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How individuals in a group lead to collective behavior is a fundamental question across

biological systems, from cellular systems, to animal groups, to human organizations.

Recent technological advancements have enabled an unprecedented increase in our

ability to collect, quantify, and analyze how individual responses lead to group behavior.

However, despite a wealth of data demonstrating that collective behavior exists across

biological scales, it is difficult to make general statements that apply in different

systems. In this perspective, we present a cohesive framework for comparing groups

across different levels of biological organization, using an intermediate link of “collective

mechanisms” that connects individual responses to group behavior. Using this approach

we demonstrate that an effective way of comparing different groups is with an analysis

hierarchy that asks complementary questions, including how individuals in a group

implement various collective mechanisms, and how these various mechanisms are

used to achieve group function. We apply this framework to compare two collective

systems—cellular systems and honey bee colonies. Using a case study of a response to

a disturbance, we compare and contrast collective mechanisms used in each system.

We then discuss how inherent differences in group structure and physical constraints

lead to different combinations of collective mechanisms to solve a particular problem.

Together, we demonstrate how a hierarchical approach can be used to compare and

contrast different systems, lead to new hypotheses in each system, and form a basis for

common research questions in collective behavior.

Keywords: multi-scale, systems theory, honey bees, cellular systems, group behavior, mechanisms

1. COLLECTIVE BEHAVIOR: FROM CELLS TO SOCIETIES

Collective behavior spans across levels of biological organization, from cellular systems, to multi-
cellular organisms, to animal and human societies. Even though such systems are wildly different,
the fundamental challenges that they face can be strikingly similar: maintaining homeostasis,
allocating resources, and coordinating group responses. Depending upon the available resources
and the constraints on a system, the processes and solutions for a given challenge can be similar in
some cases, but different in others. For example, similar effective forces of repulsion, alignment, and
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attraction describe basic motion characteristics in cell colonies
(Bi et al., 2016; Camley and Rappel, 2017), schooling fish (Couzin
et al., 2002), human pedestrians (Helbing andMolnár, 1995), and
social insects (Janson et al., 2005; Diwold et al., 2011). Conversely,
while the coordinated response of an insect colony is due to
distributed processing, the coordinated response of the organ
systems within a single insect comes from centralized control
of the central nervous system. How, then, do different types of
collectives deal with similar problems?

Although biological systems have many parameters governing
behavior, all of the finer-scale details may not matter at a larger
scale; because of this property, simplified models are a useful
tool for understanding general system function (Machta et al.,
2013; Transtrum et al., 2015). A hierarchical approach asks
questions at different levels of organization, and then further
asks how these levels connect. A common example of such
an approach is Marr’s three analysis levels of implementation,
algorithm, and computation (Marr, 1982; Krakauer et al.,
2017). Building on this, Carandini (2012) discusses the need
for an analysis hierarchy by demonstrating the limitations of
seeking connections between individual neurons and overall
behavior without considering computational algorithms; using
the analogy of brain as computer, this is likened to seeking
correlations between individual transistors and computer

FIGURE 1 | Collective mechanisms link individual to group function. Different groups have different structures, and may use a different set of mechanisms to perform

similar functions. The way mechanisms are implemented depends on the constraints and structure of the individuals in a particular group, and thus some groups may

be more effective than others at implementing certain mechanisms. Differences between groups are illustrated by the connections and the transparency of the lines

linking groups to each collective mechanism. To compare collective behavior in different systems, we use complementary questions: how groups are structured (Q1),

how individual behavior is used to implement certain collective mechanisms (Q2), how multiple collective mechanisms contribute to group function (Q3), and how both

individual and group behavioral algorithms are adapted to the particular environment (Q4).

function without considering the operating system. Recently,
Hein et al. (2020) adopted Marr’s approach to understand
pursuit and evasion behavior in animal groups and demonstrated
how separating analysis levels highlights the key details that
enable a correspondence between experiment and theory. To
fully understand a biological system, Tinbergen’s four questions
describe how both proximate and ultimate mechanisms need to
be addressed (Tinbergen, 1963; Taborsky, 2014). By looking at
different systems, we see that constraints and selection pressures
may lead individuals of different systems to use different
approaches to solve the same problem (Gordon, 2016), and that
certain algorithms ormechanisms appear repeatedly even though
systems may differ widely (Adams et al., 2012).

In this perspective we present a cohesive analysis framework
with question levels that can be applied to collective behavior.
This framework uses the term “collective mechanisms” to
describe the intermediate link between individuals and overall
group behavior (Figure 1). To analyze a collective system, we
summarize this approach by asking the following questions:

1. Group description: Who is included in the group, and what is
the group structure?

2. Implementation: How is individual behavior used to
implement a certain collective mechanism?
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3. Algorithm: How do various collective mechanisms contribute
to overall group function?

4. Adaptation: How are behavioral algorithms and group
function adapted to the surrounding environment?

To make these questions precise, we must first define what we
mean by mechanism and function. We refer to a “collective
mechanism” as any process that links individual behavior to
group function (Table 1). Building on a previous framework
(Craver, 2007; Glennan, 2017), we specify that a behavioral
algorithm consists of individuals using various collective
mechanisms to enact a particular group function. With “group
function,” we refer to the mechanistic description of what the
group does, not the evolutionary explanation of why a particular
task is performed by the group (Craver, 2007; Keeling et al.,
2019). Note that collective systems vary in how much the
individual vs. the group may be adapted to a particular function
in the environment (Figure 1); this depends on whether selection
occurs at the level of individuals or at the level of groups.

In this article we apply this framework with a focus
on comparing two systems—groups of cells and honey bee
colonies—which exist at different scales, but are similar in
how individuals contribute to group function (Yang, 2007). In
forming the comparison, we follow the four questions listed
above and shown in Figure 1. We first describe the group and
an associated division into functional subgroups. Then, using a
case-study (response to a perturbation), we compare how various
collective mechanisms contribute to the group’s response, and
how function is tied to environmental characteristics. While we
focus on cellular systems and honey bees, in each part we also
discuss similarities and differences with vertebrate animal groups
and human organizations.

2. GROUP DESCRIPTION

A group is made up of multiple individuals, with inclusions
defined by genetic, reproductive, spatial, or functional factors.
Both cellular systems and social insects have further levels
of organization, where task- or function-specific subgroups
coordinate activity for the maintenance and survival of the group
as a whole (Figures 2A–C).

2.1. Cellular Systems
Cellular systems have amulti-level organization: Cells of a certain
type group together to form specific tissues, tissues performs
distinct tasks relevant to the function of the organ or organ
system, and together these systems make up the organism
(Saxén and Lehtonen, 1986). For instance, connective tissue
provides cohesion and internal support to the organs, muscle
tissue enables movement, nervous tissue regulates and controls
bodily functions, and epithelial tissue acts as a barrier to prevent
invasions of pathogens as well as helping to absorb nutrients
from food. Multiple tissue types can be found within a single
organ (Figure 2B). Cell type differentiation is settled during
morphogenesis, which is the beginning of shape and pattern
formation during development. Because of the multi-level
organization, the specification of who is included in a “group”

depends on the group function that is being analyzed. For
the purpose of understanding a particular function, we include
individuals that contribute to that function. For a complex task
such as reproduction, this includes multiple different organ
systems or even the entire organism. Considering epithelial cells
and the specific task of wound healing (Figure 2D) the group
includes only the subset of cells involved in healing the wound,
most of which belong to a single tissue type.

2.2. Social Insects: Honey Bees
Insect societies are champions of individual specialization
(Michener, 1969; Wilson, 1971). As “superorganisms”
(Wheeler, 1928; Hölldobler and Wilson, 2009), colonies display
physiological features that are typically attributed to organisms,
such as gas exchange, nest homeostasis, and nutritional targets
(Kleineidam et al., 2001; Dussutour and Simpson, 2009; Ostwald
et al., 2016). A honey bee colony is made up of thousands of
workers and a single queen (Smith et al., 2016). The workers
can be divided into functional subgroups of those caring for
brood, processing honey, or foraging (Figure 2C). Unlike other
social insect systems, where a worker’s tasks can be distinguished
by their physical appearance (e.g., workers vs. soldiers in the
army ant Eciton burchellii), workers in a honey bee colony
organize tasks using a system of temporal polyethism. Generally,
young bees care for brood, middle-aged bees work in the nest,
and old bees forage outside (Seeley, 1982). A worker may also
partition its time between several tasks, which together describe
its “task repertoire” (Lindauer, 1952; Seeley, 1982). Changes
between tasks are not purely age-driven; they are also mediated
by interactions with other individuals, such that task allocation
responds to the needs of the colony (Beshers et al., 2001; Johnson,
2010). In addition to age, definitions of subgroups may include
interaction networks (Wild et al., 2020) or task-specific spatial
localization (Mersch et al., 2013; Modlmeier et al., 2019).

2.3. Comparing Systems
Although in both cellular systems and honey bee colonies there
is a clear division into functional subgroups (Figures 2A–C),
there are differences in how individual function changes over
time, how the “group” is defined for the purpose of analyzing
a particular function, and in the overall structure of the
organizational levels. In cellular systems, functional groupings
are settled during morphogenesis, while the functional subgroup
of a worker bee is flexible, depending on changes with
age, glandular development, hormone titers such as juvenile
hormone, colony requirements, and social interactions (Seeley,
1982; Huang and Robinson, 1992, 1996; Sullivan et al., 2000;
Beshers et al., 2001; Grozinger et al., 2003; Wild et al., 2020).
Note that here we refer to subgroups among workers, not the
reproductive castes that distinguish workers, drones, and the
queen (Winston, 1991). The definition of group depends on the
function in cellular systems, which can range from the whole
organism for complex tasks to only localized cells of a particular
tissue for specific functions. For honey bees, the group includes
the whole colony for most functions. In addition to these factors,
within the multi-level organization of cellular systems the overall
activity of multiple organ systems is often coordinated by a
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TABLE 1 | Examples of collective mechanisms for cellular systems and honey bees.

Mechanism Cellular systems Honey bees

Communication • Chemical: Chemotaxis during organogenesis (Barton et al.,

2016) and wound healing (Vishwakarma et al., 2018).

• Behavioral: mechanical interactions during wound healing

(Vishwakarma et al., 2018).

• Chemical: pheromonal communication, reviewed in Slessor et al.

(2005).

• Behavioral: waggle dance, shaking signal, stop signal (von

Frisch, 1967; Nieh, 1993; Seeley et al., 1998).

Individual

specialization/individual

differences

• Cell type differentiation (Lander, 2011).

• Heterogeneity in adult tissues due to accumulation of small

mutations (De, 2011).

• Dynamic specialization, e.g., tip-stalk cells during cell migration

(Weijer, 2009), tumor-cell specialization in cancer (Nowell, 1976).

• Workers specializing in brood care, honey processing, or foraging

(Beshers et al., 2001; Johnson, 2010).

• Individual differences in temperature response (Jones et al.,

2004) or to resources of different quality (Seeley, 1994).

Phenotypic plasticity • Adaptation of metastatic tumor cells to their environment by

changing their phenotype from epithelial to mesenchymal cells

(Mittal, 2018).

• Adapting to a rise in temperature in the nest, worker bees start

fanning and foragers switch collect water (Robinson et al., 1984;

Jones et al., 2004; Ostwald et al., 2016).

• Following the loss of the queen, worker bees switch to build

exclusively specialized cells for direct reproduction (Smith,

2018).

Distributed processing

(interactions drive function)

• Emergence of leading cells during wound-healing based on

mechanical interactions (Vishwakarma et al., 2018).

• Interaction-mediated change to forager (Huang and Robinson,

1992).

Individual processing

(intrinsic properties drive

function)

• Cell type determined by differential gene expression (Wu, 2014). • Age and development-driven task changes.

• Individuals have different response thresholds (e.g., fanning

threshold; Jones et al., 2004).

Within-group

competition/policing

• Cell-competition acts as a surveillance mechanism to measure

individual fitness. Aged and less-fit cells are removed to

maintain a healthy tissue state (Di Gregorio et al., 2016).

• Working policing: workers eat eggs of other workers, ensuring

that only the queen egg’s are raised (Ratnieks and Visscher,

1989).

Activation • Chemoattractant cues activate cellular polarization during

migration (Weijer, 2009).

• Tremble dance recruits more bees to receive nectar (Seeley,

1992; Seeley et al., 1996).

• Shaking signals convey the meaning “prepare for greater

activity” (Nieh, 1998; Seeley et al., 1998; Koenig et al., 2020)

Inhibition • Leader cells inhibit formation of other leader cells (Vishwakarma

et al., 2018).

• Contact inhibition of motion enhances coordinated movement

and the guidance of the group by cells at the leading edge

(Mayor and Carmona-Fontaine, 2010).

• Queen advertises her fertility; workers do not develop ovaries

when a viable queen is present (Keller and Nonacs, 1993; Duncan

et al., 2016).

• Stop signals used during nest-site selection (and

dance-imbalance) (Nieh, 1993; Seeley et al., 2012).

Feedback • Directional cell migration is controlled by a negative feedback

loop through regulation of the concentration of attractants

during germ cell migration (Lau et al., 2020).

• During wound healing, a double negative feedback loop

controls cell polarization (Das et al., 2015).

• Maintenance of homeostasis in epithelial tissues uses feedback

loops (Georgopoulos et al., 2014).

• Foraging uses multiple feedback processes, including waggle

dance paired with stop signal (Kietzman and Visscher, 2015).

• Nest site selection uses positive feedback to amplify recruitment

to a site (Passino and Seeley, 2006) combined with stop signals

as cross inhibition between sites (Seeley et al., 2012).

Examples and/or implementation details are listed for each mechanism for cellular systems and honey bees. See also Figure 1.

central nervous system (CNS). Thus, even at the lower level of
individual cells, there may be some degree of centralized control
from the CNS. In contrast, there are no centralized control
structures in social insects.

In fission-fusion groups of fish, birds, or ungulates, the
overall group function, such as migration, foraging, or avoiding
predation, should be considered when defining and describing
the group. In these cases there is no division into functional
subgroups, but other structural elements may be used to describe
the group. For example, faster fish tend to be near the front of
the school and thus act as leaders (Jolles et al., 2017); “leader” vs.
“follower” birds differ in their flapping ability and position in the
group (Flack et al., 2018).

For other vertebrate groups that display amulti-level structure
including up to hundreds of individuals (Schreier and Swedell,

2009; Papageorgiou et al., 2019), it can be useful to define the
“group” in terms of specific functions. For example, baboons
troops of up to approximately 50 individuals forage together, and
thus can be considered a group with respect to the function of
locating food resources (Strandburg-Peshkin et al., 2015). Many
of these groups show consistent membership which is often
defined by a dominance hierarchy (Noble, 1939; Schreier and
Swedell, 2009; Maruska and Fernald, 2013).

Clear functional subgroups can also be observed in human
organizations such as businesses, universities, or government
entities. For example, a business may have functional divisions
of marketing, research and development, manufacturing,
finance, and human resources. While traditional organizational
structures are hierarchical, some modern companies instead
use a flat or “holocratic” structure that emphasizes distributed
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FIGURE 2 | Cellular systems and honey bee colonies. (A) A group is made up of multiple individuals, with inclusions defined by genetic, reproductive, spatial, or

functional factors. Within a group, divisions into subgroups can represent individuals that perform specific functions. (B) Scales of organization within an organ. Cells

of a certain type form subgroups, each of which performs specific functions. These tissues combine to form an organ. (C) Nest structure illustrates functional

subgroups in a honey bee colony. This nest has been organized into areas designated for brood care, honey storage, rearing male reproductives, and a dance floor.

Workers organize themselves according to these nest areas, with young bees caring for brood and old bees advertising foraging sites on the dance floor.

(D,E) Response to perturbation case study, where the group must restore homeostasis. (D) After being cut, epithelial cells quickly respond with directed motion to

heal the wound. Leader cells are larger and more polarized than the other cells, and they guide the cells to move in the direction of the wound. (E) A honey bee colony

responds to heat stress. Before the heat stress (left), few bees have evacuated the nest, but soon after, hundreds of bees will exit the nest (center). Some workers

continue fanning at the entrance (right, top), whereas others simply evacuate (right, bottom).

decision-making but retains functional distinctions among
working groups (Robertson, 2015). While decision making
in groups of honey bees and cellular societies follow entirely
different processes, the structure seems to be similar to a
holocracy, with functional distinctions yet distributed decision-
making. In animal groups with hierarchical dominance
structures, decision-making structures may not follow the
same hierarchies, as demonstrated in the case of baboon
movement decisions which can be initiated by any group
member (Strandburg-Peshkin et al., 2015).

Overall, key differences in group structure in all of

these different systems can be summarized by the degree
of differentiation among group members (or lack thereof),
whether individuals take on a consistent role or change
over time, and the connectivity or communication structure
among individuals in the group with respect to achieving a
certain function.

3. IMPLEMENTATION AND ALGORITHM:
COLLECTIVE MECHANISMS

Collective mechanisms act as building blocks that link individual
behavior to group function. These building blocks are used
and adapted by a given system in order to solve a variety of
problems. Some collective mechanisms used in both cellular
systems and honey bees include communication, individual
specialization, distributed processing (or, conversely, “individual
processing”), within-group competition, activation, inhibition,
and feedback (Figure 1, Table 1). Note that this is not an
exhaustive list; other mechanisms may be defined and used
to describe collective behavior of other systems, or to form a
comparison between systems. For example, Sumpter (2006) uses
the terminology of “collective principles” to refer to the same
concept, describing mechanisms of integrity/variability, positive
feedback, negative feedback, response thresholds, leadership,
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inhibition, redundancy, synchronization, and selfishness; further
mechanisms could include group-level selective attention,
short-term memory/hysteresis, and stigmergy (Couzin, 2009).
We note that to compare systems, it is important that
collective mechanisms describe a process that links individual
to group behavior in a way that does not depend on precise
implementation details. While both cellular systems and honey
bees systems can implement all of the collective mechanisms in
Table 1, differences in the nature of the individuals means that
the effectiveness of a particular collective mechanism may not be
the same in each system. We use a case study to compare and
contrast collective mechanisms that contribute to how a group
responds to a particular perturbation.

3.1. Epithelial Cell Wound Healing
As the outermost tissue layer, epithelial tissue needs to
be able to respond quickly to changes in the surrounding
environment. At homeostasis, cells of epithelial tissues are
typically jammed and any activity within the epithelia stem
mainly from cell maintenance, i.e., the continuous replenishment
of aged/damaged cells with healthy individuals (Macara et al.,
2014). When homeostasis is perturbed by a wound trauma, cells
must move quickly to close the wound in order to protect the
underlying organ. Studies have demonstrated that wound healing
relies on coordination between cells in order tomigrate efficiently
toward the exposed area (Poujade et al., 2007; Park et al.,
2017). The collective sensing and response during wound healing
includes a complex interplay of chemical and physical signals
between individuals and with the extra-cellular environment
(Ladoux and Mège, 2017). Cells at the wound edge sense a
chemical change in their environment due the mitogens released
by wounded cells and due to the cell-free region created by the
wound (Ganapathy et al., 2012). In addition, some edge cells
specialize into “leader cells,” which have a strong polarization in
the direction of the wound (Omelchenko et al., 2003). Leader
cells mediate the coordinated motion of the group by using
cell-cell contacts to transfer mechanical forces to follower cells
(Figure 2D; Vishwakarma et al., 2018).

3.2. Honey Bee Heat Stress
Honey bee colonies respond to environmental conditions to
maintain nest homeostasis. The brood nest, for example,
is carefully regulated between 33 and 35◦C; temperatures
outside this range are potentially lethal for the developing
brood (Lindauer, 1954; Becher et al., 2009). When ambient
temperatures rise, honey bee colonies have a series of graded
responses to thermoregulate. Workers begin by fanning their
wings to increase air circulation within the nest, and foragers
switch from collecting nectar to water. These water deliveries
are passed to younger receiver bees, who spread the water
throughout the nest for evaporative cooling. If the nest
temperature continues to rise, hundreds to thousands of workers
will evacuate the nest, thereby reducing the number of heat-
generating individuals in the nest, and providing additional space
for air to circulate (Figure 2E; Lindauer, 1954; Robinson et al.,
1984; Kühnholz and Seeley, 1997; Cook and Breed, 2013; Ostwald
et al., 2016). As long as honey bees have access to water, workers

can maintain broodnest homeostasis, even when faced with
ambient temperatures as high as 60◦C (Lindauer, 1954). When
colonies are subjected to repeated days of heat stress, workers
will even begin to store water in their stomachs, and in the
honeycomb, to use overnight when foragers cannot fly to collect
water (Ostwald et al., 2016).

3.3. Comparing Systems
In both cases, the group must respond to a perturbation—
a wound or a temperature change—in order to maintain and
restore overall function. How do these different systems solve
a similar problem? Both rely on specialists taking on specific
roles as part of the group-level response: Leader cells specialize
by coordinating the movement to close the wound, and water
collector bees specialize on water to initiate evaporative cooling
in the nest. The systems, however, differ in their use of individual
processing (behavior determined by intrinsic properties) vs.
distributed processing (behavior determined by interactions
with other individuals, see Table 1). Distributed processing is
dominant in the case of cellular wound healing; interactions
mediate the switch to leader cells (Vishwakarma et al., 2018). A
bee colony’s response to heat stress is a mix of individual and
distributed processing. A distributed algorithm determines the
number of workers collecting vs. spreading water throughout
the nest, while individual processing describes how individual
workers have different heat thresholds to initiate fanning. In
the case of wound healing, we do not know if such individual
processing plays a role, e.g., if differences between individual
cells at the wound site could be a factor in determining the
selection of leader cells. While honey bees adapt their behavior
in the case of repeated days of heat stress, there is no evidence
that epithelial cells adapt their behavior to facilitate healing after
multiple wounds.

How does this compare to the perturbation response of
vertebrate animal groups? One example is the response of a
school of fish to a predator. Fish release a chemical called
“Schreckstoff” that conveys danger to others. When exposed to
this chemical, group members will come closer to one another
and make the overall size of the group smaller (Sosna et al.,
2019). In this tightened configuration, the group is able to
spread information more quickly and respond to future threats
(Rosenthal et al., 2015). Interestingly, experiments demonstrate
that exposure to Schreckstoff does not change individual
response thresholds; rather, structural reorganization is themajor
determinant of the observed changes in the group response
(Sosna et al., 2019), making this an example of distributed
processing. In contrast, honey bee defense provides a clear
example where individual response thresholds do change with
exposure: after one bee stings, the tendency for subsequent
individuals to sting increases (Millor et al., 1999).

A natural disaster is a example of a perturbation that a
human organization must respond to. During a fire, the goal of
the fire department is to create a quick and targeted response
in order to facilitate a return to homeostasis. Since natural
disasters are occasional events but require coordination between
people for an effective response, fire departments or other
humanitarian organizations rely on a mix of volunteer and
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paid employees to meet demand. Similar to honey bees and
the cellular system described above, optimizing the problem
of task allocation requires components of both individual
and distributed processing. Task allocation that considers
both organizational needs and individual preferences (Falasca
and Zobel, 2012) can be considered a form of individual
processing, since allocation is linked to intrinsic preferences,
not an emergent outcome of interactions. The alternative, fully
distributed processing, would represent an ad hoc approach
where individuals determine their role based on their interactions
with other individuals, and modify according to the need of
the collective.

4. ADAPTATION: CONNECTING GROUP
BEHAVIOR TO ENVIRONMENT

By comparing collective behavior across different systems we
can begin to answer question four, which asks how functional
mechanisms and behavioral algorithms are adapted to their
environment. The characteristics of the environment can specify
the types of problems organisms typically encounter, as well
as the effectiveness of different solutions. Given a similar
problem, the use of different collective mechanisms may reflect
adaptations to specific environmental characteristics, different
biological constraints, or a combination of both (Gordon, 2016).
Within our analysis framework, biological constraints determine
the implementation details of different collective mechanisms,
as well as the suite of available collective mechanisms. For
honey bees and epithelial cells, the constraints on movement,
sensory input/output, and information processing abilities are
very different, and thus the implementation details and possible
application extent of certain collective mechanisms are different.
For example, individual epithelial cells have less individual
processing ability than individual bees (and also less than other
cell types such as neurons). By using a distributed algorithm,
the group has more processing ability than individuals (Levin,
2019). While this is true in both systems, the lesser processing
abilities of cells may be one reason that they rely more on a
distributed algorithm compared to honey bees in our example of
the perturbation response. Nonetheless, as the cases of heat stress
and wound healing illustrate, the environmental characteristics
of both honey bees and epithelial cells have similarities: both
systems need to able to respond rapidly to changes in the
surrounding environment.

Other social insects interact with different environmental
conditions. For example, desert harvester ants forage for
seeds that are randomly scattered, but the overall supply is
relatively constant over time. Gordon (2016) discusses how
this difference can affect behavioral algorithms, noting that
because of the scattered distribution of resources in their
environment, harvester ants do not exchange spatial information
when they recruit additional ants to forage. Conversely, for
honey bees, the patchy and ephemeral nature of nectar resources
makes it essential to share spatial information among foragers.
Nonetheless, because they are both social insects, we may still
expect similarities between harvester ants and honey bees in

their implementation and use of collective mechanisms, such
as the ability of individuals to change task specialization over
time. A hierarchical approach provides a natural way to compare
collective systems with similar implementation details or
available mechanisms but different environmental characteristics
(e.g., harvester ants and honey bees), or with different
implementations but similar environmental characteristics (e.g.,
honey bees and epithelial cells).

Human organizations also differ in the types of problems they
need to solve. Many human organizations, including businesses,
exist in a relatively stable environment; indeed, a stable political
and economic environment may be considered a requirement
for the advanced specialization and optimization that exemplify
modern economies (Acemoglu and Robinson, 2012). Analogous
to the environmental differences faced by honey bees and
harvester ants, humanitarian logistics for disaster response differs
from business logistics because of the unpredictability of the
response, and thus needs to be organized differently (Kovacs and
Spens, 2007). To this end, human organizations can learn from
biological systems in employingmechanisms that are appropriate
to address a certain problem (Levin and Lo, 2015).

A key difference between social insects and vertebrate groups
or human organizations is the consideration of individual vs.
group interests. For honey bees, since reproduction is at the
level of the colony, individual, and group interests align. Thus,
while a distributed algorithm can contribute to a flexible yet
robust group response for honey bees, it could lead to discontent
and ineffective group function among human volunteers who
each have distinct individual preferences. A distributed process
describes the overall decision-making structure of social insect
societies, and human organizations with a flat or holocratic
organizational structure have similarities in terms of distributed
decision processes. However, there are again key distinctions due
to individual vs. group interests.While individuals in social insect
societies work for the overall function of the group in a structure
without dominance hierarchies, a common complaint of human
organizations with distributed decision-making structures is that
even though it may not be explicitly acknowledged, individual
interests cause hierarchy to persist (Freeman, 2013; Bernstein
et al., 2016).

5. APPLICATIONS AND FUTURE
RESEARCH DIRECTIONS

A comparative approach allows one to ask if a particular
mechanism is used in another system, as well as how it
is used (Adams et al., 2012). An example of this is the
“individual processing” mechanism of having a distribution
of individual response thresholds among group members. For
honey bees, this contributes to a colony’s ability to maintain
stable temperatures inside the nest, as well as enabling a colony’s
foragers to produce a graded response to resources of different
quality. Using a similar mechanism, recent work has used a
distribution of individual response thresholds to model how a
population of neurons can represent the probability distribution
of future rewards by implementing a form of distributional
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reinforcement learning (Dabney et al., 2020). Collective decision-
making processes in animal groups have many similarities to
neural systems, including for example the speed-accuracy trade-
off during decision-making (Couzin, 2009). A further example
of comparing mechanisms across systems is the observed use of
cross-inhibition in cellular systems, which led to the hypothesis
that similar inhibitory signals should be present between groups
during house hunting in honey bees (Seeley et al., 2012).

There are multiple areas for interesting future research,
including for example how the use of different behavioral
algorithms reflect both individual constraints and environmental
conditions. Parallel or convergent evolution refers to when
similar phenotypes evolve in similar environments (Langerhans
and DeWitt, 2004; Losos, 2011). Examining parallel evolution
of collective behavior, e.g., in cichlid fish (Turner, 2007),
can reveal the role of the environment in shaping the
success of certain collective mechanisms. One could also ask
what individual capabilities, collective mechanisms, and/or
environmental characteristics are associated with successful
adaptations of animal groups. For example, Barrett et al. (2019)
describe instances of human-induced environmental change
where the use of social learning in a group led to either an
adaptive (e.g., Teitelbaum et al., 2016) or maladaptive (e.g.,
Sigaud et al., 2017) group response.

A comparative approach could furthermore be applied to
tumorigenesis, and how a group deals with oncogenic cells.
For a tumor to metastasize, tumor cells must pass through the
constraints and ecology of the tissue and circulatory system,
while avoiding detection and death. To do so, tumor cells change
their phenotype by undergoing an epithelial to mesenchymal
transition, (EMT), break off from the group, and migrate one
cell at a time (Mittal, 2018). In honey bees, worker ovary
activation provides an analogy for how an individual can change
its phenotype in an attempt to reproduce. Workers typically do
not lay reproductive eggs as long as a reproductive queen is
present (but see Goudie and Oldroyd, 2018), and workers with
fully activated ovaries risk aggression from nest mates (Visscher
and Dukas, 1995; Smith et al., 2009). Still, partial ovary activation

is widespread in colonies (Smith et al., 2013), even though partial
activation incurs costs to the colony (Mattila et al., 2012). Is
partial ovary activation permitted because workers lack the ability
to detect low-level ovarian development (Q2), because they lack
an effective mechanism to form a collective response (Q3), or
because there is a functional advantage to having partially-
developed workers (Q4)? These questions parallel current cancer
research, which asks why some oncogenic cells turn into super-
competitors that manifest into tumors, while other mutants are
effectively contained and stopped by the epithelial defense against
cancer (Vishwakarma and Piddini, 2020). We hope this article
inspires further comparisons of collective systems that build on
the framework and examples described here.
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