrephes than benthic individuals did (two-tailed z-test, z
= 2.8, p = 0.005; benthic N = 133, pelagic N = 99). More of
such comparative dietary work is needed in other large lakes in
order to test how niche variation within populations in large lakes

(e.g., Lake Geneva) compares among lineages in the natural and
invaded range.

There is also compelling evidence for differences in the
extent of metabolic adaptation by the two stickleback lineages
to the lower average food quality of freshwater compared
to marine prey. During the colonization of freshwater by
marine species, organisms need to adapt to an environment
where essential fatty acids are low in abundance (Arts et al.,
2009). When encountering nutritional constraints, organisms
can evolve metabolic or ecological adaptations to overcome this
environmental scarcity. In freshwater fish, in vivo biosynthesis of
long-chain fatty acids by desaturation of short-chain derivatives
is performed by enzymes produced by the Fads2 gene (Castro
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FIGURE 5 | Gut content proportions of the top five most common prey items in Projet Lac stickleback split by region and catch location. Individuals caught in the
benthic habitat were those caught <25m from the lakebed, while individuals caught in the pelagic habitat were captured >25m. Stickleback caught in Untersee have
a higher proportion of Bosmina in their diet, and within Obersee fish caught in deeper pelagic regions had a higher proposition of Bythotrephes in their diet (see main
text).

et al., 2012). Fads2 has recently been identified as a key
metabolic gene for several freshwater fish species in that
they exhibit multiple independent gene duplications across
different lineages, and this suggests that copy number variation
is under positive selection for its role in long chain fatty
acid biosynthesis (Ishikawa et al., 2019). From the same
study, an investigation of copy number variation in European
freshwater stickleback populations showed that the Western
European lineage possesses higher copy numbers of Fads2
than the population in Lake Constance (Ishikawa et al., 2019),
implying that they are capable of more efficient metabolic
desaturation and elongation of polyunsaturated fatty acids.
It is possible that this has enabled the Western lineage to
persist in environments with low food quality such as stream
or benthic lake littoral habitats. If organisms are incapable
of fatty acid biosynthesis, another evolutionary strategy is
to adapt their morphology and behavior to more efficiently
prey on food sources that are rich in essential nutrients. A
planktonic diet can provide these essential nutrients [i.e., fatty
acids; (Smyntek et al., 2008)], although some of the high
quality prey items are also evasive (e.g., copepods). Based on
the gut content data and the prolific use of the open water
habitat, it is possible that Lake Constance stickleback are well-
adapted to exploit the abundant zooplankton populations in
Lake Constance, and this may help them compensate for the
fewer copies of Fads2 that they possess in comparison to the
Western lineage.

PUTTING THE INVASION OF LAKE
CONSTANCE INTO PERSPECTIVE FOR
DRAINAGES IN SWITZERLAND

Invasive species vary widely in both their ability to invade, and
their impact following invasion (Williamson and Fitter, 1996;
Zenni andNuñez, 2013). In the case of stickleback in Switzerland,
success of establishment varies within the introduced taxon: the
population of stickleback in Lake Geneva seems to be much
less dominant than the population in Lake Constance, despite
similar timescales of invasion. Stickleback are present in many
of the large freshwater bodies within Switzerland, including
Lakes Biel, Neuchâtel, Lucerne, and Geneva, where they range
from exceedingly rare (Lucerne) to locally common (Geneva)
but are hyper-abundant only in Lake Constance. Here we will
discuss this phenomenon in the context of the two largest
lakes, Constance and Geneva. Both are large peri-alpine lakes
that harbor introduced populations of stickleback of similar age
(Heller, 1871; Fatio, 1882) so why are there striking differences
in stickleback abundance between the two? During peak
eutrophication in the 1980’s stickleback were similarly abundant
in both lakes (Laurent, 1966, 1972; Numann, 1972), but this is no
longer the case. It is only after re-oligotrophication that Geneva
populations have declined, while Constance populations have
become hyper-abundant again (Alexander et al., 2016). As the
ecosystems are similar in some respects, such as lake depth, size,
and community composition, and the time since colonization is

Frontiers in Ecology and Evolution | www.frontiersin.org 13 January 2021 | Volume 8 | Article 611672

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Hudson et al. Invasive Stickleback in Lake Constance

FIGURE 6 | Ectodysplasin (Eda) STN382 allele frequency distributions across Swiss stickleback (n = 1,598) populations (n = 42) generated by KL as in Lucek et al.
(2010). Yellow (LL) = homozygous for the low plated allele; Green (CL) = heterozygous individuals; Blue (CC) = homozygous for the complete plated allele.
Information on site codes and capture locations can be found in Supplementary Table 2.

roughly the same, differences between the colonizing lineages in
phenotype, genetic makeup, or ecology may be responsible for
this pattern.

As discussed above, we know that stickleback populations
in Switzerland are made up of several divergent European
lineages that vary in their evolutionary history in freshwater, and
that these lineages differ both phenotypically and genotypically
(Mäkinen and Merilä, 2008; Lucek et al., 2010; Moser et al.,
2012; Fang et al., 2018, 2020b; Marques et al., 2019a).
Stickleback in Geneva are genetically dominated by a freshwater
lineage from the middle Rhône (Mäkinen and Merilä, 2008;
Marques et al., 2016, 2019a; Fang et al., 2018) while those in
Constance most likely originate from the Baltic Sea drainage
of Eastern Europe (Lucek et al., 2010). The Geneva population
is phenotypically similar to West European stream stickleback,
while the Constance population has a pelagic phenotype and is
fully plated. Gene flow into Lake Geneva from the East European
lineage has recently introduced the fully plated Ectodysplasin
(Eda) allele into the population of Lake Geneva where it seems
to be under positive selection in the lake but not in the
streams (Lucek et al., 2014a). This introgression of the fully
plated Eda allele has likely occurred through the large hybrid
zone that spans the Swiss plateau between Lake Constance and
Lake Geneva, and here we present new data on stickleback
populations genotyped for the STN382 allele (Figure 6) as in
Lucek et al. (2010) using the protocols of Colosimo et al. (2005).

The spread of this allele suggests that genetic contributions from
the East European lineage may increasingly permit adaptation
to exploitation of pelagic habitats in other invaded lakes as well
(Lucek et al., 2014a). Conversely, introgression from the West
European lineage (largely from Rhine populations) into Lake
Constance has been found among stream populations (Marques
et al., 2019a), but not in the lake population. Thus, it is likely
that we are observing an inverse scenario of invasion and
secondary contact between the two lakes, lineages, and freshwater
habitat types.

When we compare these two lakes, genetic constraints (e.g.,
limiting genetic variation due to drift at the invasion front or the
lack of required adaptive genetic variation for the colonization
of a specific habitat) may have limited the invasiveness of
each introduced population to colonize multiple habitat types
initially, but this constraint was alleviated by hybridization at
each invasion front (Lucek et al., 2014a; Marques et al., 2019a). In
other words, we have evidence that hybridization between East
and West European lineages in Lake Constance has enabled the
colonization of stream habitats (Marques et al., 2019a), but we
know much less about how introgression of Eastern European
alleles might facilitate a habitat expansion of the Lake Geneva
population from littoral habitats into the pelagic zone. Further
testing of this phenomenon within other Swiss lakes in the hybrid
zone (e.g., Lakes Biel and Neuchâtel) could be fruitful, and may
reveal similar patterns.
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CONCLUSIONS

Invasive species allow us to observe the process of evolution
on an ecological timescale, as non-native organisms adapt to
new environmental conditions. Whether they are ecologically
detrimental or not, we can use invasions to explore how
organisms from one genetic background perform in an
environmental circumstance that differs from that at its origin.
Multiple introductions and admixture through hybridization
can provide new genetic material for selection to act upon,
and teach us about the consequences of secondary contact for
adaptation, divergence and associated ecosystem impact. Here
we have a system with multiple recent introductions, rapid
population divergence, and the potential for large ecosystem
effects in an area that has already experienced intense human
habitat alteration. The Swiss stickleback system provides a model
to study multiple axes of ecological diversification in threespine
stickleback, and insights from this system can be applied both
to the global threespine stickleback radiation in particular, and
to our understanding of invasive species in general. We observe
rapid parallel diversification along the lake-stream ecotype axis,
and threespine stickleback have become hyper-abundant within
the pelagic zone of Lake Constance, now representing one of
the most common species in the lake. Whether the lacustrine
population has begun to diversify into genetically distinct groups
along the benthic-limnetic or lake resident-migratory axes,
additional to the lake-stream axis is currently unknown and
remains to be investigated. Furthermore, as hybridization has
occurred between the same introduced stickleback lineages in
other regions of Switzerland, we may see adaptive population
divergence and possibly the evolution of invasiveness in other
Swiss lakes as well.
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