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Joint Species Distribution Models (JSDM) provide a general multivariate framework

to study the joint abundances of all species from a community. JSDM account for

both structuring factors (environmental characteristics or gradients, such as habitat

type or nutrient availability) and potential interactions between the species (competition,

mutualism, parasitism, etc.), which is instrumental in disentangling meaningful ecological

interactions from mere statistical associations. Modeling the dependency between the

species is challenging because of the count-valued nature of abundance data and

most JSDM rely on Gaussian latent layer to encode the dependencies between species

in a covariance matrix. The multivariate Poisson-lognormal (PLN) model is one such

model, which can be viewed as a multivariate mixed Poisson regression model. Inferring

such models raises both statistical and computational issues, many of which were

solved in recent contributions using variational techniques and convex optimization

tools. The PLN model turns out to be a versatile framework, within which a variety

of analyses can be performed, including multivariate sample comparison, clustering of

sites or samples, dimension reduction (ordination) for visualization purposes, or inferring

interaction networks. This paper presents the general PLN framework and illustrates

its use on a series a typical experimental datasets. All the models and methods are

implemented in the R package PLNmodels, available from cran.r-project.org.

Keywords: abundance data, joint species distribution model, latent variable model, multivariate analysis,

variational inference, R package

1. INTRODUCTION

1.1. Joint Species Distribution Models
Joint Species Distribution Models (JSDM) have received a lot of attention in the last decade as
they provide a general multivariate framework to study the joint abundances of all species from
a community, as opposed to species distribution models (SDM: Elith and Leathwick, 2009) where
species are considered as disconnected entities. At their best, JSDM account for both structuring
factors (e.g., environmental gradients, nutrients availability, etc.) and potential interactions between
the species (competition, mutualism, parasitism, etc.). Broadly speaking, such models include both
abiotic and biotic effects to describe the fluctuations of species abundances across space and time.
Considering both effects at once is instrumental in disentanglingmeaningful ecological interactions
from mere statistical associations induced by environmental drivers and/or habitat preferences.
JSDMs have been proposed to deal with presence/absence data (see for example Ovaskainen
et al., 2010; Harris, 2015), for abundance data (Warton et al., 2015; Popovic et al., 2019), or
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both (Warton et al., 2015; Popovic et al., 2018). We focus here on
abundance data, andmore specifically on data which consists of a
count associated with each species in each site, date or condition.

Modeling the dependency between the species is challenging
because of the count-valued nature of abundance data. In
contrast to continuous multivariate distributions, there exists
no generic multivariate distribution for count data (Inouye
et al., 2017). As a consequence, many JSDM rely on the same
hierarchical backbone: dependencies are first modeled in a
latent layer through the covariance matrix of a multivariate,
most often Gaussian, vector and counts are then sampled
independently conditionally to this latent (Gaussian) vector of
expected (transformed-)abundances (see Warton et al., 2015, for
a general presentation). Dependencies between counts are fully
captured by the covariance matrix of the latent vector, whereas
environmental effects are accounted for in the vector mean value.
This distinction is convenient from a modeling point of view, as
it typically separates a regression part (taking the point of view of
multivariate generalized linear model) that accounts for abiotic
effects, and a random part that accounts for dependency between
species (biotic effects).

This paper introduces the Poisson-lognormal (PLN) model—
first proposed by Aitchison and Ho (1989)—as a JSDM. Broadly
speaking, the PLN model can be viewed as a multivariate mixed
generalized linear model with Poisson distribution. Because of its
simple form, the PLN model turns out to be versatile in the sense
that it provides a convenient framework to carry out a series of
typical multivariate statistical analyses. This includesmultivariate
regression in its simplest form, but also multivariate sample
comparison via linear discriminant analysis (LDA), model-
based clustering using mixture models, dimension reduction
via principal component analysis (PCA: Chiquet et al., 2018),
and network inference (Chiquet et al., 2019). All these analyses
are implemented in the R package PLNmodels, available from
cran.r-project.org. Because it involves a latent layer, the inference
of this model raises a series of computational issues, which can be
circumvented via a variational approximation (Blei et al., 2017).

The rest of this section is devoted to a review of existing
methods, the precise definition of the PLN model and how it
differs from or is similar to other methods. Section 2 provides a
series of examples illustrating how the PLNmodel can be adapted
to tackle some specific questions (sample comparison, clustering,
dimension reduction and visualization, or network inference)
using various extensions summarized in Figure 1. Section 3
gives a brief introduction to the variational inference approach
implemented in the PLNmodels package and how measures of
uncertainty for the parameters can be derived from it. The last
section provides additional information about the PLNmodels
package and describes several research leadsmotivated by current
needs in ecological modeling.

1.2. State of the Art
Multivariate count data are increasingly common and a wealth
of new methods have been developed in the last decade to
analyze them. As stated before, most of them (including the PLN
model) fall in the family of latent variable models (LVMs), and
more specifically of multivariate generalized linear mixed models

(mGLMMs), also called generalized linear latent variable models
(GLLVMs) when the mixed effect is degenerate and has small
rank. In those models, the distribution of observed responses
usually belong to the exponential family (Bernoulli, Binomial,
Poisson, Negative-Binomial, with or without Zero-Inflation, etc.)
or the exponential dispersion model (Tweedie, etc.). In both
cases, model parameters are related to linear combinations
of latent variables (and possibly covariates) through a simple
link function.

The latent variables can be constrained in various ways to
achieve different goals. For example, Warton et al. (2015) uses
GLLVM (i.e., GLMM with low-dimensional latent variables)
and a Bernoulli observation layer to perform ordination (also
called dimension reduction) on presence/absence data. mGLMM
naturally accomodate covariates but can be complex to adjust
to data. Warton et al. (2015) reviews several estimation
technique ranging from fast and potentially inaccurate (Laplace
approximation) to accurate but very slow (MCMC used in Hui,
2016; Tikhonov et al., 2020) or even untractable (EM). mGLMM
can also be combined with mixture models to perform sample
clustering (Hui et al., 2015). Unfortunately, model fitting is once
again difficult due to the complexity of the likelihood in those
models and requires specific techniques, as detailed in Pledger
and Arnold (2014). Variational approximation has proved a very
successful inference technique, both fast and accurate, for such
complex likelihood models and is now the default for GLLVM
(Hui et al., 2017; Niku et al., 2019b).

Hierarchical Modeling of Species Communities (HMSC),
introduced in Ovaskainen et al. (2017), is another instance
of GLLVM. The main difference with GLLVM as presented
in Hui et al. (2017) is that the latent variables in HMSC
are themselves carefully modeled according to a hierarchical
framework with clearly identified terms and effects (species traits,
species phylogeny, etc.) to ease interpretation of the parameters
and decompose variance across terms. This is again a model
with complex likelihood and parameters are estimated using
MCMC techniques (Tikhonov et al., 2020), thus limiting its
use to medium-sized problems (a few dozen species in the
published examples).

The PLN model introduced here is yet another instance of
the rich family of GLLVM which takes the middle road. Our
goal is to develop a generic and versatile umbrella framework
under which one can perform various tasks: ordination (Chiquet
et al., 2018), classification, group prediction, network inference
(Chiquet et al., 2019), etc. Unlike Hui et al. (2017), and in line
with Ovaskainen et al. (2017), we allow the user to carefully
constrain the model parameters: each set of constraints leading
to a different task. In contrast to HMSC, we do not specify a
grand overarching model but rather several easier to estimate
variations around a central model. In addition, we want to
analyze large datasets, similarly to Hui et al. (2017), and thus rely
on the efficient inferencemachinery of variational approximation
rather the slower MCMC. Finally, and unlike Ovaskainen et al.
(2017) and Hui et al. (2017), we only deal with count data
(not presence / absence data) and leverage our use of the
(Zero-Inflated) Poisson distribution to derive fast and scalable
estimation procedures.
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FIGURE 1 | Graphical abstract of the article: the standard PLN model, its extension and the research questions addressed by each method.

1.3. The Poisson-Lognormal Model
The multivariate Poisson-lognormal model (Aitchison and Ho,
1989) is designed for the analysis of an abundance table, that is
typically a n × p count matrix Y , where Yij is the number of

individuals from species j observed in site i, n being the number
of sites and p the number of species. Note that site may actually
refer to a sample or an experiment, and a species to anOperational
Taxonomic Unit (OTU) or an Amplicon Sequence Variant
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(ASV), both of which are proxies for species frequently used in
metabarcoding surveys. Similarly, the number of individualsmay
correspond to a number of reads in metabarcoding experiments.

The PLN models relates the p-dimensional abundance vector
Yi collected in site i with a p-dimensional Gaussien latent vector
Zi as follows:

latent layer: Zi ∼ N (µi,6)

observation layer: Yij | Zij ∼ P(exp(oij + Zij))
(1)

where the Zi are assumed to be independent (across sites) and the
abundances Yij are all conditionally independent given the latent
variables Zij. The parameter µi = [µij]1≤j≤p ∈ R

p corresponds
to the fixed effects, and is related to the expected log-abundances,
whereas the latent covariance matrix 6 = [σjk]1≤j,k≤p describes
the underlying structure of dependence between the p species.
In this simple form, the PLN model therefore assumes that the
dependency structure among species is the same across all sites.
All extensions presented in section 2 will be about alternative
modeling of the latent layer in Equation (1), corresponding to
different assumptions exposed in Figure 1.

When environmental covariates are available, the fixed effect
µij in the latent layer may be decomposed as µij = x

⊺

i θj where

xi ∈ R
d is a vector of covariates for sample i (e.g., environmental

conditions, location, etc.) and θj ∈ R
d is a vector of regression

coefficients associated to these d covariates for species j. The
vectors of regression coefficients θj can then be merged into the
d × p matrix 2. The fixed quantity oij is the offset for species
j in sample i. In the PLN framework, offsets are used to take
into account expected differences in observed counts due to
imbalanced sampling efforts, such as known heterogeneities in
terms, sequencing depths in metabarcoding surveys, collection
protocols, species detectability, etc. For examples, if we spend
twice as much time looking for species j in site i′ than in site i and
thus expect its count to be twice higher (all other things being
equal), we set oi′j = oij + log(2).

Likewise in generalized linear models, the parameters should
be interpreted according to the properties of the multivariate
Poisson-lognormal distribution. Some remarks can be made
about the first and second order moments, which are given by
Aitchison and Ho (1989):

mean: E(Yij) = exp
(
oij + µij + σjj/2

)
> 0,

variance: V(Yij) = E(Yij)+ E(Yij)
2 (eσjj − 1) > E(Yij),

covariance: Cov(Yij,Yik) = E(Yij)E(Yik)
(
eσjk − 1

)
.

1. Expected count: Due to the logarithmic link function, the
expected abundance E(Yij) of species j in site i is not simply
exp(oij + µij) as the variance parameter σjj is also involved.

2. Over-dispersion: Because of the presence of a latent (random)
layer, the PLNmodel displays a larger variance than the Poisson
model for which V(Yij) = E(Yij).

3. Faithful correlation: Because eσjk − 1 has the same sign as
σjk, the covariance (resp. correlation) between the respective

abundances Yij and Yik of species j and k has the same sign as the
covariance (resp. correlation) between the corresponding latent
components Zij and Zik.

The last property is especially desirable as it means that the
correlation structure of the latent vector Zi preserves that of the
observed abundances Yi. As a consequence, the independence of
Zij and Zik (σjk = 0) induces an absence of correlation between
Yij and Yik (Cov(Yij,Yik) = 0).

1.4. A First Example
As a first illustration of the use of the PLN model for analyzing
abundance data, we consider the dataset introduced by Fossheim
et al. (2006) (and re-analyzed by Greenacre, 2013; Greenacre and
Primicerio, 2014), which consists in the abundances of p = 30
fish species measured in n = 89 sites of the Barents sea between
April and May 1997. The species under study are sensitive to
environmental drivers (temperature, water depth, . . . ) but are
also related by trophic interactions. A first aim is to study the
relative contribution of each type of interaction (abiotic vs. biotic)
to the structure of the community.

Captures were carried out with the same protocol for all
species and all sites, so no offset term is required here. For each
site i, four covariates were recorded: the latitude, the longitude,
the depth and the temperature, which constitute the vector xi.
We also add an intercept to these covariates to capture differences
in the base abundances of our 30 species. The covariates can be
gathered into a n× (d = 5) matrix X.

Fitting the PLN model (using the algorithm outlined in
section 3 and described in detail in Appendix) results in a
matrix of regression coefficients 2̂ and a latent covariance
matrix 6̂. Figure 2 shows these estimates. The most contrasted
regression coefficient turns out to be the intercept, revealing a
great variability between the mean abundances of the species,
not well-explained by covariates. The latent correlation structure
encoded in 6̂ reveals some subgroups of species: the covariation
between these species are not caused by the effects of the recorded
covariates and may reflect high order structure.

Based on this, a predicted log-abundance can be computed
for each species at each site as µ̂ij = x

⊺

i θ̂j + σ̂jj/2. Interestingly
the correlation structure between these predicted log-abundances
is very contrasted compared to 6̂. This shows that a substantial
part of the covariation between species abundances is driven by
the covariates. To illustrate this point, we fitted a model with
only an intercept term, yielding the null covariance matrix 6̂0,
which captures the covariation between species due to both biotic
and abiotic effects. We observe that 6̂0 displays a structure quite
similar to the correlation matrix of the prediction µ̂, which
shows the predominant contribution of environmental effects to
empirical covariations.

2. ADAPTING THE PLN FRAMEWORK TO
DIFFERENT TASKS

We now introduce a series of extensions of the basic PLN
model defined in Equation (1). As explained above, the PLN
model deals with both abiotic effects through the mean vector µi
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FIGURE 2 | Fit of the PLN model to the Barents fish data set. 2̂ = intercept (labeled 0) and regression coefficients for the four covariates and the 30 species; cor(6̂),

estimated latent correlation matrix; cor(µ̂), correlation matrix of the predicted log-abundances; cor(6̂0), estimated correlation matrix for the null model, which includes

only an intercept term.

and biotic effects by describing species interactions through the
variance matrix 6. As shown in Figure 1, the first two extensions
(LDA and clustering) deal with the former and typically aim
at analyzing abiotic (or environmental) effects. The last two
extensions (PCA and network inference) are about the latter
and provide insights about the dependency structure between
the species.

Each method will be accompanied with a specific example.
LDA will be used to compare the bacterial communities collected
in different body sites of dairy cattle. Model-based clustering will
be applied to the microbiota of leaves from several oaks and will
prove to be able to recover, in a blind way, the tree of origin
of each leaf. Dimension reduction using PCA will be applied to
the same dataset for visualization purposes and to exhibit which
species contribute most to the community structure. The last
example is an attempt to reconstruct the interaction network of
fish species from the Barents Sea.

2.1. Sample Comparison With Linear
Discriminant Analysis
A first variant of the PLN model is the analog of the Linear
Discriminant Analysis (LDA) to Poisson-lognormal models.
It applies to labeled data, i.e., when sites belong to known
classes (e.g., anatomical sites for host-associated microbiota, or
geographical areas in ecogeography) and the objective is two-
fold: identify class-based differences in species counts and predict
the class of an unlabeled site based on its species counts. As
valuable byproducts, classification accuracy assesses whether the
classes are really different and species with a high contribution to
the discriminant axes can serve as biomarkers.

2.1.1. The PLN-LDA Model
Informally, PLN-LDA assumes that (i) the sites belong to distinct
and known classes, (ii) all sites in the same class have the same
mean species abundances, and (iii) those mean abundances may
differ between classes but (iv) species interact in the same way
in all classes. Formally, PLN-LDA for multivariate count data is
a PLN model with an additional class covariate and a different
decomposition of the mean vectors µi. Assume the classes are

labeled by k ∈ {1, . . . ,K} and denote by ki ∈ {1, . . . ,K} the
known class of site i. Finally, denote by µk the mean vector in
class k. The PLN-LDA model is the same as (1), where

latent layer :Zi ∼ N (µk,6) if site i belongs to class k: ki = k.
(2)

Compared to the standard PLN model (1), we need to estimate
the additional class mean vectors {µk, k = 1, . . . ,K}. In presence
of covariates, Model (2) can be extended to Zi ∼ N (x

⊺

i 2 +
µk,6).

Discriminant Axes and Prediction
Once estimated, the class means {µ1, . . . ,µK} and reconstructed
latent means M can be used to find axes of maximal
discrimination of the classes in the latent layer, likewise in
standard LDA. Scores along those axes can be used for
visualization purposes and contributions of species to each axis
can be used to identify systematic differences in abundances
between the classes and potential biomarkers.

The classification of a new site from its species counts Ynew is
based on Bayes’ rule. We first estimate the variational likelihood
fk(Ynew) = J (Ynew; µ̂k, 6̂,Mnew, Snew) of observing counts Ynew

if the new site was in class k. Note that µ̂k and 6̂ are extracted
from the PLN-LDA fitted on the training sites whereas the
variational parameters Mnew and Snew must be optimized with
respect to Ynew. This corresponds to the VE step mentioned in
section 3. We then use an estimator π̂k of the proportion of class
k (typically the proportion of sites of class k among the learning
sites). The posterior probability for the new site to belong to class
k is then estimated by

τnew,k = π̂kfk(Ynew)

/(
K∑

ℓ=1

π̂ℓfℓ(Ynew)

)
. (3)

2.1.2. Cow Holobionts
To illustrate PLN-LDA, we consider the dataset introduced in
Mariadassou et al. (2020) which consists of n = 256 bacterial
communities sampled on three body sites (nose, mouth, and
vagina) of 45 primiparous Prim’Holstein dairy cattle. The cattle
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comes from two divergent lineages, each sampled twice (1
month and 3 months after first delivery). Communities were
sequenced using the hypervariable V3-V4 region of 16S rRNA as
marker-gene. Sequences were cleaned and analyzed with DADA2
(Callahan et al., 2016) to create p = 1, 077 Amplicon Sequence
Variants (ASVs). The aim is to assess whether the communities
living in different body sites are different and how they differ.

We analyzed this data set by running PLN-LDA with time
and lineage as covariates and body site as class. Offsets were
computed as the log-total sums of counts over the 1,077 ASVs,
but we kept only 53 ubiquitous ASVs (with prevalence higher
than 20% in at least one class) for the discriminant analysis.
The 256 communities were split in two halves: a training test
used to estimate the parameters and a test set used to assess the
classification accuracy.

The results of our analysis with PLN-LDA are displayed
in Figure 3A shows that the first discriminant axis (LDA 1)
separates vagina from nose and mouth whereas the LDA 2
separates nose from mouth. The inset correlation map shows
the contribution of ASVs to LDAs: some ASVs are shared
between nose and mouth or nose and vagina but almost none
is shared between mouth and vagina. This is also obvious in the
count matrix featured in Figure 3B where ASVs are reordered
according to their position in the correlation map. The block
structure indicates a strong association between some groups
of species and body sites. Figures 3C,D show the same views
for test samples. The inset confusion table of Figure 3C shows
a prediction accuracy of 95% (7 misclassified samples out of
128). The count matrices allow us to focus on the misclassified
samples. Three out of the 5 misclassified vagina samples have
very small counts for all species. For those samples, the posterior
probability of the second best class is around 0.25, indicating
a quite high uncertainty. The misclassified nose (resp. mouth)
sample is depleted in ubiquitous species typically found in other
nose (resp. mouth) samples.

2.2. Unsupervised Classification With
Model-Based Clustering
This second variant is the analog of Gaussian mixture models for
Poisson-lognormal models. The objective is to perform model-
based clustering on multivariate count tables, in order to find
groups of homogeneous sites or samples in the data set.

2.2.1. The PLN-Mixture Model
Informally, PLN-mixtures assumes that (i) the sites belong to K
unknown groups, with different frequencies, (ii) all sites in the
same group are homogeneous: they have the same mean species
abundances and species interact in the same way in all sites,
(iii) those mean abundances and interactions may differ between
groups. Formally, PLN-mixture for multivariate count data is a
PLN model with two latent layers: the first layer describes the
(unknown) group membership of each site and the second layer
embeds the distribution of the hidden site’s multivariate Gaussian
vector conditional on its group membership. Note K the number
of groups and Ci ∈ {1, . . . ,K} the (unknown) group of site i. The
PLN-mixture model assumes that each site has a probability πk

to belong to group k, so that Ci has a multinomial distribution.

The latent vector Zi associated with a site from group k is then
assumed to have amultivariate Gaussian distribution with group-
specific parameters N (µk,6k). The latent layer of the original
model (1) is therefore split as follows:

latent layer 1: Ci ∼ M(1,π = (π1, . . . ,πK)),

latent layer 2: Zi | Ci = k ∼ N (µk,6k),
(4)

where the µk’s and 6k’s are the respective vector of means and
the covariance matrix of the K components of the mixture, and
π is the vector of the mixture proportions. Compared to the
standard PLN model (1), we need to estimate the parameters
{µk,6k,πk, k = 1, . . . ,K} as well as the group membership – or
cluster – Ci of each sample. Covariates can also be included in
the PLN-mixture model, changing the second layer of Equation
(4) into (Zi | Ci = k) ∼ N (µk + x

⊺

i 2,6k). This extension is
useful to correct for known environmental structuring factors
and recover some residual group structure among the sites.
Note that the model differs from previous works: (Pledger and
Arnold, 2014) considers a discrete group structure but accounts
for neither latent variables nor covariates and Hui et al. (2015)
accounts for covariates and latent variables but not a discrete
group structure, as it is designed for ordination rather than
clustering. PLN-mixture is the only one to account for covariates,
a latent structure and a cluster structure, all at the same time.

The main difference between the PLN-LDA and PLN-mixture
models is that the group (or class) memberships of the sites are
known in the former, whereas they need to be inferred in the
latter. The other difference is that the current implementation
of PLN-mixture allows the covariance matrix 6 to vary across
groups, whereas it is assumed to be constant in PLN-LDA.
An important byproduct of the PLN-mixture model is the
posterior probability, which can be used to actually classify sites
into groups. These probabilities are iteratively computed in the
algorithm using Equation (3).

Parametrization of the Covariance in PLN-Mixture Models
When using parametric mixture models like Gaussian mixture
models, it is not recommended to consider general covariance
matrices 6k with no special restriction, especially when dealing
with a large number of species. Indeed, the total number of
parameters to estimate in the model can become prohibitive: in
the general case, a PLN-mixture model with K components like
in (4) has K × (p + p(p + 1)/2) model parameters, plus the
K×2(n×p) variational parameters. To reduce the computational
burden and avoid over-fitting two different, more constrained
parameterizations of the covariance matrices of each component
are currently implemented in the PLNmodels package (on top
of the general form of 6k):

diagonal covariances: 6k = diag(dk) (2Kp parameters),

spherical covariances: 6k = σ 2
k
I (K(p+ 1) parameters).

The diagonal structure assumes that, given the group
membership of a site, all species abundances are independent.
The spherical structure further assumes that all species have the
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FIGURE 3 | Result of the analysis of the cow holobionts data set with PLN-LDA: a few ASV are enough to find accurately discriminate the body sites. (A) Scores of

the training communities on the discriminant axes and contribution of the ASV to each axis (inset graph). (B) Matrix of reordered counts (log-scales). ASV are ordered

according to their angle with the x-axis in the correlation map. (C) Scores of the test communities and confusion matrix of the classification (inset table). Misclassified

communities are shown by triangles. (D) Matrix of counts as in (B). Misclassified communities are located on the left of their respective panels and separated from the

rest by a gray line.

same biological variability. In particular, in both parametrization,
all observed covariations are caused only by the group structure.
For readers familiar with the mclust R package (Fraley and
Raftery, 1999), which implements Gaussian mixture models with
many variants of covariance matrices of each component, the
spherical model corresponds to VII (spherical, unequal volume)
and the diagonal model to VVI (diagonal, varying volume and
shape). Using constrained forms of the covariance matrices
enables PLN-mixture to provide a clustering even when the
number of sites n remains of the same order, or smaller, than the
number of species p.

2.2.2. Oaks Powdery Mildew
To illustrate PLN-mixture, we consider the dataset introduced in
Jakuschkin et al. (2016) which consists of microbial communities
sampled on the surface of n = 116 oak leaves. Communities
were sequenced with both the hypervariable V6 region of 16S
rRNA as marker-gene for bacteria and the ITS1 as marker-gene
for fungi. Sequences were cleaned, clustered at the 97% identity
level to create OTUs and only the most abundant ones were
kept (see Jakuschkin et al., 2016 for details) resulting in a total
of p = 114 OTUs (66 bacterial ones and 48 fungal ones).
One aim of this experiment is to understand the association
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between the abundance of the fungal pathogenic species E.
alphitoides, responsible for the oak powdery mildew, and the
other species. Furthermore, the leaves were collected on three
trees with different resistance levels to the pathogen, which we
call the tree susceptibility. We use this example to assess the
ability of model-based clustering to recover, without feeding this
information to the model, the existence of groups of leaves with
different origins.

We analyzed this data set by running PLN-mixture for a
number of component varying from 1 to 6. We selected the
final number of components with a variant of the Integrated
Classification Likelihood (ICL: Biernacki et al., 2000), tuned for
our own PLN framework. Since the abundances were measured
separately for fungi and bacteria, we define a different offset term
oij for each OTU type to take into account the differences in
sampling effort and marker genes. Offsets are still computed as
the log-total sums of reads, including those of filtered out OTUs,
for each OTU type.

The results of our analysis with PLN-mixture are displayed
in Figure 4A shows the evolution of the approximated log-
likelihood (which is strictly increasing with the number of
components, as expected) and the evolution of the ICL criterion,
which suggest a model with 4 or 5 components. Figure 4B

displays a scatter-plot of the expected latent position Ẑi, after

performing simple PCA since pairs-to-pairs plot would be
unreadable with p = 114 species. We also colored the site
according to the most probable components according to our
PLN-mixture, which shows that we recover the strong latent
structure visible in the individual factor map. On Figure 4C, we
compare the memberships of the series of PLN-mixture model
with the tree susceptibility, by means of various measures for
clustering comparison (ARI, AMI, and NID, see Vinh et al.,
2010). It then becomes obvious that the clustering found by
PLN-mixture is highly related to the susceptibility level of each
tree. Note that, even if apparently quite strong, this pattern in
the data is not directly visible on the table of counts, as shown
by the re-ordered version of the expected counts, shown in
Figure 4D. This somewhat supports the modeling strategy of
PLN-mixture and PLN in general, with a Poisson emission and
a latent Gaussian layer.

2.3. Dimension Reduction With Principal
Component Analysis
We now turn to the extensions of the PLN model (1) that mostly
deal with the modeling of the dependency between species,
which is encoded in the covariance matrix 6. One first way to
depict species dependency is to look for a few underlying (that
is: unknown) factors that may have an impact on the whole
community. The intuition behind this reasoning is that the p
species actually respond to few unobserved drivers that structure
most of their variations. As a consequence, finding such factors
amounts to performing dimension reduction, as it suggests that
the variations of abundances can be summarized in a virtual
space with much fewer dimensions than the number of species.
This is especially desirable for studies involving a large number
of species, when one looks for important patterns of diversity

and tries to find structure in large data sets. This is exactly what
principal component analysis (PCA) is designed for, especially
in its probabilistic PCA variant, which can be easily extended to
count data using the PLN framework.We illustrate the PLN-PCA
model by continuing the analysis started in the previous section
on the oaks powdery mildew data set.

2.3.1. Probabilistic Poisson PCA With PLN Model
In the standard PLN model (1), the latent vector Z belongs to a
latent space of dimension p, with one dimension per species. This
assumes that any species can co-vary arbitrarily with any other,
which allows for fine scale inferences but also becomes costly
very quickly when the number of species p increases. PLN-PCA
assumes instead the existence of q (with q≪p) strong structuring
unknown factors (e.g., environmental filters) that govern the
fluctuations of all species. All observed covariations between
species then reflect those factors. Formally, PLN-PCA assumes
that the latent vectors Zi are fully determined by q structuring
factors as follows:

scores: Wi ∼ N (0q, Iq)

latent layer: Zi = B⊤Wi

where the Wi’s are supposed to be iid. As a consequence, the Zi’s
are iid as well, with distribution

Zi ∼ N (µ,6 = BB⊤). (5)

This is a strict extension of the probabilistic PCA model of
Tipping and Bishop (1999) to the PLN model which we detail
in Chiquet et al. (2018). Similar models can be found in the
literature, like the Poisson variant of the GLLVM family detailed
in Warton et al. (2015) and Niku et al. (2017). One advantage
of PLN-PCA is to be part of the unifying PLN framework. The
p × q matrix B is the analog of the rescaled loadings in PCA:
Bjh measures the impact of the h-th factor on the j-th species.
Likewise, Wi is a score vector: Wih is the value of the h-th factor
for the i-th observation. The dimension q corresponds to the
number of structuring factors, or equivalently to the number of
axes in the PCA and the rank of 6 = BB⊤. The PLN-PCA
model can thus be viewed as a PLN model with the low rank
constraint rank(6) = q on the covariance matrix6. The number
of parameters in the PLN-PCA model is (p + 1)q, down from
p(p + 1)/2 in the standard model. Again, we can simply include
covariates in the PLN-PCA model by changing Equation (5) into
Zi ∼ N (x

⊺

i 2,BB⊤). This is useful to correct for strong known
structuring factors and to investigate weaker factors.

2.3.2. Oaks Powdery Mildew
We continue the analysis of the oaks data set begun for PLN-
mixture. As seen before, there is an obvious structure in the data
explained by the tree susceptibility. Knowing this, one may be
interested in exhibiting a remaining dependence structure that is
not induced by the tree susceptibility.

In Figure 5A, we represent the biplot for the first two principle
components obtained with PLN-PCA, not accounting for the
tree susceptibility, after selecting the best possible rank q thank
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FIGURE 4 | Result of the analysis of the oaks powdery mildew data set with PLN-mixture: the tree susceptibility to the pathogen is easily recovered, and seems to

strongly structure the data set. (A) Model selection criteria used to select the number of component: (ICL chooses 5 clusters). (B) Scatter-plot after dimension

reduction, with samples colored according to the clustering found. (C) Similarity between the inferred clustering and tree susceptibility with standard comparison

measures. A high similarity yields in high AMI and ARI, but low NID. (D) Matrix of counts re-ordered (log-scale): the blocks share much with the level of susceptibility.

The first two blocks the more heterogenous group of susceptible trees.

to the ICL criterion. As expected after our clustering study
with PLN-mixture, the factorial map exhibits a strong structure
where individuals are spread into three groups corresponding
to the level of susceptibility of the trees where the leaves were
sampled. We also projected the 10 species with the highest
contribution to the first two principal components. Interestingly,
the pathogen E. alphitoides point toward the group of susceptible
trees, indicating that the presence of the disease is one of themain
underlying drivers.

In Figure 5B, we show how PLN-PCA can help exploring
second-order structuring effects that are masked by strong first-
order effect, that is here: the tree susceptibility. To do so, we

included the susceptibility as a covariate to remove its effect and
highlight a weaker effect: themap shows that the communities are
structured by the distance of the leaf to the ground. The effect of
covariates on the abundance of E. alphitoideswere also consistent.
When taking the susceptible tree as a reference, the estimated
parameters θij associated with the intermediate and resistant trees
were respectively −3.94 (∼ 50-fold abundance decrease) and
−7.05 (∼ 1, 000-fold abundance decrease).

2.4. Network Inference
As a last extension of the PLN model, we introduce the analog
of graphical-Lasso (Banerjee et al., 2008; Friedman et al., 2008)
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FIGURE 5 | Result of PLN-PCA analysis on oaks powdery mildew data set. (A) Biplot for the first two axes without correction for susceptibility. (B) Biplot for the first

two axes after correction for susceptibility. Color gradient corresponds to distance to ground.
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for the inference of interaction networks. The ultimate goal is to
find pairs of species that are genuinely interacting, for example
through trophic relationships. Those genuine, direct, interactions
are hard to identify from covariation patterns in general as
many different mechanisms can lead to the same patterns. For
example, shared habitat preferences or reliance for growth on a
metabolite produced by a third species, none of which requires
direct interaction, (see e.g., Popovic et al., 2019), can lead to
statistical associations that are indistinguishable from those of
obligate symbiosis, an extreme form of interaction.

Formally, species can be associated but they are in direct
interaction only if they are still dependent after conditioning
on both the covariates (abiotic effects) and all the other species
(biotic effects). In the Gaussian setting, this distinction coincides
with the difference between correlation and partial correlation.
Correlations between pairs of species is captured by the variance
matrix 6, whereas partial correlations are encoded by its inverse:
the precision matrix � = [ωjk]1≤j,k≤p = 6−1. In this setting,
species j and k are associated as soon as σjk 6= 0 but are in direct
interaction if and only if ωjk 6= 0 (Lauritzen, 1996).

2.4.1. Network Inference With the PLN Model
The PLN network model for multivariate count data can be
viewed as a PLN model with a constraint on the coefficients
of �. Because the network is usually supposed to be sparse
(i.e., only a few pairs of species are expected to be in direct
interaction), we assume that the precision matrix � is sparse and
the PLN-network model is the same as (1) with

latent layer :Zi ∼ N (mi,�
−1) with � sparse. (6)

Both the PLN-PCA and the PLN-network models impose
constraints on the covariance matrix 6, but the low-rank
constraint used in PLN-PCA aims at identifying few important
unknown structuring factors, whereas the sparsity constraint
used in PLN-Network aims at identifying direct interactions
between species. Unlike previous extensions, this requires
substantial modification of the objective function to be
optimized, which becomes:

J (Y;2,�−1,M, S)+ λ|�|1,0

where |�|1,0 is the sum of the absolute values of the non-diagonal
terms of � (diagonal terms are not penalized) and λ is a penalty
coefficient. The term λ|�|1,0 forces many coefficients of �̂ to
be null. This is an extension of the graphical-Lasso (Banerjee
et al., 2008; Friedman et al., 2008) to the PLN model (Chiquet
et al., 2019). The parameter λ controls the number of edges in
the network (larger λ yields fewer edges) and can be chosen in
various ways, includingmodel selection (Foygel andDrton, 2010)
and resampling (Liu et al., 2010).

2.4.2. Barents Fish
We illustrate the use of the PLN-network model on the Barents
fish dataset.We focus on the way the inferred network ismodified
when introducing covariates in the model. To this aim, we
fitted the PLN-network model with (a) no covariates, (b) two
environmental covariates (temperature and depth), and (c) all

covariates (i.e., the previous two plus the geographical location)
using a common λ-grid (with 20 values spaced equally in log scale
between λmin = 0.03 to λmax = 15.17) for al models.

Figure 6 (top right panel) shows that the number of edges
increases as the penalty decreases, as expected. It also shows that,
for any penalty, the number of edges decreases as (plain lines)
the richness of the number of edges increases (c > b > a) and
that most edges recovered in the full (c) model are also recovered
in the partial models (a, black dotted curve) and (b, blue dotted
curve). This suggests that naive inference identifies not only
genuine edges but also spurious ones corresponding to co-
variations induced shared habitat preferences (captured here by
temperature, depth, and location). Interestingly, the dotted curve
shows that the proportion of common edges between models b
and c is higher than the one betweenmodels a and c. This suggests
that environmental covariates rather than geographical location
explain a substantial part of the apparent species co-variations.

The rest of Figure 6 displays the networks inferred with the
three models for three different levels of sparsity (controlled by
λ). For an illustrative purpose, the values of λ have been chosen
so that, in average, each species interacts with two others for each
of the three models (a), (b), and (c). This results in networks with
approximately 2p = 60 edges. One conclusion is that a set of core
species seem to have direct interactions, or at least, interactions
that cannot be simply explained by geographical location and
environmental covariates (bottom right panel).

On the contrary, some interactions seem to be actually
indirect. For example, the interactions between the longear
eelpout (Ly.se) and some species from the core group disappear
when accounting for temperature and depth, suggesting that
the covariation of their respective abundances results from
shared environmental preferences. Similarly, the interactions
between the Greenland halibut (Re.hi) and the core group is
kept when correcting for temperature and depths, but disappears
when correcting for location (longitude and latitude) suggesting
that these interactions actually reflect a common response to
fluctuations of biotic or abiotic characteristics across sites. To
confirm this interpretation, we fitted an over-dispersed Poisson
generalized linear model for the abundance of both species (not
shown). We found that both temperature and depth have a
significant effect on the abundance of the longear eelpout and
that the longitude has a significant influence on the abundance of
the Greenland halibut (all corresponding p-values being smaller
than 10−4).

3. PARAMETER ESTIMATION

3.1. Variational Inference Algorithm
A specific inference algorithm obviously needs to be designed for
each version of the PLN model described in section 2. We do
not provide a detailed description for each of them. We rather
introduce the general framework of variational inference, which
is common to all of them, using the simple PLNmodel defined in
Equation (1) and illustrated in section 1.4 as an example.

Because the latent layer Z is not observed, the PLN model
is an incomplete data model in the sense of Dempster et al.
(1977), who introduced the celebrated EM algorithm to perform
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FIGURE 6 | (A) Networks inferred under the null model (no covariates). (B) Networks inferred using temperature and depth as covariates. (C) Networks inferred using

all available covariates. All networks are inferred under increasing penalties (top: λ = 0.84, middle: λ = 0.28, bottom: λ = 0.20). Each node corresponds to a given

species. The position of the nodes are kept fixed. Node color: species family (see Fossheim et al., 2006). Black edges: edges in common with the network inferred

with all covariates and same λ. The missing network (top right panel, all covariates and λ = 0.84) contains only one edge. Top right: number of edges as a function of

λ. Black: no covariate, blue: temperature and depth, red: all covariates, dotted black: common edges with no and all covariates, dotted blue: common edges

between two and all covariates. Vertical dashed lines: the three chosen values of λ.

maximum likelihood for such models. This is an iterative,
two-steps algorithm. Intuitively, the E step retrieves, from the
observed counts Yi, all the information about the latent vectors
Zi’s that is needed, during the M step, to estimate the parameters
2 and6. More formally, the E step requires the evaluation of the
conditional distribution of the latent vectors given the observed
counts, that is: p(Z | Y). Unfortunately, this distribution is
intractable for the PLN model, so we resort to a variational
approximation (see e.g., Jaakkola, 2001) of this conditional
distribution. This results in what is called a variational EM
(VEM) algorithm, which alternates the following two steps
until convergence:

1. VE step:Given the current estimates 2̂ and 6̂ of the parameters,
for each site i, find the normal distribution N (mi, Si) that best
fits the (unknown) conditional distribution p(Zi | Yi) in terms
of Küllback-Leibler (KL) divergence;

2. M step: Given the approximate conditional distribution of the
latent Zi’s, update the parameter estimates 2̂ and 6̂.

The approximation precisely lies in the fact that the true
conditional distribution p(Zi | Yi) is not Gaussian. Hence, the
approximate distribution q(Z) is a product over the sites of
Gaussian distributions N (Zi;mi, Si). The approximate mean mi

and the (diagonal) covariance matrix Si are called the variational

Frontiers in Ecology and Evolution | www.frontiersin.org 12 March 2021 | Volume 9 | Article 588292

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Chiquet et al. Poisson Lognormal Model for Ecology

parameters. They can be merged into two n×pmatrices, denoted
M and S, respectively. Using such an approximation amounts
to maximizing a lower bound of the log-likelihood of the data
log p(Y;2,6) (Blei et al., 2017):

J (Y;2,6,M, S) = log p(Y;2,6)− KL[
q(Z;M, S)||p(Z | Y;2,6)

]
. (7)

The objective function of the VEM therefore depends on the
data Y and has to be optimized with respect to both the model
parameters (2,6: M step) and the variational parameters (M, S:
VE step).

We provide the update formulas for the simple PLN model
introduced in section 1 inAppendix. An important feature is that
these updates either rely on closed-form expressions or consist
of convex optimization problems. This latter property guarantees
that a unique optimal update exists and that it can be obtained in
a computationally efficient manner (using e.g., gradient descent).

We do not provide the update formulas for each of the PLN
models introduced in section 2. PLN-LDA and PLN-mixture can
be recast as simple variants of the original PLN model and we
can thus rely on the same inference algorithm, with a few minor
modifications. In contrast, the inference algorithms of PLN-PCA
and PLN-network models are quite more involved and detailed
respectively in Chiquet et al. (2018) and Chiquet et al. (2019).

Variational approximations have been shown to be
computationally efficient for many latent variable models
used in many fields (Blei et al., 2017) and many papers have
demonstrated the (empirical) accuracy of the resulting estimates
based on simulation studies (see e.g., Ormerod and Wand, 2012;
Hui et al., 2017; Niku et al., 2019a, for models related to PLN
and community ecology). Unfortunately, the general theory
about the statistical properties of variational estimates (e.g.,
consistency, asymptotic normality) is still very scarce and model
dependent. For example, Hall et al. (2011) obtained such results
for a Poisson mixed model, with replicates but their asymptotic
framework does not include the general PLN model we consider.

To summarize: variational inference is useful to estimate
parameters in the PLN model as it allows us to bypass the
intractable likelihood but this convenience comes at a cost as
there are no out of the box theoretical guarantees on the quality
of the estimates.

3.2. Parameter Uncertainty
In absence of a general theory for variational estimation in the
PLN model, we use large scale simulations to study the empirical
properties of the variational estimates of the PLN model.

3.2.1. Simulation Settings
We simulated count data according to a PLN model
with the following parameters: number of samples
n ∈ {50, 100, 500, 1000, 10000}, number of species p ∈ {20, 200},
number of covariates d ∈ {2, 5, 10}, sampling effort
N ∈ {low,medium, high} (calibrated to roughly correspond
to total sums of counts per sample of 104, 105, and 106), and
noise level σ 2 ∈ {0.2, 0.5, 1, 2}. These parameters cover values
typically observed in real datasets and range from very hard

(n = 50, p = 200, d = 10,N = low) to ridiculously easy
(n = 10, 000, p = 20, d = 2,N = high).

For each of the 360 parameter combinations, hereafter
referred to as simulation setup, we generated a variance matrix
6 as σjk = σ 2ρ|j−k|, with ρ = 0.2, a design matrix X with 1s
in the first column (intercept) and all other entries sampled from
a standard Gaussian distribution (we also centered all columns
but the first one to avoid interplay between the intercept and
the covariates), a regression coefficient matrix 2 with all entries
sampled from a centered Gaussian distribution with variance
1/d. Those choices ensures (i) a moderate correlation of the
counts across species and (ii) the same order of magnitude
for the fixed effects (X2) and the biological variability of the
species (σ 2). The normality assumption for entries of X may
not perfectly reflect design matrix from real studies but avoids
making arbitrary choices for each individual covariates and is
usual for such simulation studies.

For each simulation setup, we generated R = 100 count
matrices (Y(1), . . . ,Y(R)), resulting in a total of 36 000 data sets.
A PLN model was then fitted to each of those, resulting in R
estimates (2̂(1), . . . , 2̂(R)) for each original matrix 2.

3.2.2. Bias
For each simulation setup and each coefficient θjh of that
setup (were j refers to the species and h to the covariate,
including the intercept), we computed the empirical bias

as R−1
∑R

r=1

(
θ̂
(r)
jh

− θjh

)
and the Root Mean Squared Error

(RMSE) as

√
R−1

∑R
r=1

(
θ̂
(r)
jh

− θjh

)2
. The distribution of those

metric are represented in Figure 7A represents boxplots of
the bias (one boxplot per setup, computed over all entries
of 2). It shows that the variational estimates are unbiased
and, as expected, that the empirical bias decreases when the
number of samples (n) increases and when the variability (σ 2)
decreases (note the different y-axis scales for different values of
σ 2). Figure 7B likewise shows that the RMSE decreases with
increasing n (as 1/

√
n) and decreasing values of σ 2 (note again

the different y-axis scales). By contrast, the sampling effort has
no effect on the accuracy of the estimates. Considering that the

typical scale for coefficient θjh is 1/
√
d, the RMSE is quite small

(below 0.05) as soon as n ≥ 500 sites, for all values of σ 2 and even
as soon as n ≥ 100 for smaller σ 2.

3.2.3. Confidence Intervals
Few general theoretical results exist about the statistical
properties of variational estimates, but naive approaches are
known to provide too narrow confidence intervals (see, e.g.,
Wang and Titterington, 2005; Westling and McCormick,
2019). One naive approach consists in computing the Fisher
information matrix (and deduce the confidence intervals) of the
model parameters 2̂ and 6̂ from the variational lower bound
of Equation (7), i.e., as if it were the true log-likelihood and not
an approximation.

We used our simulation results to study the accuracy of
confidence intervals computed this way. More specifically, we

computed a 95% confidence interval IC95(θ̂
(r)
jh
) based on the
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FIGURE 7 | Result of the simulations: variational estimates are unbiased and have low RMSE starting at n = 500 (and even n = 100 for low levels of variability).

(A) Empirical bias of the variational estimates θ̂jh (computed over R = 100 replicates, one boxplot per simulation setup). Color codes for sampling effort (lighter to

darker: lower to higher). (B) Empirical RMSE of the variational estimates θ̂jh (computed over R = 100 replicates, one boxplot per simulation setup). Color codes for

sampling effort (lighter to darker: lower to higher).

pseudo-Fisher information matrix for each replicate r and
computed their empirical coverage, that is the proportion of

replicates for which the true parameter θjh lies within IC95(θ̂
(r)
jh
).

If the confidence intervals are well-calibrated, this proportion
should be around 0.95.

The results (not shown here) paint a striking picture as the
coverage barely reaches 0.3 for low variability setups (σ 2 = 0.2)
and falls below 0.1 in more difficult setups, especially when the
variability is large. They also show that higher sampling efforts
do not improve the coverage. This counter intuitive finding
confirms that the naive approximation does not provide reliable
confidence intervals. Further developments are obviously needed
to improve these shortcomings and some research leads are
discussed in section 4.

4. DISCUSSION

4.1. PLNmodels Package
All the variants of the PLN model presented in this paper
are available as an R/C++ package PLNmodels, distributed
on the CRAN CRAN.R-project.org/package=PLNmodels. The
package comes with a set of accompanying functions and
methods for visualization and diagnostic. It also relies on
the user-friendly GLM-like syntax to define all the models,
so that users familiar with (generalized) linear models will
feel at home. The development version is available on
github.com/pln-team/PLNmodels and all models are fully
documented as vignettes available from the package website
https://pln-team.github.io/PLNmodels/. The Barents and oaks
mildew data sets analyzed in sections 2 and 3 are included in
the package.

The natural competitors to PLNmodels are (i) package
Hmsc of Tikhonov et al. (2020), implementing the hierarchical
modeling framework of Ovaskainen et al. (2017), and (ii)
package gllvm of Niku et al. (2019b), implementing the

generalized latent variable models of Niku et al. (2017) and
boral of Hui (2016), implementing the latent variable model
of Hui et al. (2015) in a Bayesian framework. We believe
that all these tools are complementary, each having advantages
over the others. The different variants available in PLNmodel
(Discriminant Analysis; Dimension Reduction; Sparse Network
Reconstruction; Mixture models) is indeed an asset, as well as
our fast variational algorithm. gllvm benefits from the variety
of available distributions for the counts (Poisson, NB, ZIP) but
performs neither clustering nor network inference. Finally the
Bayesian framework and careful decomposition of the effect
adopted in Hmsc gives access to a fine analysis of the model
parameters with posterior distributions but is limited to medium
size problems.

4.2. Dedicated Inference Algorithms
We purposely avoided to enter into technical details, especially
regarding the inference algorithms. Still, each extension of the
PLN model illustrated above raises specific estimation issues.
For all of them, a very naive solution would be to use the
standard PLNmodel as a pre-processing step to retrieve the latent
vectors Zi’s and then apply standard PCA, LDA, mixture and
network inference to those vectors. Unfortunately, this solution
is flawed: it does not propagate the uncertainty properly as
the Zi are estimated rather than known. The accuracy of the
estimates comes precisely from the fact the model parameters
(2,6,B, . . . ) are always estimated together with the latent or
variational parameters (M, S, τ , . . . ), which systematically leads
to a complex high-dimensional optimization problem.

4.3. Future Works
As shown along this paper, the Poisson-lognormal model
provides a versatile framework for a large set of abundance data
analyses. Thanks to its flexibility, many other extensions could
be considered, either to include more sophisticated models or
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to account for data peculiarities. Two obvious examples come
to mind. First, the basic PLN model assumes independence
across sites, which mean that the spatial organization of
the sites cannot be explicitly modeled, except through the
recording of environmental descriptors as covariates. Adding
spatial dependency would obviously be interesting, but requires
methodological development as it would combine a sites’
dependence structure with the species’ dependence structure.
The same obviously holds for times series of abundance data.
Second, many experiments yield in a large proportion of null
count, that cannot be explained by under-sampling alone. There
is large literature (see Wagh and Kamalja, 2017, for a survey)
devoted to distinguishing the structural zeroes (due to absent
species) from the sampling zeroes (due to the combination of
rare species and low sampling effort). A popular method, which
can be adapted to PLN, is to consider Zero-Inflated distributions,
where an additional latent layer codes for the presence/absence
of each species at each site and absent species automatically
lead to structural zeroes. This has been done for instance by
Cougoul et al. (2019) for sparse network inference or by Risso
et al. (2018) and Niku et al. (2017) for GLLVMs, which are
respective competitors of PLN-network and PLN-PCA. In the
future, we hope to equip the whole PLN framework with an
additional layer to handle zero-inflated distribution. Such a fine
modeling will requires specific developments in each variant, but
a first approximation can also be done at less effort by adding
observation weights in all PLN models tuned by the estimated
probabilities for a count to be a structural zero for a given species
in a given site.

On the computational aspects, we plan to use optimization
tools from machine learning (stochastic gradient descent
algorithms and variants, GPU, distributed computing, auto-
differentiation) to propose an implementation of our models that
allow to fit large datasets. The different PLN variants that we
introduced can address problems involving hundreds of species
and sites on a routine basis, and can go up to a few thousand

species or sites. Using the tools mentioned above would allow us
to gain 1 or even 2 orders of magnitude in terms of speed.

As shown in section 3.2, the proposed estimation procedures
yield accurate and unbiased estimates, but statistically grounded
guarantees are still needed. Further theoretical analysis is
required to get more insights both in terms of parameter and
model uncertainty, especially confidence intervals. Several paths
can be explored: (i) resampling procedures (which comes at a
high computational cost), (ii) alternative estimation criterion like
composite likelihoods (Varin et al., 2011) (for which statistical
guaranties can be derived in a more systematic way), and (iii) the
general theory of M-estimation (van der Vaart, 1998; Westling
and McCormick, 2019), to which variational estimation belongs.
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APPENDIX: VARIATIONAL EM ALGORITHM

We give here the update formulas of the VEM algorithm
for PLN model introduced at the end of section 1. As
reminded in Blei et al. (2017), the lower bound (7)
also writes

J (Y;2,6,M, S) = Eq[log p(Y ,Z;2,6)]− Eq[log q(Z;M, S)].

We remind that the approximate distribution q is chosen to be
normal: q(Zi) = N (Zi;mi, Si), where each Si is diagonal, and
we denote by s2ij the j-th diagonal entry of Si. The entropy term

is therefore

−Eq[log q(Z;M, S)] =
1

2

∑

i

log |Si| + cst =
1

2

∑

i,j

log |s2ij| + cst.

Now, according to Model (1) (with µi = x
⊺

i θj) we have

log p(Y ,Z;2,6) = −
n

2
log |6|

−
1

2

∑

i

(Zi − x
⊺

i θj)
⊺6−1(Zi − x

⊺

i θj)

+
∑

i,j

Yij(oij + Zij)− exp(oij + Zij)+ cst,

and the properties of the normal and log-normal
distributions give

Eq[log p(Y ,Z;2,6)] = −
n

2
log |6|

−
1

2

∑

i

[
(mi − x

⊺

i θj)
⊺6−1(mi − x

⊺

i θj)+ trace
(
6−1Si

)]

+
∑

i,j

Yij(oij +mij)

− exp(oij +mij + s2ij/2)+ cst.

We may derive the updates for the model parameters 2 and 6,
and for the variational parametersM and S, using the superscript
h for their values at iteration h.

• M step: Setting to zero the derivatives with respect to 2 and
6−1 yields:

2h+1 = (X⊺X)−1X⊺Mh,

6h+1 =
1

n

[
(Mh − X2h+1)⊺(Mh − X2h+1)+

∑

i

Shi

]
.

• VE step: Denoting Aij = exp(oij + mij + s2ij/2) and Ai =
[Aij]1≤j≤p, the derivatives with respect to mi and to the vector
diag(Si) = [s2ij]1≤j≤p are

∂miJ = 6−1(x
⊺

i 2h+1 −mi)+ (Yi − Ai),

∂diag(Si)J =
1

2

[
diag

(
(6h+1)−1

)
− Ai +

(
diag(Si)

)[−1]
]
,

where
(
diag(Si)

)[−1]
stands for the vector [1/s2ij]1≤j≤p. The

optimal mh+1
i and Sh+1

i can be obtained using gradient
descent. Chiquet et al. (2018) show (in a more general context)
that this optimization problem is convex so we are guaranteed
to reach the unique global optimum.

These update formulas need to be adapted to each of the models
introduced in section 2. We refer the reader interested in the
technical details to Chiquet et al. (2018) for PLN-PCA and
Chiquet et al. (2019) for PLN-network.
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