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Ecology documents and interprets the abundance and distribution of organisms.
Ecoinformatics addresses this challenge by analyzing databases of observational data.
Ecoinformatics of insects has high scientific and applied importance, as insects are
abundant, speciose, and involved in many ecosystem functions. They also crucially
impact human well-being, and human activities dramatically affect insect demography
and phenology. Hazards, such as pollinator declines, outbreaks of agricultural pests
and the spread insect-borne diseases, raise an urgent need to develop ecoinformatics
strategies for their study. Yet, insect databases are mostly focused on a small number of
pest species, as data acquisition is labor-intensive and requires taxonomical expertise.
Thus, despite decades of research, we have only a qualitative notion regarding
fundamental questions of insect ecology, and only limited knowledge about the spatio-
temporal distribution of insects. We describe a novel high throughput cost-effective
approach for monitoring flying insects as an enabling step toward “big data” entomology.
The proposed approach combines “high tech” deep learning with “low tech” sticky traps
that sample flying insects in diverse locations. As a proof of concept we considered three
recent insect invaders of Israel’s forest ecosystem: two hemipteran pests of eucalypts
and a parasitoid wasp that attacks one of them. We developed software, based on deep
learning, to identify the three species in images of sticky traps from Eucalyptus forests.
These image processing tasks are quite difficult as the insects are small (<5 mm) and
stick to the traps in random poses. The resulting deep learning model discriminated the
three focal organisms from one another, as well as from other elements such as leaves
and other insects, with high precision. We used the model to compare the abundances
of these species among six sites, and validated the results by manually counting insects
on the traps. Having demonstrated the power of the proposed approach, we started
a more ambitious study that monitors these insects at larger spatial and temporal
scales. We aim at building an ecoinformatics repository for trap images and generating
data-driven models of the populations’ dynamics and morphological traits.

Keywords: ecoinformatics, image classification, deep learning, pest control, invasive insect, sticky trap,
parasitoid, natural enemy
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INTRODUCTION

State of the Art: Machine Learning for
Insect Ecoinformatics
Ecologists strive to document and interpret the abundance
and distribution of organisms. Field observations are a major
means to this end, and the observational data that have
accumulated over the decades form a solid basis for our
view of ecosystems. In recent years, technological advances
enabled the solidification of observational ecology into a
new scientific branch, ecoinformatics, which applies big-data
methods to ecological questions (Rosenheim and Gratton, 2017).
Ecoinformatics focuses on curating and mining large databases,
collected over long time periods across multiple locations (see
the GBIF Home Page1). The available data vary in format and
reliability (Gueta and Carmel, 2016) as they originate from
multiple sources, such as long-term ecological monitoring (Lister
and Garcia, 2018), citizen science projects (Hallmann et al., 2017),
or museum catalogs (Short et al., 2018).

Insects are optimal subjects for ecoinformatic research
due to their high abundance, wide distribution and key
roles in ecosystem functions. They have crucial impacts on
human well-being, both positive (pest control and agricultural
pollination) and negative (crop damage and vectoring of
disease). Anthropogenic alterations of environmental conditions
dramatically influence the demography, geographical ranges, and
phenology of insect populations. For example, climate change
allows some insects to reproduce more rapidly, to expand
their distribution pole-wards and to extend their activity period
(Hickling et al., 2006). Such shifts may promote outbreaks of
medical and agricultural insect pests (Bjorkman and Niemela,
2015). Another example is the conversion of natural areas into
croplands and urban habitats. These land-use changes have
greatly reduced the populations of some beneficial insects such
as bees, threatening their contribution to ecosystem services
(McKinney, 2002; Thomas et al., 2004; Dainese et al., 2019;
Sánchez-Bayo and Wyckhuys, 2019; van Klink et al., 2020).
Much research effort is therefore aimed at detecting changes in
insect populations, and devising strategies to promote or mitigate
these changes. Many important processes in insect ecology
occur over large scales in space (e.g., long-term migrations) or
time (e.g., multi-year population cycles), and thus are difficult
to study using standard experimental approaches. Moreover,
manipulative entomological experiments often lack sufficient
statistical power to detect small yet important effects, such as
impacts of agricultural practices on insect populations. Mining
of large-scale, long-term observational data can address these
limitations. This requires efficient methods for acquisition,
storage, and manipulation of insect-related ecological big data
(Rosenheim et al., 2011).

Machine learning methods are increasingly applied to
biological problems that involve classification of images and
extracting information from them. The current leading approach
to such tasks is supervised learning using deep neural networks

1https://www.gbif.org

(DNNs), and particularly convolutional neural networks (CNNs),
which are able to extract abstract high level features from images.
Identifying objects within the image and classifying them may
be treated as separate tasks. Yet, more recent methods, such as
“Faster R-CNN” (Ren et al., 2015), and YOLO (Redmon et al.,
2016) consider both problems at the same time.

Computerized image analysis based on DNNs is increasingly
used in ecology, agriculture, and conservation biology to classify
and identify organisms. The best-developed examples so far
include identification of plants, either based on photos taken
in the field or on images of dried pressed plants from natural
history museum collections (Wäldchen and Mäder, 2018). Similar
methods are being developed to identify animals, for example,
classifying images of mammals from camera traps (Miao et al.,
2019). Several recent studies extended these machine learning
approaches to deal with basic and applied issues in insect
ecology (Høye et al., 2021). DNN-based software for insect
identification in images has been developed in the applicative
context of agricultural pest control, aiming to support farmers
and extension workers in identifying insect pests (e.g., Cheng
et al., 2017; Nieuwenhuizen et al., 2018; Zhong et al., 2018;
Liu et al., 2019; Chudzik et al., 2020; Roosjen et al., 2020).
Other researchers developed deep learning models to assist insect
identification for biodiversity monitoring projects (Hansen et al.,
2020 for beetles; Buschbacher et al., 2020 for bees). Deep learning
has also been harnessed to address questions related to insect
evolution. These include measuring the phenotypic similarity
among Müllerian mimics in butterflies (Cuthill et al., 2019) and
bees (Ezray et al., 2019), and exploring altitudinal trends in color
variation of moths (Wu et al., 2019). The sources of images for
most of these projects are either museum specimens (Cuthill
et al., 2019; Hansen et al., 2020) or photos taken by field surveyors
(Ezray et al., 2019; Buschbacher et al., 2020; Chudzik et al., 2020).
These data sources have limited utility for broad scale surveys
of insect populations in the wild, which are needed to facilitate
both basic and applied studies of insect population dynamics
of multiple taxa.

A Rate-Limiting Step: Acquisition of
Entomological Big Data
Notwithstanding the importance of entomological databases,
studies that aim to mine them are limited by the research
interests, expertise, and resources of data contributors. These
constraints may generate knowledge gaps for follow-up studies.
The problem is especially severe for little-known insect groups
with few available experts for taxonomic identification. These
include some small-bodied insects (such as many parasitoid
Hymenoptera), hyper-diverse taxa (such as beetles), and many
taxa inhabiting the understudied tropical and arid ecosystems.
Consequently, although the volume of insect databases is
gradually increasing, it is insufficient in quantity and quality
for many big-data applications. Shortages in entomological field
data constrain our ability to answer key questions in ecology,
evolution, and conservation, such as: How do invasive insects
spread? How does climate change affect native pollinators? How
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do agricultural intensification and urbanization impact insect
biodiversity?

Current methods of insect monitoring rely heavily on the
visual identification of field-caught individuals. Several simple
and cost-effective insect trapping techniques are available, such
as malaise traps, sticky traps, pitfall traps, and suction sampling.
However, identifying and counting the trapped specimens is
labor-intensive, requires taxonomical expertise, and limits the
scale of monitoring projects. A few recent projects combined
insect trapping with machine learning methods to reduce
the scouting workload required when monitoring crop pests
(Nieuwenhuizen et al., 2018; Zhong et al., 2018; Liu et al., 2019;
Chudzik et al., 2020; Roosjen et al., 2020). These approaches have
not yet been extended to insect monitoring in non-agricultural
settings, because they often require sophisticated high-cost
sensors that are incompatible with large-scale ecological studies,
and are designed to identify specific taxa.

A Way Forward: High-Throughput
Acquisition of Insect Data
We propose a novel, high throughput approach to data
acquisition regarding flying insects to overcome the data
bottleneck described above. We combine two techniques,
capture of flying insects using sticky traps and computerized
image classification, toward a novel application: generating
and analyzing large ecological datasets of insect abundances
and traits.

Sticky traps are glue-covered plastic sheets that intercept
flying insects. Traps of varying sizes and colors are commercially
available. Owing to their simplicity and low price, they can be
placed in large numbers at numerous monitoring sites. The traps
are collected a few days later, after large numbers of flying insects
had accumulated on them (Figure 1). Photographs of the traps
produce images of sufficient quality for computerized image
analysis. We describe a software system, based on deep learning,
to identify and characterize insects in images of field samples.

MATERIALS AND METHODS

The Model System: Invasive Insects in
Israel’s Eucalyptus Forests
Background: Eucalyptus is an Australian genus that comprises
more than 700 species, several of which have been introduced into
afforestations around the world. The trees are valuable as sources
of timber, as ornamentals and as means to reduce soil erosion.
Eucalyptus plantings in Israel are dominated by Eucalyptus
camaldulensis, alongside ∼180 additional species. Several
herbivorous insects of Australian origin have become invasive
during the last decades and are now considered widespread
Eucalyptus pests. Sap-feeding hemipterans that infest leaves and
young stems are part of this pest assemblage. They damage the
trees directly though feeding, and indirectly through secretion of
honeydew, which favors the development of sooty mold.

Our study focuses on two sap-sucking Eucalyptus pests that
are globally invasive. The first, the bronze bug Thaumastocoris

peregrinus, was first documented in Israel in 2014, and is mostly
active in summer (Novoselsky and Freidberg, 2016). The second
is the Eucalyptus redgum lerp psyllid, Glycaspis brimblecombei,
recognized as a pest of economic importance in the New World
and also common in several Mediterranean countries. It is
active year-round, reaching high densities during May–August
(Laudonia et al., 2014; Boavida et al., 2016; Mannu et al., 2019).
G. brimblecombei is one of three species of Eucalyptus psyllids
that have been described from Israel over the last 20 years
(Spodek et al., 2015, 2017).

We also included the parasitoid wasp Psyllaephagus bliteus
(Hymenoptera: Encyrtidae) in our study, as a third invasive
insect of Australian origin in Eucalyptus forests. This wasp
is also G. brimblecombei’s main natural enemy. P. bliteus has
spontaneously established in Israel during the last decade,
probably tracking the spread of its host. It oviposits on the
psyllid’s nymphs, preferably in their third and fourth instars. The
parasitoid’s development is delayed until the host reaches the late
fourth or early fifth instar, and the parasitized psyllids die and
mummify when P. bliteus begins to pupate (Daane et al., 2005).

We have recently completed a large field survey to characterize
the population dynamics of these three insects under a range of
climate conditions and vegetation characteristics of Eucalyptus
forests (e.g., tree density and understory plant density).
This still-ongoing project aims to form forestry management
recommendations for reducing the pests’ infestation, and to
predict the eventual distribution of these recent invasive species
in Israel. Here, we describe and evaluate the monitoring protocol
developed for our study. The present article thus focuses on
a general methodology that can hopefully be applied to many
future projects, rather than on the ecological insights arising
from our specific case study. Nevertheless, we use a small subset
of our field data to evaluate how well the automated image
identification captures differences in insect abundances between
study populations.

Insect Trapping
Insects were trapped in seven Eucalyptus forests in Israel’s
coastal plain, in 2019 and 2020 (Table 1). Yellow sticky traps
(25× 10 cm) were hung on the tree trunks, at 1.5 m height, for 4–
7 days.

Preparation of an Image Dataset
The traps were inspected by an expert entomologist under
a dissecting microscope, and relevant insects (T. peregrinus
bugs, G. brimblecombei psyllids, and P. bliteus parasitoids) were
identified. Images of the traps were taken with a Canon 750D
camera, with a kit lens of 18–55 mm. The camera was placed
on a tripod, perpendicular to the traps, at 40 cm height. This
height was found as ideal for capturing most of the trap in
the frame (∼80%), while individual insects could still be clearly
identified. Focusing was done manually using a checkers target
(1.2 cm2) which was placed on the trap prior to image acquisition
(Figure 1, right). Images were processed with the CoLabeler
software version 2.0.42. As expected from images of field traps,

2http://www.colabeler.com
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FIGURE 1 | Left – example of a sticky trap attached to a Eucalyptus trunk. Right – image of a trap with a checkers target. A G. brimblecombei psyllid is marked
with an arrow. Numerous other insects were captured, including flies, mosquitoes, and thrips.

TABLE 1 | Locations, dates, and numbers of sticky traps analyzed for this study.

Site name Latitude Longitude Sampling date Number of
sticky traps

Heftsibah 32.46453 34.90588 September, 2019 46

Liman 33.07217 35.11132 July, 2020 10

Naaman 32.87263 35.10259 July, 2020 10

Or-Akiva 32.49602 34.93143 July, 2020 10

Ilanot 32.29505 34.89364 July, 2020 8

Yavne 31.90375 34.74235 July, 2020 10

Yad-Mordehai 31.60764 34.56588 July, 2020 10

they were cluttered with many irrelevant objects (i.e., leaves
and other insects). We marked a rectangular polygon (bounding
box, aka area of interest) around each relevant insect, from
the edge of the head to the edge of the abdomen and labeled
it as either “Glycaspis,” “Psyllaephagus,” or “Thaumastocoris.”
These rectangles are relatively small compared with the overall
size of the image. YOLOv5, the detection algorithm that we
used (see below), tends to ignore such objects, thus we split
the images into segments of 500 × 500 pixels. Overall, the
image dataset contained 520 “Glycaspis,” 161 “Psyllaephagus,”
and 67 “Thaumastocoris” manually labeled objects. These labeled
boxes are considered the ground truth for the following
image analysis steps.

Supervised Learning
Given an unlabeled image, the detection algorithm aims to
predict the bounding boxes that an expert would have marked,

and to label them correctly. For the training and testing of the
method we used labeled images, which were divided to three
subsets: “training,” “validation,” and “test.” In the training phase
the algorithm uses the “training” and “validation” sets to create
a statistical model. In the test phase we apply the model to
the “test” set images, ignoring their labels. Each predicted label
is associated with a confidence score that considers both the
probability that the label is correct, and the expected overlap
between the ground truth bounding box and the predicted one.
This overlap is expressed as the Intersection over union (IoU),
indicating the agreement between a predicted bounding box and
a ground truth box (Eq. 1).

IoU =
area(Bp∩Bgt)

area(BpUBgt)
(1)

where Bp and Bgt are the predicted and ground truth bounding
boxes, respectively.

For example, if a box is labeled as “Glycaspis,” a high
confidence score (above a predefined threshold Tcs) suggests that
(a) the box indeed encloses the whole object, and that (b) the
psyllid G. brimblecombei appears within, and not any other object
such as a leaf or another insect. Thus, a successful prediction, true
positive (TP), is a bounding box with a confidence score above Tcs
and an IoU of 0.5 or higher with an expert-tagged box carrying
the same class label.
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FIGURE 2 | The training process of the YOLOv5 model. The left panel depicts the loss function that drives the learning process. This function penalizes incorrect
predictions of the three focal species as well as missed ones. The learning consists of iterative reduction of this penalty for the training set images (blue) by a
stochastic gradient algorithm (Ruder, 2016). The validation set images (red) do not participate in the optimization and the gradual reduction in their loss indicates that
the training has not reached an overfitting point. The validation loss stabilizes after 30 epochs, suggesting that further training might lead to overfitting. Thus, the
deep learning model generated by 30 training epochs was used for tests. A different perspective on the gradually improving performance of the model is provided in
the right panel. The model’s average precision (AP) improves with the number of training epochs. The plot depicts the model’s mean AP (mAP) over the three insect
classes.

The Deep Learning Network
For machine learning we used an open source implementation3

of YOLO version 5 (Ren et al., 2015; Redmon and Farhadi,
2017, Redmon and Farhadi, 2018). This algorithm simultaneously
predicts bounding boxes around objects (insects, in this case)
within the image, their class labels (species) and confidence
scores. To this end, the algorithm generates uniformly spaced
tentative bounding boxes, adjusts them (by changing their center
and dimensions) to nearby objects, and assigns them a class label
and confidence score. This process is governed by a loss function
that penalizes high-confidence wrong predictions (wrong class
or small IoU) and low-confidence correct ones. Bounding boxes
of low confidence, and ones that share an object with a higher
confidence box, are discarded. Typically, some classes, here
“Glycaspis,” are more frequent than the others. This so-called
class-imbalance may lead to overestimation of these classes. To
cope with this problem, YOLOv5 automatically modifies its loss
function to assign heavier weights to the less frequent classes (Lin
et al., 2017). To improve performance, the YOLOv5 model is
distributed after pre-training to a standard set of object images
[common objects in daily contexts (COCO)4]. We subsequently
trained it to the specific object identification tasks of our study.

Model Training
Deep learning models learn data iteratively: generating
predictions of the training set samples, evaluating them by

3https://github.com/ultralytics/yolov5/tree/v4.0
4https://cocodataset.org/#home

the loss function, and modifying their parameters according
to the loss function’s gradient. Thus, the loss declines in
each training round (aka epoch), and the model’s annotation
accuracy increases (Figure 2 and Supplementary Figure 1).
As the number of parameters of a typical deep learning
model is large, overfitting is a major concern. A common
(partial) remedy is the use of validation data, which are set-
aside while training, yet their annotations by the models are
monitored. The validation data help to limit the training
duration, thereby reducing the risk of overfitting. In this study
we used 30 epochs per training task, based on our validation
runs (Figure 2).

The data of this study are images of sticky traps that
we split into three sets: training, validation and test (70,
15, and 15% of the images, respectively). Table 2 reports
the numbers of individual insects assigned to each of the
three datasets.

TABLE 2 | The numbers of individuals used for training, validation, and testing of
the deep learning model.

Dataset Insect class

Glycaspis Psyllaephagus Thaumastocoris

Training 374 114 48

Validation 71 23 9

Test 75 24 10

Total 520 161 67
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Model Evaluation
We evaluated the quality of the model by comparing the
predictions with the ground truth, which is a set of boxes drawn
and labeled by a human expert (magenta boxes in Figure 3).
The metrics of model quality are based on the class labels and
their associated confidence scores. We calculated three out of the
four elements of a confusion matrix: false positives (FP), false
negatives (FN) and true positives (TP). To do so, we counted
boxes labeled either by the model, the expert, or both of them. We
defined two thresholds: TIoU – the lowest IoU that we consider
meaningful object detection, and Tcs, the lowest confidence score
that we consider reliable. Here we adopt a TIoU of 0.5 which is
commonly used in the image processing world (Everingham et al.,
2010). Varying Tcs over the 0 to 1 range results in different TP, FP,
and FN values, depending on how restrictive our prediction is.
A prediction is considered TP if it shares a label with an observed
object, their IoU is above TIoU and the confidence score is above
Tcs. A prediction with a confidence score above Tcs that misses
either the identity or the location of the object is considered a
false positive. Finally, a ground truth object that is not predicted
(because it was incorrectly identified, or identified with below-
threshold confidence) is considered a false negative. Note that
the last element of the traditional confusion matrix, which is the
true negatives (TN), is irrelevant here. Typically, TN represents
objects that are correctly labeled as not belonging to a given class.
However, in our case this corresponds to parts of the sticky trap
that are not marked by any labeled rectangle, such as the yellow
background and irrelevant objects. These areas are not countable.

We evaluated the performance of the model separately for
each class, using precision and recall (PR) curves. Recall (Eq. 2)
is the fraction of relevant objects that were correctly classified.
In our case, it is the proportion of expert-labeled “Glycaspis”
(respectively “Psyllaephagus” or “Thaumastocoris”) objects that
were also labeled “Glycaspis” (respectively “Psyllaephagus” or
“Thaumastocoris”) by the deep learning model. Recall is defined
as the number of true positives divided by the sum of true
positives and false negatives. Precision (Eq. 3) is the fraction
of correctly classified objects among all classified objects. It is
defined as the number of true positives divided by the sum of true
positives and false positives:

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

By setting the threshold for confidence score at different
levels, we get different pairs of PR values, which form the PR
curve (Figure 4).

We used the average precision, over all observed recall values,
as a single model-performance metric, which takes into account
the trade-off between precision and recall. Precision values, and
hence also their average, range between 0 and 1. The average
precision of an ideal predictive model equals 1, meaning it always
detects every class correctly. As this value decreases, so does the
performance of the model.

FIGURE 3 | Two images from the test set with ground truth (GT, magenta)
bounding boxes, and predicted ones (green). Each box is labeled by its class.
The predicted boxes are also annotated by a confidence score. The top
image demonstrates a correct identification of a bronze bug (true positive),
and a false positive prediction of a Glycaspis psyllid. The bottom image
demonstrates a false negative result, namely a Glycaspis individual annotated
by the human expert but not detected with the machine-learning model.

Preliminary Application to Forest
Ecology Research
We used the samples of 2020 to test how well the machine-
learning model captures insect abundance variability in “real-life”
data. A total of 58 traps, set up in July 2020 in six research sites,
served as the dataset (Table 1). The three focal insects were tagged
on all images by an expert. Nineteen traps that did not contain
any of these species of interest were excluded from further
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FIGURE 4 | Test set precision-recall curves. Top: the model’s success in identifying “Glycaspis” vs. “non-Glycaspis” (left), “Psyllaephagus” vs. “non-Psyllaephagus”
(middle), and “Thaumastocoris” vs. “non-Thaumastocoris” (right). The plots indicate the recall and precision of the model’s predictions as a function of its confidence
threshold (Tcs). The black dotted line depicts 0.7 confidence. Bottom: Recall vs. Precision curves of the three focal species. Asterisks depict a confidence threshold
of 0.7. Note that the recall plots of “Glycaspis” and “Psyllaephagus” do not reach 1, as a few insects were not identified even with Tcs = 0.1.

analysis. The remaining 39 traps were subjected to the machine-
learning model in 39 rounds. In each round, we assigned one trap
image to the test set and trained the model on the remaining 38
trap images as well as on the images from the 2019 samples. This
procedure allowed us to compare the insects’ per-site abundance
based on expert identification vs. model prediction.

RESULTS

Trapping of Forest Insects
Both the psyllid (class “Glycaspis”) and its parasitoid (class
“Psyllaephagus”) were trapped in all seven sampling sites, both in
2019 and in 2020. The psyllid, however, was much more common
on the traps. Bronze bugs (class “Thaumastocoris”) were captured
in a single site in 2020 only. Numerous other insects were
trapped as well, mostly flies, mosquitoes, and thrips, but also
other psyllids, parasitoids, and true bugs. These insects were not
identified or counted. The optimal trapping duration (resulting
in∼50% of the trap surface covered with insects) was 1 week.

Automatic Insect Detection
Model Evaluation
We report our results on the test set. The detection of
“Glycaspis,” “Psyllaephagus,” and “Thaumastocoris” resulted in
average precision values of 0.92, 0.77, and 0.97, respectively. Thus,
the model performed well on both pests, and was less successful

in identifying the parasitoid. A detailed evaluation of the model’s
performance is provided in Figure 4. The top panels depict
the performance of the model as a function of its stringency
(the confidence score threshold). The difference performance
measures are plotted separately for the three identification tasks.
For all tasks, as the model becomes more permissive (i.e., requires
a lower confidence score to make a decision), it makes more
true positive and fewer false negative identifications. On the
other hand, the number of false positive identifications increases
as well. The optimal confidence threshold needs to be selected
by the model’s users according to the ecological task at hand.
For example, a low threshold can be desirable for monitoring
of disease-vectoring insects. This would enable early detection
and control of the pests, at the cost of some false alarms (false
positive identifications). A higher threshold may be suitable for
other aims, such as describing the seasonal dynamics of our forest
insects. In this case, one might favor high accuracy (few FPs) over
completeness of identification (few FNs).

The tradeoff between FP and FN errors is formulated in the
concepts of recall and precision (Eqs 2 and 3, respectively), and is
visualized by a Precision-Recall plot (Figure 4 bottom). Each data
point on this plot depicts the recall (x-coordinate) and precision
(y-coordinate) associated with a particular confidence score (Tcs).
Confidence scores decrease along the X-axis. Thus, the leftmost
data points denote the proportion of insects detected (recall), and
the fraction of predictions that are correct (precision), when the
highest confidence level (1) is used by the model. The rightmost
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data points describe the performance attained by a model that
accepts all identifications, as its Tcs is minimal (0). Such a plot
can guide users in adjusting model parameters to their needs. If
fewer detections are accepted (low recall), precision increases.

Tables 3, 4 illustrate the types of recall (Table 3) and precision
(Table 4) errors made by the model when the confidence
threshold was set to 0.7. The model rarely confused between our
three focal species (gray areas in Tables 3, 4). It made some false
positive predictions, particularly for the class “Psyllaephagus”
(bold text in Table 4, not tagged by the expert but predicted
by the model). Most of the missed predictions, however, were
false negatives (bold text in Table 3, tagged by the expert but not
identified by the model).

Preliminary Application to Forest Ecology Research
To test the utility of our approach in a real-world scenario
we compared the ability of insect identifications, by either an
expert or the deep learning algorithm, to address two simple yet
biologically relevant questions. First, do the per-site abundances
of our study species show any latitudinal pattern, say due to a
climate gradient; and second, are the populations of the three
species correlated in abundance, i.e., are any sites particularly
attractive for all the species in our study. Figure 5 summarizes
the per-site abundances of the three focal species. Sites are
ordered from north to south. Expert counts of individual trapped
insects (filled bars) are shown next to the deep-learning based
predictions (striped bares), using a confidence threshold of 0.7.
Evidently, by both counting techniques none of the populations

TABLE 3 | Proportions of correct (recall) and erroneous predictions of each insect
class, out of their total numbers in the test set.

Expert identifications

Class Glycaspis Psyllaephagus Thaumastocoris

Model
predictions

Glycaspis 0.80 0.04 0.00

Psyllaephagus 0.00 0.50 0.00

Thaumastocoris 0.00 0.00 0.60

Not identified 0.20 0.46 0.40

# individuals in the test set 75 24 10

The model’s confidence threshold was set to 0.7. The gray-shaded area denotes
the three focal insects, boldfaced proportions are false negative errors. The total
number of individuals of each class, as determined by an expert, are presented
in the bottom row.

followed a clear north-south pattern. Further, both methods show
that “Glycaspis” and “Psyllaephagus” were relatively common
in two non-adjacent sites (Yad-Mordehai and Or-Akiva), while
a single “Thaumastocoris” population occurred in a third site
(Naaman). Both counting methods also suggest comparable
correlation coefficients between the per-site abundances of
“Glycaspis” and “Psyllaephagus,” 0.72 vs. 0.65 for expert-based
counts and software-based counts, respectively.

DISCUSSION

The current study tested the feasibility of training a deep
learning model to identify three insect classes of interest on
images of sticky traps. As the insects are rather small, require
discrimination from many non-focal objects caught on the same
traps, and stick to the traps in random poses, the prospects of
success were not obvious. Given these challenges, the positive
results of our test are non-trivial and encouraging. Moreover,
the model achieved high detection and classification performance
even with a very small training dataset. These model evaluation
results, as summarized in Figures 2, 4 and Tables 3, 4, are
independent of the ecological questions that we are addressing.

The model’s performance varied between the different
identification tasks. The object class “Glycaspis” was predicted
with high recall and precision, while class “Thaumastocoris”
scored high on precision but lower on recall. Class
“Psyllaephagus” had the lowest prediction success in both
recall and precision (Tables 3, 4). In all three classes, false
negative prediction errors were more common than false positive
errors. That is, the model was more prone to miss relevant
images than to include irrelevant ones. Training the model on
larger repositories of tagged images, and using higher-quality
photos, will likely reduce both types of errors in future work.

“Glycaspis” images were much more common in our dataset
than the other two insect classes. Such class imbalance is
a potential concern because it might cause the machine-
learning model to over-learn and over-predict the most
common class. Yet, in our test set, “Psyllaephagus” was mis-
predicted as “Glycaspis” in only 4% of cases, and none of the
“Thaumastocoris” images were falsely predicted as “Glycaspis.”
More generally, the model rarely confused between the three
insect classes to which it had been trained. We conclude that
class imbalance was not a major constraint on model quality

TABLE 4 | Proportions of correct (precision) and erroneous predictions in the test set, out of the total number of individuals from each insect class that were predicted by
the machine learning model.

Expert identifications # individuals predicted by model

Class Glycaspis Psyllaephagus Thaumastocoris Not tagged

Model predictions Glycaspis 0.86 0.01 0.00 0.13 61

Psyllaephagus 0.00 0.75 0.00 0.25 12

Thaumastocoris 0.00 0.00 0.86 0.14 7

The model’s confidence threshold was set to 0.7. The gray-shaded area denotes the three focal insects, boldfaced proportions are false positive errors.
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FIGURE 5 | Counts of “Glycaspis” (blue) “Psyllaephagus” (red), and “Thaumastocoris” (green) from sticky traps, as evaluated by a human expert (filled bars) and
predicted by the deep-learning model (hatched bars). The traps were placed in six Eucalyptus forests along Israel’s coastal plain in July 2020. Trapping sites are
ordered from north to south. See Table 1 for location details and sample sizes.

in our case, possibly because the YOLOv5 algorithm efficiently
corrected for it (Lin et al., 2017).

After evaluating our method’s general performance, we also
tested it in the context of our case study, which deals with insect
population dynamics in Eucalyptus forests. Over the spring and
summer of 2020, we conducted six insect sampling sessions in
each of 15 Eucalyptus forests, located along a climatic gradient
in coastal Israel. We placed 30 sticky traps in different parts of
each forest in each sampling session and recovered them a week
later. In the present work, we analyzed a small subset of these
traps (58 traps from six sites and a single sampling month) to test
how well the deep learning model detects between-site differences
in insect abundances. We found that the per-site abundances,
estimated by both an expert and our deep learning algorithm,
show no clear pattern with respect to the north-south axis. Both
counting methods indicated considerable correlation between
the abundances of “Psyllaephagus” and “Glycaspis,” while class
“Thaumastocoris” had a very aggregated distribution. Having
established the utility of our computational approach, we are
now aiming to use the model to extract the abundances of
G. brimblecombei, P. bliteus, and T. peregrinus from the complete
dataset of trap images, to describe their population trends in
time and space. We will also analyze the effects of tree density,
forest understory composition, and climatic variables on the
abundance of these invasive insects. This information will help
to predict their eventual establishment in Israel and to form
recommendations for their management.

Being a proof-of-concept project, with rather limited
resources, our present work comprises a small-scale case study,
namely monitoring two forest pests and one natural enemy.
Its success, as well as the results of a few other recent studies
(reviewed by Høye et al., 2021), suggest that computer vision-
based analysis of sticky trap images may have additional major

contributions to insect ecoinformatics, and entomology in
general. An obvious future direction is to extend the current
studies to multiple additional insect species of interest, over
larger spatial and temporal ranges. A parallel computational
effort is needed to adjust the machine-learning algorithms
to the peculiarities of sticky-trap images. For example, the
current studies use off-the-shelf object detection algorithms.
These, however, were developed to detect common objects in
daily contexts (COCO). Sticky trap images are very different,
and their study may benefit from the development of more
tailored algorithms.

Most insect capture methods, sticky traps included, are
non-selective, and therefore inevitably capture many non-target
arthropods (pheromone traps are notable exception). Thus,
the design of every such study should include conservation
considerations such as avoiding trapping in breeding
habitats or along migration routes of endangered insects.
Unlike other methods, sticky trap images allow insects,
which are considered bycatch for a particular research or
monitoring project, to become focal species for other ventures,
reducing the overall environmental load of such studies.
This requires a centralized free repository that will house
image datasets. Such a repository will trigger further studies,
including retrospective ones that will exploit the available
rich image data.

Looking forward, we believe that the utility of sticky trap
images may well be extended beyond estimation of species
abundances. Demographic and life history traits, for example,
sex ratios and age group distributions, may be inferred from
morphological attributes such as body sizes and allometric
relationships between body parts. These attributes may be
extracted from trap images, and allow the study of habitat
effect on these traits. Thus, computational analysis of sticky trap

Frontiers in Ecology and Evolution | www.frontiersin.org 9 May 2021 | Volume 9 | Article 600931

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-600931 May 17, 2021 Time: 21:42 # 10

Gerovichev et al. Deep Learning for Insect Ecoinformatics

images will soon allow many ecological applications that are
now practically impossible. These include early detection of the
arrival of invasive species, disease vectors or crop pests into
new areas; identification of insect migration pathways to allow
effective design of ecological corridors; and predicting climate-
change effects by insect densities, activity seasons, body sizes, age
distributions, and sex ratios along climatic gradients.

DATA AVAILABILITY STATEMENT

The trap images and the associated programming code are
available online at http://meshi1.cs.bgu.ac.il/FIE2020_data.

AUTHOR CONTRIBUTIONS

CK, AB-M, AS, and TK conceptualized the project. CK,
AG, and VW developed the deep learning model. AS
sampled the insects and prepared annotated images. CK
and TK wrote the manuscript. All authors reviewed the
manuscript, added their inputs, approved the final version

of the manuscript, and agreed to be held accountable
for its content.

FUNDING

This work was supported by the Data Science Research Center,
University of Haifa, and by the Zoological Society of Israel. It
was also partially supported by the Israeli Council for Higher
Education (CHE) via Data Science Research Center and Ben-
Gurion University of the Negev, Israel.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fevo.2021.
600931/full#supplementary-material

Supplementary Figure 1 | The model’s loss function (Figure 2 left panel) is a
sum of three components, each of which penalizes a different type of prediction
error: incorrectly placed bounding boxes (left panel), failures in detecting an object
(center panel), and failures in correctly identifying it (right panel). All three
components decrease during training and validation.

REFERENCES
Bjorkman, C., and Niemela, P. (2015). Climate Change and Insect Pests, Vol. 8.

Wallingford: CABI.
Boavida, C., Garcia, A., and Branco, M. (2016). How effective is Psyllaephagus

bliteus (Hymenoptera: Encyrtidae) in controlling Glycaspis brimblecombei
(Hemiptera: Psylloidea)? Biol. Cont. 99, 1–7. doi: 10.1016/j.biocontrol.2016.04.
003

Buschbacher, K., Ahrens, D., Espeland, M., and Steinhage, V. (2020). Image-based
species identification of wild bees using convolutional neural networks. Ecol.
Inform. 55:101017. doi: 10.1016/j.ecoinf.2019.101017

Cheng, X., Zhang, Y., Chen, Y., Wu, Y., and Yue, Y. (2017). Pest identification via
deep residual learning in complex background. Comput. Electron. Agric. 141,
351–356. doi: 10.1016/j.compag.2017.08.005

Chudzik, P., Mitchell, A., Alkaseem, M., Wu, Y., Fang, S., Hudaib, T., et al. (2020).
Mobile real-time grasshopper detection and data aggregation framework. Sci.
Rep. 10:1150.

Cuthill, J. F. H., Guttenberg, N., Ledger, S., Crowther, R., and Huertas, B. (2019).
Deep learning on butterfly phenotypes tests evolution’s oldest mathematical
model. Sci. Adv. 5:eaaw4967. doi: 10.1126/sciadv.aaw4967

Daane, K. M., Sime, K. R., Dahlsten, D. L., Andrews, J. W. Jr., and Zuparko, R. L.
(2005). The biology of Psyllaephagus bliteus Riek (Hymenoptera: Encyrtidae),
a parasitoid of the red gum lerp psyllid (Hemiptera: Psylloidea). Biol. Cont. 32,
228–235. doi: 10.1016/j.biocontrol.2004.09.015

Dainese, M., Martin, E. A., Aizen, M. A., Albrecht, M., Bartomeus, I., Bommarco,
R., et al. (2019). A global synthesis reveals biodiversity-mediated benefits for
crop production. Sci. Adv. 5:eaax0121.

Everingham, M., Van Gool, L., Williams, C. K., Winn, J., and Zisserman, A. (2010).
The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 88, 303–338.
doi: 10.1007/s11263-009-0275-4

Ezray, B. D., Wham, D. C., Hill, C. E., and Hines, H. M. (2019). Unsupervised
machine learning reveals mimicry complexes in bumblebees occur along a
perceptual continuum. Proc. R. Soc. Lond. B 286:20191501. doi: 10.1098/rspb.
2019.1501

Gueta, T., and Carmel, Y. (2016). Quantifying the value of user-level data cleaning
for big data: a case study using mammal distribution models. Ecol. Inform. 34,
139–145. doi: 10.1016/j.ecoinf.2016.06.001

Hallmann, C. A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., et al.
(2017). More than 75 percent Haline over 27 years in total flying insect biomass
in protected areas. PLoS One 12:e0185809. doi: 10.1371/journal.pone.0185809

Hansen, O. L., Svenning, J. C., Olsen, K., Dupont, S., Garner, B. H., Iosifidis,
A., et al. (2020). Species−level image classification with convolutional neural
network enables insect identification from habitus images. Ecol. Evol. 10,
737–747. doi: 10.1002/ece3.5921

Hickling, R., Roy, D. B., Hill, J. K., Fox, R., and Thomas, C. D. (2006).
The distributions of a wide range of taxonomic groups are expanding
polewards. Glob. Change Biol. 12, 450–455. doi: 10.1111/j.1365-2486.2006.
01116.x

Høye, T. T., Ärje, J., Bjerge, K., Hansen, O. L., Iosifidis, A., Leese, F., et al. (2021).
Deep learning and computer vision will transform entomology. Proc. Natl.
Acad. Sci. U.S.A. 118:e2002545117.

Laudonia, S., Margiotta, M., and Sasso, R. (2014). Seasonal occurrence
and adaptation of the exotic Glycaspis brimblecombei Moore (Hemiptera:
Aphalaridae) in Italy. J. Nat. Hist. 48, 675–689. doi: 10.1080/00222933.2013.
825021

Lin, T. Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017). “Focal loss for
dense object detection,” in Proceedings of the IEEE International Conference on
Computer Vision, (Cambridge, MA: IEEE), 2980–2988.

Lister, B. C., and Garcia, A. (2018). Climate-driven declines in arthropod
abundance restructure a rainforest food web. Proc. Natl. Acad. Sci. U.S.A. 115,
E10397–E10406.

Liu, L., Wang, R., Xie, C., Yang, P., Wang, F., Sudirman, S., et al. (2019). PestNet:
an end-to-end deep learning approach for large-scale multi-class pest detection
and classification. IEEE Access 7, 45301–45312. doi: 10.1109/access.2019.
2909522

Mannu, R., Buffa, F., Pinna, C., Deiana, V., Satta, A., and Floris, I.
(2019). Preliminary results on the spatio-temporal variability of Glycaspis
brimblecombei (Hemiptera Psyllidae) populations from a three-year monitoring
program in Sardinia (Italy). Redia 101:7.

McKinney, M. L. (2002). Urbanization, biodiversity, and conservation. Bioscience
52, 883–890. doi: 10.1641/0006-3568(2002)052[0883:ubac]2.0.co;2

Miao, Z., Gaynor, K. M., Wang, J., Liu, Z., Muellerklein, O., Norouzzadeh, M. S.,
et al. (2019). Insights and approaches using deep learning to classify wildlife.
Sci. Rep. 9:8137.

Frontiers in Ecology and Evolution | www.frontiersin.org 10 May 2021 | Volume 9 | Article 600931

http://meshi1.cs.bgu.ac.il/FIE2020_data
https://www.frontiersin.org/articles/10.3389/fevo.2021.600931/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fevo.2021.600931/full#supplementary-material
https://doi.org/10.1016/j.biocontrol.2016.04.003
https://doi.org/10.1016/j.biocontrol.2016.04.003
https://doi.org/10.1016/j.ecoinf.2019.101017
https://doi.org/10.1016/j.compag.2017.08.005
https://doi.org/10.1126/sciadv.aaw4967
https://doi.org/10.1016/j.biocontrol.2004.09.015
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1098/rspb.2019.1501
https://doi.org/10.1098/rspb.2019.1501
https://doi.org/10.1016/j.ecoinf.2016.06.001
https://doi.org/10.1371/journal.pone.0185809
https://doi.org/10.1002/ece3.5921
https://doi.org/10.1111/j.1365-2486.2006.01116.x
https://doi.org/10.1111/j.1365-2486.2006.01116.x
https://doi.org/10.1080/00222933.2013.825021
https://doi.org/10.1080/00222933.2013.825021
https://doi.org/10.1109/access.2019.2909522
https://doi.org/10.1109/access.2019.2909522
https://doi.org/10.1641/0006-3568(2002)052[0883:ubac]2.0.co;2
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-600931 May 17, 2021 Time: 21:42 # 11

Gerovichev et al. Deep Learning for Insect Ecoinformatics

Nieuwenhuizen, A. T., Hemming, J., and Suh, H. K. (2018). Detection and
Classification of Insects on Stick-Traps in a Tomato Crop Using Faster R-CNN.
Berlin: Researchgate.

Novoselsky, T., and Freidberg, A. (2016). First record of Thaumastocoris
peregrinus (Hemiptera: Thaumastocoridae) in the Middle East, with
biological notes on its relations with eucalyptus trees. Isr. J. Entomol. 46,
43–55.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). “You only
look once: unified, real-time object detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, (San Juan, PR: IEEE),
779–788.

Redmon, J., and Farhadi, A. (2017). “YOLO9000: better, faster, stronger,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
(San Juan, PR: IEEE), 7263–7271.

Redmon, J., and Farhadi, A. (2018). Yolov3: an incremental improvement. arXiv
[Preprint] arXiv:1804.02767,

Ren, S., He, K., Girshick, R., and Sun, J. (2015). “Faster r-cnn: towards real-
time object detection with region proposal networks,” in Advances in Neural
Information Processing Systems, eds M. I. Jordan, Y. LeCun, and S. A. Solla
(Cambridge, MA: MIT Press), 91–99.

Roosjen, P. P., Kellenberger, B., Kooistra, L., Green, D. R., and Fahrentrapp, J.
(2020). Deep learning for automated detection of Drosophila suzukii: potential
for UAV−based monitoring. Pest Manag. Sci. 76, 2994–3002. doi: 10.1002/ps.
5845

Rosenheim, J. A., and Gratton, C. (2017). Ecoinformatics (big data) for agricultural
entomology: pitfalls, progress, and promise. Ann. Rev. Entomol. 62, 399–417.
doi: 10.1146/annurev-ento-031616-035444

Rosenheim, J. A., Parsa, S., Forbes, A. A., Krimmel, W. A., Hua Law, Y., Segoli,
M., et al. (2011). Ecoinformatics for integrated pest management: expanding
the applied insect ecologist’s tool-kit. J. Econ. Entomol. 104, 331–342. doi:
10.1603/ec10380

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv
[Preprint] arXiv:1609.04747,

Sánchez-Bayo, F., and Wyckhuys, K. A. (2019). Worldwide decline of the
entomofauna: a review of its drivers. Biol. Cons. 232, 8–27. doi: 10.1016/j.
biocon.2019.01.020

Short, A. E. Z., Dikow, T., and Moreau, C. S. (2018). Entomological collections in
the age of big data. Ann. Rev. Entomol. 63, 513–530. doi: 10.1146/annurev-
ento-031616-035536

Spodek, M., Burckhardt, D., and Freidberg, A. (2017). The Psylloidea (Hemiptera)
of Israel. Zootaxa 4276, 301–345. doi: 10.11646/zootaxa.4276.3.1

Spodek, M., Burckhardt, D., Protasov, A., and Mendel, Z. (2015). First record of
two invasive eucalypt psyllids (Hemiptera: Psylloidea) in Israel. Phytoparasitica
43, 401–406. doi: 10.1007/s12600-015-0465-2

Thomas, J. A., Telfer, M. G., Roy, D. B., Preston, C. D., Greenwood, J. J. D., Asher, J.,
et al. (2004). Comparative losses of British butterflies, birds, and plants and the
global extinction crisis. Science 303, 1879–1881. doi: 10.1126/science.1095046

van Klink, R., Bowler, D. E., Gongalsky, K. B., Swengel, A. B., Gentile, A., and
Chase, J. M. (2020). Meta-analysis reveals declines in terrestrial but increases
in freshwater insect abundances. Science 368, 417–420. doi: 10.1126/science.
aax9931

Wäldchen, J., and Mäder, P. (2018). Plant species identification using computer
vision techniques: a systematic literature review. Arch. Comput. Methods Eng.
25, 507–543. doi: 10.1007/s11831-016-2906-z

Wu, S., Chang, C. M., Mai, G. S., Rubenstein, D. R., Yang, C. M., Huang, Y. T.,
et al. (2019). Artificial intelligence reveals environmental constraints on colour
diversity in insects. Nature Commun. 10:4554.

Zhong, Y., Gao, J., Lei, Q., and Zhou, Y. (2018). A vision-based counting and
recognition System for flying insects in intelligent agriculture. Sensors. 18:1489.
doi: 10.3390/s18051489

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Gerovichev, Sadeh, Winter, Bar-Massada, Keasar and Keasar.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Ecology and Evolution | www.frontiersin.org 11 May 2021 | Volume 9 | Article 600931

https://doi.org/10.1002/ps.5845
https://doi.org/10.1002/ps.5845
https://doi.org/10.1146/annurev-ento-031616-035444
https://doi.org/10.1603/ec10380
https://doi.org/10.1603/ec10380
https://doi.org/10.1016/j.biocon.2019.01.020
https://doi.org/10.1016/j.biocon.2019.01.020
https://doi.org/10.1146/annurev-ento-031616-035536
https://doi.org/10.1146/annurev-ento-031616-035536
https://doi.org/10.11646/zootaxa.4276.3.1
https://doi.org/10.1007/s12600-015-0465-2
https://doi.org/10.1126/science.1095046
https://doi.org/10.1126/science.aax9931
https://doi.org/10.1126/science.aax9931
https://doi.org/10.1007/s11831-016-9206-z
https://doi.org/10.3390/s18051489
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles

	High Throughput Data Acquisition and Deep Learning for Insect Ecoinformatics
	Introduction
	State of the Art: Machine Learning for Insect Ecoinformatics
	A Rate-Limiting Step: Acquisition of Entomological Big Data
	A Way Forward: High-Throughput Acquisition of Insect Data

	Materials and Methods
	The Model System: Invasive Insects in Israel's Eucalyptus Forests
	Insect Trapping
	Preparation of an Image Dataset
	Supervised Learning
	The Deep Learning Network
	Model Training
	Model Evaluation
	Preliminary Application to Forest Ecology Research

	Results
	Trapping of Forest Insects
	Automatic Insect Detection
	Model Evaluation
	Preliminary Application to Forest Ecology Research


	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


