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Next-Generation Camera Trapping:
Systematic Review of Historic Trends
Suggests Keys to Expanded
Research Applications in Ecology
and Conservation
Zackary J. Delisle*, Elizabeth A. Flaherty, Mackenzie R. Nobbe, Cole M. Wzientek and

Robert K. Swihart

Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, United States

Camera trapping is an effective non-invasive method for collecting data on wildlife

species to address questions of ecological and conservation interest. We reviewed 2,167

camera trap (CT) articles from 1994 to 2020. Through the lens of technological diffusion,

we assessed trends in: (1) CT adoption measured by published research output, (2)

topic, taxonomic, and geographic diversification and composition of CT applications,

and (3) sampling effort, spatial extent, and temporal duration of CT studies. Annual

publications of CT articles have grown 81-fold since 1994, increasing at a rate of 1.26

(SE = 0.068) per year since 2005, but with decelerating growth since 2017. Topic,

taxonomic, and geographic richness of CT studies increased to encompass 100% of

topics, 59.4% of ecoregions, and 6.4% of terrestrial vertebrates. However, declines in per

article rates of accretion and plateaus in Shannon’s H for topics and major taxa studied

suggest upper limits to further diversification of CT research as currently practiced.

Notable compositional changes of topics included a decrease in capture-recapture,

recent decrease in spatial-capture-recapture, and increases in occupancy, interspecific

interactions, and automated image classification. Mammals were the dominant taxon

studied; within mammalian orders carnivores exhibited a unimodal peak whereas

primates, rodents and lagomorphs steadily increased. Among biogeographic realms we

observed decreases in Oceania and Nearctic, increases in Afrotropic and Palearctic, and

unimodal peaks for Indomalayan and Neotropic. Camera days, temporal extent, and

area sampled increased, with much greater rates for the 0.90 quantile of CT studies

compared to the median. Next-generation CT studies are poised to expand knowledge

valuable to wildlife ecology and conservation by posing previously infeasible questions

at unprecedented spatiotemporal scales, on a greater array of species, and in a wider

variety of environments. Converting potential into broad-based application will require

transferable models of automated image classification, and data sharing among users

across multiple platforms in a coordinated manner. Further taxonomic diversification likely
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will require technological modifications that permit more efficient sampling of smaller

species and adoption of recent improvements in modeling of unmarked populations.

Environmental diversification can benefit from engineering solutions that expand ease of

CT sampling in traditionally challenging sites.

Keywords: camera trap, diversity, ecoregions, image classification, occupancy, population attributes,

technological diffusion, wildlife

INTRODUCTION

Modern society values versatile technological tools. Consider,
e.g., the popularity of smartphones, which allow users to
send and receive email, text messages, and photographs while
simultaneously serving as a calculator, alarm clock, route mapper,
and barcode scanner, among other tasks. Similarly, scientists
place a premium on versatile tools to advance discovery. Indeed,
the term “jackknife” was bestowed by John Tukey on the now-
popular statistical resampling method to highlight its versatility
in aiding a variety of research tasks (Miller, 1974; Mantel et al.,
1982).

Even technological tools that ultimately enjoy widespread
use rarely achieve instantaneous popularity. Instead, adoption
of a technological innovation depends on communication
among members of a population over time, a process termed
diffusion (Rogers, 2003). Models of technology adoption via
diffusion vary in theoretical motivations (Sarkar, 1998), but
an S-shaped product life cycle often depicts a tool’s growth
in popularity, maturation, and eventual decline (Rogers, 2003).
Notable predictors of adoption are the interests and possible
uses of the technology by prospective adopters, which may
fuel innovative ideas that further enhance adoption while
simultaneously diversifying the suite of applications (e.g., Rice,
2017). We are unaware of Rogers’s (2003) diffusion model
applied to ecology or conservation, and explicit integration
of adoption and application diversity into models of diffusion
appears uncommon (Atkin et al., 2015). Herein, we enlist an
integrated diffusion model to study trends in camera-trapping
studies of wildlife.

Camera trap (CT) technology is designed to permit non-
invasive data collection motivated by interest in behavior,
ecology, and conservation (O’Connell et al., 2011). CT studies
first appeared in the early 20th century (Chapman, 1927) and
have expanded to encompass a range of species inhabiting
freshwater, marine, terrestrial, fossorial, and arboreal habitats
(O’Connell et al., 2011).

Prior systematic reviews with a global scope have reported
trends in CT adoption and provided useful insight into several
aspects of CT research. Five systematic reviews have focused
on CT methodology or study design. Cutler and Swann
(1999) categorized 107 papers published before 1998 to assess
advantages and disadvantages of early trigger mechanisms for
different study objectives. Wearn and Glover-Kapfer (2019) used
meta-analyses of 104 comparative papers published from 1990
to 2017 to quantify effectiveness of CT vs. other sampling
methods and demonstrate 65% greater effectiveness for digital
CTs than other methods. Hofmeester et al. (2019) used 47 studies

published from 2008 to 2018 to estimate effects on detection
for 36 factors related to cameras, CT set-up, target animals, and
environment. They concluded that factors affecting detection at
the microsite and camera scale likely were most important and
offered recommendations for correcting detection issues. Smith
et al. (2020) reviewed 331 CT predator-prey studies published
from 1994 to 2019, documented that only 9% used experimental
approaches, and illustrated temporal trends in observational and
experimental predator-prey CT studies as well as their geographic
and topic distribution. They presented a conceptual guide and
examples for experimental CT studies of predator-prey ecology.
Green et al. (2020a) examined 88 CT papers that used spatially
explicit capture-recapture (SECR) to estimate population density.
Nearly 61% of SECR studies estimated density of wild felids.
Green et al. (2020a) noted constraints on precision of SECR
estimates, offered suggestions for design-based improvements,
and predicted expanded taxonomic application of SECR models
that allow inclusion of unidentifiable individuals.

Two additional systematic reviews offered broader treatment
of CT research applications. Burton et al. (2015) analyzed 266
CT studies published between 2008 and 2013 that dealt with
occurrence, abundance, or behavior. They noted a doubling of
papers every 2.9 years over the 6-year period. In addition to
evaluating CT equipment, design, and effort, they assessed study
composition in relation to geographic, topic, taxonomic, and
trait-based (bodymass, home-range size) categories. Their review
documented increasing prominence of spatial capture-recapture
methods for density estimation from 2011 to 2013, reliance
on occupancy or relative abundance measures for unmarked
populations, and the need for better reporting of methodological
details and assumptions. McCallum (2013) reviewed 414 CT
studies published from 1994 to 2011 and noted a 73% increase
in publications after 2005. Similar to Burton et al. (2015), he
assessed study composition in relation to geographic, habitat,
topic, and taxonomic categories, noting that 62% of papers
included forest habitat, and 53 and 13% of papers addressed
felids and canids, respectively. McCallum (2013) also computed
rank correlations to show positive temporal trends in fraction
of papers devoted to population density and occupancy. He
noted that CT research application at the time was restricted
taxonomically and by habitat but could be used more broadly in
the future.

In this review we assess trends in diffusion of CT technology
for wildlife research by jointly considering: (1) adoption of CTs
in wildlife research, and (2) diversification of applications by
adopters. Wildlife research using camera traps is dynamic, and
from 1994 to 2013 CT studies experienced a long lag phase
followed by exponential growth (McCallum, 2013, Burton et al.,
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2015). Our review seeks answers to the following questions:
Has adoption of CT technology continued unabated, or has
growth decelerated to signify maturation and possible limits to
CT research capacity? Has the suite of CT applications expanded
geographically, taxonomically, and topically over time, and if so,
how? Prior systematic reviews have not formally modeled trends
in diversification of CT research applications, perhaps because
earlier reviews on average dealt with an order of magnitude
fewer articles. We believe modeling of trends offers value for
revealing historic patterns and identifying possible constraints
and opportunities for future growth in CT use. We introduce a
heuristic model to illustrate the development of trajectories along
axes of CT adoption and application diversification (Figure 1).
The model’s key feature is the simultaneous diffusion of CT
technology through the population of wildlife researchers and
across a portfolio of possible applications. Specifically, growth
in adoption by researchers is predicted to be logistic (Rogers,
2003), whereas change in the application trajectory can vary
with many factors including technological innovation, shifts
in research funding priorities, and interests of other adopters.
Although beyond the scope of our review, we believe the
adoption-diversification model framework developed here could
be usefully applied in other systematic reviews and by social
scientists interested in testing competing hypotheses for the
evolution and impact of CT or other technology used for
research purposes.

Three related objectives guided our comprehensive,
quantitative analysis of temporal trends in CT studies from
1994 to 2020. The first two objectives rely on independent
examination of the adoption and application axes of our
heuristic model (Figure 1). Specifically, we assessed trends in
CT adoption by growth in research output, thus serving as an
update to the “early adopter” trends already published. Next,
we assessed trends in CT applications along three dimensions—
topics, taxonomy, and geography—using diversity metrics as
indicators of the breadth of CT applications to wildlife research.
For our first two objectives, we interpret positive, stabilized, and
declining trends as reflecting continued technological diffusion,
maturation, and senescence, respectively (Figure 1). We pay
special attention to recent trends in components of diversity
(2016–2020), because they could signify emerging areas tied to
innovation and further expansion of the CT research portfolio.
Third, we examined development of CT research in the context
of study extent. Large-scale CT networks monitored over long
timespans are necessary to address many of the most vexing
problems in ecology and conservation, and represent a logical
progression for CT growth in the era of big data (Rowcliffe and
Carbone, 2008; Steenweg et al., 2017; Kays et al., 2020b). To
measure the extent to which progress toward large-scale CT
research has occurred, we assessed trends in sampling effort,
spatial extent, and temporal duration of CT studies.

METHODS

Literature Review
We conducted a keyword search on all databases of Web

of Science© for articles published in English from 1994

FIGURE 1 | A simple heuristic model of technological diffusion in camera

trapping (CT) for which development and ingenuity lead to growth over time in

both total adoption and diversification of research applications. The vertical

axis depicts growth in technology adopters, which follows the S-shape

characteristic of innovation diffusion (Sarkar, 1998). The horizontal applications

axis depicts uses of the technology by researchers at a given point in time.

Colors represent the relative fraction of uses for each application at a given

time, scaled so the application with maximum use at that time receives a value

of one. In this example, a core set of applications receives the bulk of uses

(red), with peripheral applications receiving lower relative use (blue). The overall

breadth of applications grows steadily over time, is accompanied by an

expanded set of central “high use” applications, and exhibits reasonable

temporal constancy in those applications deemed core vs. peripheral (i.e.,

stationarity of mean application). Our formulation assigns each adopter in a

time step to the application of one of the current CT practitioners with equal

probability. It thus allows for interpersonal effects; differential influence of CT

researchers also could be modeled in this framework using unequal weights

(Magsamen-Conrad and Dillon, 2020). The model assumes: (1) logistic growth

with a capacity of 1,000 adopters, and (2) the possibility of application

diversification at each time step according to a symmetric trinomial distribution

with fidelity (probability = 0.5) to the adopter’s current application and equal

probability (0.25) of adoption of applications immediately adjacent to the

current application. Many alternative mechanisms of diffusion could be

formulated; a second simple example is provided online

(Supplementary Figure 1). In our review, we measured adoption by number

of articles published and considered diversification for three categories of CT

applications: research topics, taxonomy, and geography.

through 14 August 2020 that contained the key words “camera
trap,” “infrared triggered camera,” “trail camera,” “automatic
camera,” “photo trap,” “remote camera,” or “remotely triggered
camera.” The search was further refined to research areas
in the domain of biology and technology (details in online
supplement “Web of Science Search”). We excluded duplicate
appearances of articles, those not focused on applications
to wildlife, and review papers lacking novel field data or
methodological advances.
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After refinement, we extracted information regarding the
research focus of each remaining article.We assigned≥1 research
topic from a list of 26 categories (Table 1) modified from those
used by McCallum (2013) and Burton et al. (2015). Topics
addressed research objectives that dealt with population-level
parameters, occurrence/use of an area, individual-level attributes
reflecting behavioral decisions, and advances in technology or
analysis (Table 1). We also assigned ≥1 study themes with
the intent of categorizing articles into 6 broad classes: (1)
“basic science” characterized studies designed to test predictions
of theory or increase understanding of biological processes
or natural history; (2) “faunal survey” denoted articles whose
objective was systematic monitoring or development of species
lists or assessment of richness; (3) “conservation” identified
studies related to protection or restoration of biodiversity; (4)
“management” applied to studies with an objective to further
sound consumptive use of harvested species, to control human-
wildlife conflict, or to understand wildlife responses to humans
and their logging, grazing, farming, or development of land;
(5) “method” characterized studies with an objective to evaluate
or demonstrate a sampling or analysis method using field
data; (6) “trends” denoted articles that assessed long-term or
large-scale patterns or projections, typically for conservation, or
management purposes.

For articles with field data (95% of papers), we assembled
lists of the species studied. We used the Global Biodiversity
Information System (GBIF) taxonomy as implemented in R
package “traitdataform” (Schneider, 2020) to resolve taxonomic
synonymies. Classification of mammals was further checked
against the taxonomy in Wilson and Reeder (2005), and
a few inconsistencies from the fuzzy matching results of
“traitdataform” were corrected.

We also recorded locality and habitat information for
field-based studies. Specifically, we extracted latitude and
longitude in conjunction with maps of study areas to record
information about sampled areas (Dinerstein et al., 2017). We
used Ecoregions2017©Resolve (https://ecoregions2017.appspot.
com/) to assign study sites to continents and countries as
well as 846 ecoregions, 14 biomes, and 7 biogeographical
realms. At the finest resolution, we recorded whether a study
sampled anthropogenic habitat, defined as manmade or highly
modified habitat including urban or residential sites, farmland,
pastureland, tree plantations, orchards, and cleared, or degraded
tropical forest.

We computed indexes of sampling effort and spatiotemporal
extent for articles providing relevant information. We used
camera days (the sum of days of sampling across all cameras
used in a study) as an index of effort because it integrates
two separate dimensions of effort (number of cameras and
days of sampling). Temporal duration of sampling (in years)
was computed whenever start and end dates for sampling
were provided. Temporal intensity of sampling was indexed by
dividing the number of months in which sampling occurred by
the temporal extent of the study, yielding a metric ranging from
0 to 12. Spatial extent of sampling (km2) was recorded when
the sizes of focal survey areas were clearly presented in methods
or estimated in analyses. We also sought to derive measures of

TABLE 1 | Names and descriptions of the 26 topic categories for which

camera-trapping studies were scored.

Name Description

Activity Estimate daily activity patterns

Camera Sampling Design Advance elements of hardware, software, platforms,

or field use (e.g., orientation, height, trigger)

Capture-Recapture Estimate abundance or density via

capture-recapture or mark-resight methods

Data Analysis Advance model-based analysis of data from camera

trapping studies

Data Management Advance digital management of images or data

from camera trapping

Dietary Selection Assess foraging, patch choice, or food items

Discrete Resource Use Assess use of denning, nesting, watering, or

marking structures—unrelated to predation or

reproduction

Image Classification Advance image classification (e.g., citizen science,

automated processing, object detection, counting)

Interspecific Interactions Directly or indirectly examine interspecific

interactions (e.g., predator-prey, competition,

mutualism)

Intraspecific Sociality Examine behavior toward conspecifics (e.g.,

territoriality, allo-grooming, play, group dynamics)

Movement Collect data related to movement (e.g., home range,

dispersal, corridor use, barrier crossing)

Nest Predation Assess predation at or parasitism of nests or

burrows

Occupancy Separately model detection and occupancy

Phenology Address seasonal or annual patterns of behavior

(e.g., migration or hibernation)

Physical Features Wildlife health, disease, or physical appearance

(e.g., coloration, diagnostic features)

Presence-Absence Assess presence-absence with no attempt to

address imperfect detection

Range Record Document a range extension or other noteworthy

occurrence of species within its range

Relative Abundance Measure relative abundance or use intensity via an

index

Reproduction Assess courtship, mating, rearing, infanticide, or

other behavior related to reproduction

Resource Transport Collect data related to food/pollen dispersal,

storage, or recovery including theft

Scavenging Assess consumers at carcasses or bait stations

Spatial Capture-Recapture Estimate abundance, density, or activity centers via

spatial capture-recapture methods

Structure Estimate compositional elements of population

(e.g., age structure, sex ratio)

Study Design Advance elements of study design (e.g., sampling

effort, sampling design, effect of baits/lures)

Unmarked Estimate abundance or density with unmarked

individuals including partially marked populations

Vital Rates Estimate rate parameters with capture-recapture,

abundance, or occupancy

spatial grain, but variability in study designs and descriptions of
camera spacing rendered the objective infeasible.

To avoid bias that might result from subtle changes in scoring
as we proceeded with the review, articles published from 1994
to 2019 were processed alphabetically by the last names of
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first authors. While it is conceivable that an alphabetized list
could covary with year, we can think of no reason why such
covariation should arise. The partial year 2020 was sorted in
reverse chronological order and processed after completion of
articles published during 1994–2019. Upon completion, a second
check of articles was conducted to confirm scoring consistency,
correct errors, and catch inadvertent omissions.

Data Analysis
Trends in Adoption and Diversification
For simplicity, we constructed separate models of trends along
the adoption axis and the application diversification axis of our
model (Figure 1). We assessed changes over time in adoption by
modeling number of articles published annually. An exponential
pattern is predicted if CT growth witnessed in prior reviews
(McCallum, 2013; Burton et al., 2015) has continued unabated.
We fitted an exponential model of the form articles = αeβ(year),
where eβ is the annual rate of growth. In contrast, a logistic
pattern is expected if growth has matured and thus embodies
a deceleration phase and asymptote (Rogers, 2003). We fitted a
logistic model of the form articles = φ1

1+
(

e−(φ2+φ3year)
) , where φ1

is the asymptotic number of articles and -φ2/φ3 is the inflection
point beyond which time growth decelerates. Models were fitted
in R using non-linear least squares, and comparisons were made
with AICc (Burnham and Anderson, 2002).

Changes in topic, taxonomic, and geographic diversity of CT
studies were assessed with three approaches. First, we constructed
accumulation curves to display the rate at which new topics, taxa,
and ecoregions were added to the community of CT studies.
Greater accumulation is expected in years with more published
CT studies, all else equal. Therefore, our second approach
assessed trends in the annual per article rate of accretion of
new topics, taxa, and ecoregions; a measure akin to per capita
growth rate. For our third approach, we computed Shannon’s
Index (Spellerburg and Fedor, 2003) for each year, i.e., H =

−
∑S

i=1 pi ln pi, where pi is the proportional contribution of topic
(or taxon or biome) i for the period, and S is the total number
of topical (or taxonomic or biome) categories. Proportional
contributions, pi, were computed as the number of occurrences
of i divided by total occurrences for the S categories in the
focal period. For taxa, we conducted three analyses: (1) major
taxa, i.e., class or above; (2) orders within Mammalia; and (3)
families within Carnivora. Too few CT articles were published
from 1994 to 2010 to yield unbiased diversity estimates for each
year separately. Consequently, we used simulations to determine
that mean estimates ofH stabilized at n≥ 100, and assigned years
to bins to satisfy this threshold. Similarly, some pooling of rarely
studied taxa was necessary.

Temporal trends in diversification measured by H and
per article accretion rate were regressed against year using
generalized additive models (GAMs) in R package “mgcv”
(Wood, 2020) with low-rank isotropic smooths (Wood, 2003).
Adequacy of the smoothing dimension was checked using P-
values from simulated residual-variance estimates (Wood, 2017).
Whenwe combined articles frommultiple years, the year used for
regression was determined by weighting each year in the interval

by the frequency of articles published in that year divided by the
total number of articles in the interval.

Trends in Composition
We analyzed trends in topic, taxonomic, and geographic
composition of CT studies using multivariate regression to
simultaneously model the probability of occurrence of each topic,
taxon, or geographic area as a quadratic or linear function of year
using R package “mvabund” (Wang et al., 2012). Unstructured
correlation matrices were used to account for large sample
size and possible correlation between variables. We fit both
complementary log-log and log-odds models, and selected final
models using Akaike’s Information Criterion and Dunn-Smyth
residual checks (Dunn and Smyth, 1996). Analysis of deviance
with likelihood ratio tests was used to assess the degree to
which covariates improved model fit (Warton et al., 2017),
and univariate effects with quasi P < 0.10 were plotted and
included in results. We also tested separately for homogeneity
of proportions across years using Chi-square tests with quasi P-
values determined from 2000 Monte Carlo trials derived from
the set of all contingency tables with the observed marginal
row and column totals (Hope, 1968). Temporal trends in the
study of anthropogenic habitat were assessed via GAM with a
binary response.

Trends in Effort and Scale
We analyzed trends in sampling effort and spatiotemporal extent
with quantile GAMs (QGAMs) for 0.50 and 0.90 quantiles using
R package “qgam” (Fasiolo et al., 2020). We used QGAMs
because we reasoned that notable changes in effort and scale
were more likely to occur in a small fraction of studies
published in a given year. Trend models were constructed
for the response variables camera days, area sampled (km2),
temporal duration (years), and temporal intensity (months per
year sampled). We used low-rank isotropic smooths for QGAM
fitting (Wood, 2003), and adequacy of the smoothing dimension
was checked using P-values from simulated residual-variance
estimates (Wood, 2017). All analyses were performed in R version
4.0.2 (R Development Core Team, 2020).

RESULTS

The Web of Science© search resulted in 2,515 articles. Of these,
2,167 met our criteria for inclusion in the review (see online
supplement for PRISMA Flow Diagram and ecoregion, effort,
species, and topic data). Most articles addressed multiple topics
(49.2%) and species (51.8%), and the proportional contribution
of these articles remained fairly consistent over time. Growth
in published articles has continued throughout the 2000s, to
>300 per year (Figure 2). For applications, diversification in total
number of research topics peaked in 2011 and leveled off, whereas
growth in total number of species and ecoregions has continued
throughout their respective time series (Figure 2). Details of
trends along the adoption and application axes are considered in
separate sections below.
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FIGURE 2 | Technological diffusion in camera trapping, 1994–2020. Each panel depicts adoption as number of published articles and one of three categories of CT

application: topic, species, and ecoregion. Colors represent the relative fraction of uses for applications at a given time, scaled so the application with maximum use at

that time received a value of one. Numeric values were assigned arbitrarily to an application but remained fixed throughout the time series. Detailed assessments of

application diversification are presented in subsequent figures. Counts for 2020 were prorated to an annual basis from a search conducted 14 August 2020.

TABLE 2 | Exponential and logistic models fitted to camera-trap articles published annually from 1994 to 2020.

Model

coefficient

Estimate t P 95% Confidence interval Residual

SE

AICc

Lower Upper

Exponential 15.0 (25) 227.9

α 4.167 5.96 8.1e−6 2.917 5.781

β 0.166 22.90 <2e−16 0.153 0.180

Logistic 7.9 (24) 195.0

φ1 496.36 11.69 2.2e−11 428.80 609.21

φ2 −6.55 −27.23 <2e−16 −7.09 −6.12

φ3 0.27 16.38 1.6e−14 0.24 0.31

The deterministic part of the exponential model was articles = αeβ(year), where eβ is the annual rate of growth. Similarly, the logistic model was articles =
φ1

1+
(

e−(φ2+φ3year)
) , where φ1

is the asymptotic number of articles and -φ2/φ3 is the inflection point marking the time beyond which growth decelerates. Models were fitted in R using the method of non-linear least

squares (function nls). To aid convergence, year was transformed by subtracting 1993 from each record in the time series. Estimated coefficients, 95% profile likelihood intervals, t and

P-values, residual standard error (degrees of freedom), and AICc are provided for each model.

Trends in Adoption
CT research growth has been strong in the 2000s, but that
growth appears to have slowed recently. CT articles initially
experienced a decade-long lag phase during which annual
number of publications never exceeded 10 (Figure 2). Since 2005
CT studies increased at an average annual rate of 1.26 (SE =

0.068). Indeed, annual publication of CT articles increased 5.2-
fold in the past decade, and 81-fold since 1994 (Figure 2). Despite
robust growth, the logistic model provided a better fit than the
exponential model (1AICc= 32.9), with deceleration since 2017
and an estimated asymptote of 496 articles (Table 2).

Trends in Diversification
Across the three approaches to measuring change in
diversification, evidence for attaining an upper limit
was especially strong for topics, with some evidence that
diversification has slowed taxonomically and geographically.
Species studied by camera trapping totaled 2,416, including 1,080
mammals, 1,023 birds, 169 reptiles and amphibians, 18 fishes,

25 invertebrates, and 101 plants and fungi. Since 2013, a greater
mean annual rate of accumulation has occurred for birds (1.22,
SE = 0.050) than for mammals (1.09, SE = 0.013). Reptiles and
amphibians also increased notably from 2013 to 2020 (Figure 3).
CT studies have occurred in 503 of 846 terrestrial ecoregions
(Figure 4), increasing at an average annual rate of 1.15 (SE =

0.019) from 2005 to 2020 (Figure 3). Underrepresented areas
for CT studies include extreme latitudes, northern Africa, the
Middle East, and western Australia (Figure 4). Species and
ecoregions (Figure 3) accumulated in a pattern that closely
matched the rate of increase in CT articles (Figure 2). In contrast
to the concave accumulation curves for species and ecoregions,
the rate of topic accumulation gradually slowed until all 26 topics
had been included in CT research by 2011 (Figure 3).

Although overall diversity of species, topics, and ecoregions
accumulated steadily in CT studies (Figure 3), the annual per
article rate of diversity accretion for each dimension of diversity
declined over time (Figure 5). This decline was most dramatic
for topics, the least diverse category considered (Figure 5,
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FIGURE 3 | Accumulation of topics, species, and ecoregions in

camera-trapping articles, 1994–2020.

Supplementary Table 1a; GAM P << 0.0001, 58.4% of deviance
explained). The per article rate of diversity accretion for species
was quite variable from 1994 to 2005, with a more consistent
linear decline thereafter (Figure 5; GAM P < 0.0001, 49.7%
of deviance explained). The trend in annual per article rate of
diversity accretion for ecoregions was characterized mostly by
stasis in the 1990s, followed by a decline thereafter, with an
inflection at around 2013 (Figure 5; GAM P << 0.00001, 92.3%
deviance explained).

Values of Shannon’s H based on the 26 topic areas increased
from 2007 to a peak in 2015, and then leveled off (Figure 6,
Supplementary Table 1b; GAM P = 0.003, 85.3% of deviance
explained). A similar trend was evident for values of Shannon’s
H based on taxonomic groups at the class or higher level,
although GAM smoothing terms were less important (Figure 6,
P = 0.052, 67.5% of deviance explained). No temporal trend in

diversification of mammalian orders was apparent (GAM P =

0.113, 42.7% of deviance explained). Values of Shannon’sH based
on families of Carnivora exhibited a steady increase from 2016 to
2020 (Figure 6, GAM P = 0.04, 66.3% of deviance explained).
Similarly, values of Shannon’s H based on biomes exhibited a
strong, non-linear trend, with a decade-long decrease followed by
a steady increase since 2012 (Figure 6, GAM P = 0.0005, 90.2%
of deviance explained).

Trends in Composition
Overall, modeled trends in individual components of
diversification revealed increased representation of some
topics (e.g., image classification, occupancy) at the expense of
studies of marked populations, increased prevalence of some
mammalian orders (e.g., Primates, Rodentia) at the expense
of carnivores, and shifting representation of biogeographical
realms. Multivariate regression and Pearson residuals from tests
of homogeneity of proportions produced convergent results for
all compositional analyses, hence, we report only the former
here (see Supplementary Figures 4–10 for latter result). A
strong quadratic association existed between the log-odds of
themes and year (Wald X2 for quadratic term = 5.9, P = 0.001).
Specifically, the probability of faunal surveys (quadratic Wald =

3.65, P = 0.004) and conservation (quadratic Wald = 3.34, P =

0.005) increased until 2012 and declined thereafter (Figure 7).
The probability of methods-oriented articles (quadratic Wald
= 3.92, P = 0.002) declined at a decelerating rate to a low in
2018, with a slight uptick more recently (Figure 7). In contrast,
the probability of articles addressing management (linear
Wald = 3.75, P = 0.002) and trends (linear Wald = 3.03, P
= 0.011) generally increased in relative frequency over time.
Representation of basic science showed neither linear (Wald =

1.27, P = 0.342) nor quadratic (Wald= 0.13, P = 0.989) trends.
Multivariate regression identified a strong quadratic

component relating log-odds of study topics and year (Wald
X2 for quadratic term = 9.77, P = 0.001). The probability of
capture-recapture studies (quadratic Wald = 4.75, P = 0.002),
spatial capture-recapture studies (quadratic Wald = 3.01, P =

0.058), and range record studies (quadratic Wald = 3.07, P =

0.042) increased to peaks in 2005, 2015, and 2012, respectively,
and declined thereafter (Figure 8). In contrast, probability of
articles devoted to occupancy (linear Wald = 6.49, P = 0.001),
interspecific interactions (linear Wald = 4.16, P = 0.001), and
image classification (linear Wald = 4.35, P = 0.001) increased
linearly over time, with the latter jumping sharply in the last 2
years (Figure 8).

Mammals predominated among major taxa studied,
representing 82.5% of all occurrences. Multivariate regression
indicated a strong quadratic trend relating log-odds of major
taxonomic classes and year (Wald X2

= 5.55, P = 0.001). The
probability of articles devoted to mammals (quadratic Wald =

2.48, P = 0.019) rose slightly to a plateau in the first decade
of the millennium (Figure 9). The probability of CT articles
on fish/invertebrates (quadratic Wald = 4.21, P = 0.001),
herpetofauna (quadratic Wald = 2.65, P = 0.019), and birds
(quadratic Wald = 2.86, P = 0.019) all decreased, with rebounds
since 2015 in the latter two (Figure 9).
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FIGURE 4 | Heat map for frequency of published camera-trapping studies by ecoregion, 1994–2020.

A more focused multivariate regression documented a
quadratic trend for log-odds of mammalian orders (Wald X2

= 4.23, P = 0.012). Carnivore probability (quadratic Wald =

3.646, P = 0.004) initially increased, but has declined over the
past decade (Figure 10). The probability of primates (linear
Wald = 2.806, P = 0.026), rodents (linear Wald = 3.667, P =

0.003), and lagomorphs (linear Wald = 2.448, P = 0.062) have
all steadily increased (Figure 10). A family-level multivariate
regression documented a significant linear trend for Carnivora
(Wald X2

= 5.10, P = 0.006). Both canid (linear Wald = 3.512,
P = 0.001) and mustelid (linear Wald = 2.729, P = 0.050)
probability increased since 1994 (Supplementary Figure 3).

Multivariate regression identified a strong quadratic trend
relating log-odds of realm and year (Wald X2 for quadratic
term = 6.82, P = 0.002). The probability of CT studies in the
Afrotropic (linearWald= 3.644, P= 0.003) and Palearctic (linear
Wald = 2.73, P = 0.024) realms increased (Figure 11). Both the
probability of Neotropic (quadratic Wald= 3.42, P = 0.004) and
Indomalayan (linear Wald = 3.14, P = 0.011) realms peaked
near 2010, and declined soon after (Figure 11). The probability
of both Nearctic (quadraticWald= 4.70, P= 0.002) and Oceania
(quadratic Wald = 2.50, P = 0.045) realms decreased since
1994, with a slight uptick recently in the former (Figure 11). In
contrast, multivariate regression identified a linear trend relating
log-odds of biome and year (Wald X2 for quadratic term = 5.09,
P= 0.033), but we found no notable univariate relationships. At a
finer spatial scale, the probability of anthropogenic habitat in CT
studies decreased until 2010, then increased, although model fit
was poor (Supplementary Table 1c, Supplementary Figure 2).

Trends in Effort and Scale
Effort and scale variables exhibited strong positive skew, and 6
of 8 QGAMs yielded smoothing terms with strong (P ≤ 0.02)
support for increasing trends (Supplementary Table 1d). For
camera days, median values increased steadily over time, whereas
the 0.9 quantile did not increase consistently until 2013 but rose
at a more rapid rate thereafter (Figure 12). The median and

0.90 quantiles for spatial extent of CT studies increased steadily
from 1994 to 2020, with a greater rate for the latter (Figure 12).
No trend was evident for the median temporal extent, whereas
a positive trend was notable for the 0.90 quantile (Figure 12).
Temporal intensity, the number of months of camera sampling
per year of study, increased at the median but not at the 0.90
quantile (Figure 12).

DISCUSSION

Trends in Camera Trap Adoption and
Applications
Wildlife research with camera traps has exhibited pronounced
trends in overall adoption and in diversification of its application
to topics, ecoregions, and taxa. Adoption experienced a
prolonged lag phase followed by strong growth since 2005
(Figure 2), as is typical during technological diffusion (Rogers,
2003). Importantly, our modeling suggests that CT adoption
is approaching the early stages of technology maturation, with
some deceleration in publication rate since 2017 and a predicted
asymptote of 496 papers per year. We urge caution when
interpreting this result, as the estimates are based on few points
beyond the estimated inflection midpoint and thus could change
substantially in the next few years. Nonetheless, the period of
unabated growth in CT articles appears to have ended.

Diversification trends for CT applications weremore complex,
but tended to show signs that diffusion has slowed recently.
For a constant rate of technological diffusion and a finite
number of applications, universal adoption occurs sooner for a
smaller number of available applications. In our topic, ecoregion,
and taxonomic categories, we considered 26 research topics,
846 ecoregions, and >35,000 species (mammals, birds, and
herpetofauna) and observed 100, 59.4, and 6.4% coverage,
respectively. At least for simple accumulation metrics, CT
research has thus reached the upper limit set by our system of
categorizing topics, whereas in the 7.5 months of 2020 covered
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FIGURE 5 | Generalized additive models of annual per article rates of

accumulation of topics, species, and ecoregions in camera-trapping articles

from 1994 to 2020. Details of model fit are provided in the text and online

Supplementary Table 1a. Shaded regions represent standard errors and

points represent observed annual per article accumulation rates.

by our systematic review there were 19 new ecoregions and 118
new species studied using CTs.

Accumulation metrics (Figure 3), while informative,
constrain inference about diversification of CT applications in
the same ways that reliance on species richness limits inference
about biodiversity. Specifically, trends from accumulation
metrics reveal nothing about per capita rates of accretion, how
CT research is distributed among applications, or the extent
to which the study of individual topics, taxa or ecoregions has
changed. Topics, taxa, and ecoregions all exhibited declining per
article accretion rates over time, with research topics exhibiting
the steepest decline, as expected for a category with greater
density (i.e., application) dependence. Shannon’s diversity index
plateaued for research topics and major taxa in the last 5 years
following a decade of growth, suggesting attainment of upper

FIGURE 6 | Generalized additive models of Shannon’s diversity index, H, as a

function of year. Models were fitted for topics, major taxa, and families of

carnivores in camera-trapping articles. Details of model fit are provided in the

text and Supplementary Table 1b. Shaded regions represent standard errors

and points represent observed indices for each time interval.

limits to topic and taxonomic diversification in CT research.
Surpassing these limits will require scientific or technological
innovation that expands the application niche space for future
CT research to enable greater study of under-represented
topics, species or environments for which current CT study
is difficult or impossible. Within this context we explore six
limitations to CT diversification suggested by our review, present
possible solutions, and speculate on whether solutions will offer
incremental improvements to “hard” limits of CT technology or
more sweeping growth opportunities.

Next-Generation Camera Trap Research:
Elements of an Expanded Portfolio
The Challenge of Individual Identification
Trends in individual research topics revealed shifts that may
reflect new developments, conservation priorities, or efforts

Frontiers in Ecology and Evolution | www.frontiersin.org 9 February 2021 | Volume 9 | Article 617996

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Delisle et al. Trends in Camera Trapping

FIGURE 7 | Effects plots of multivariate regression for themes of

camera-trapping studies that exhibited temporal trends (P < 0.10) in

probability of occurrence. Shaded regions represent standard errors and

points represent observed annual proportions.

to overcome technological obstacles. We observed a dramatic
decline in capture-recapture CT studies since 2005, a more
recent dip in spatial capture-recapture studies since 2016, and
a consistent increase in occupancy studies since 2007. These
changes reflect shifts in the focus of CT studies.

An inability to identify individuals is a limitation common
to most of the taxa increasingly represented in CT studies. We
suspect that many researchers unable to identify individuals
shifted their focus to estimates of occupancy (Burton et al.,
2015; Sollmann, 2018) or to indexes of abundance, both of
which can be useful and cost-effective alternatives (Steenweg
et al., 2019). In particular, occupancy can be linearly related
to abundance if survey length is short in relation to animal
movement and variation among areas does not affect behavior

(Parsons et al., 2017; Steenweg et al., 2018). However, occupancy
generally is less informative than abundance, and failure of
indexes to incorporate imperfect detection in the sampling
process can lead to flawed inference (Kellner and Swihart, 2014;
Kéry and Royle, 2015). Moreover, station- and animal-level
variation in detectability of CTs can be considerable (McIntyre
et al., 2020; Moll et al., 2020). Gilbert et al. (2020) reviewed
methods for estimating abundance of unmarked populations
with CTs, explicitly considered underlying assumptions, and
provided decision rules for practitioners contemplating their
use. Methods reviewed include unmarked spatial mark-resight
(Chandler and Royle, 2013), partial-identity models (Augustine
et al., 2019; Macaulay et al., 2020), site-structured models (Kéry
and Royle, 2015), the random-encounter model and extensions
(Rowcliffe et al., 2008; Nakashima et al., 2018, 2020), time-
to-event, space-to-event, and instantaneous-sampling models
(Moeller et al., 2018), and CT distance sampling (Howe et al.,
2017, 2019; Cappelle et al., 2019). In the short term we expect
the fraction of studies dealing with unmarked populations to
grow, with increasing reliance on recently developed methods
by those seeking estimates of abundance. The guidance provided
by Gilbert et al. (2020), coupled with improved accessibility of
software and continued methodological refinement including
integrated likelihood models (e.g., Ngoprasert et al., 2019;
Maronde et al., 2020), should result in improved decision making
and possibly greater adoption by future CT studies focused on
abundance estimation.

Inference on Interspecific Interactions
Increases in studies examining interspecific interactions also
emerged from our analysis. Indirect assessments of predator-prey
interactions predominated, based primarily on estimated activity
overlap and, less frequently, spatial co-occurrence (e.g., Bischof
et al., 2014; Delibes-Mateos et al., 2014). As noted by Smith
et al. (2020), experimental studies of interspecific interactions
were relatively rare.We suspect that greater focus on experiments
designed to test mechanistic drivers of interspecific interactions
will fuel continued growth in CT studies. Increased experimental
focus of anthropogenic and environmental factors on behavior
generally and interspecific interactions specifically would benefit
understanding even more if coordinated across studies and sites
(Frey et al., 2017). Recent advances in the use of CT data to
model dynamics of perceived risk (Palmer et al., 2017), use
intensity from spatially recurrent events (Keim et al., 2019), and
joint overlap along spatiotemporal dimensions (Cusack et al.,
2017; Hepler and Erhardt, 2020) promise to expand study of
interspecific interactions still further.

Automated Image Classification
The most dramatic recent rate of increase in CT topics occurred
in the area of automated image classification. Our findings are
consistent with Christin et al. (2019), who found that nearly
70% of 87 papers published on deep neural network applications
in ecology, when considering papers published by December
2018, were published in 2017 or 2018. Among these papers,
the dominant use was for image processing. The increased
attention reflects attempts to address a major constraint of CT
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FIGURE 8 | Effects plots of multivariate regression for topics exhibiting temporal trends (P < 0.10) in probability of occurrence in camera-trapping articles. Shaded

regions represent standard errors and points represent observed annual proportions. CR, capture-recapture; SCR, spatial capture-recapture. All topics are defined in

Table 1.

FIGURE 9 | Effects plots of multivariate regression for taxonomic classes exhibiting temporal trends (P < 0.10) in probability of occurrence in camera-trapping articles.

Shaded regions represent standard errors and points represent observed annual proportions.

studies conducted at large spatial or temporal scales, namely,
the effort necessary to classify the staggering number of images
often collected. The observed increases in camera days, spatial
extent, and temporal extent for the top 10% of large-scale CT
studies reflect their value to improve ecological understanding
and aid conservation and management efforts at local and

global spatial scales (Pollock et al., 2002; Rich et al., 2017;
Steenweg et al., 2017). The high rates of increase for the top 10%
relative to the median are likely because the objectives of many
studies can be addressed at smaller spatiotemporal scales. At the
largest spatiotemporal scales, though, many researchers could be
limited by hardware costs and the capacity to process images.
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FIGURE 10 | Effects plots of multivariate regression for mammalian orders exhibiting temporal trends (P < 0.10) in probability of occurrence in camera-trapping

articles. Shaded regions represent standard errors and points represent observed annual proportions.

FIGURE 11 | Multivariate regression effects plot of realms exhibiting temporal trends (P < 0.10). Shaded regions represent standard errors and points represent

observed annual proportions.

Further proliferation of non-invasive CT sampling will rely on
inexpensive hardware to enable widespread image collection, and
software to automate extraction of data (Kitzes and Schricker,
2019). We focus on software needs, since needs related to
hardware development were considered by Glover-Kapfer et al.
(2019; also see Other considerations). Large-scale studies can

quickly amass hundreds of thousands to millions of images that
can take years to classify. For example, during a study of white-
tailed deer (Odocoileus virginianus) in Indiana, USA (Swihart
et al., 2020), we accumulated >2.2 million images in two winters
(55,621 CT nights from an average of 432 cameras) and achieved
a manual classification rate of ∼450 images/hour for 582,000
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FIGURE 12 | Generalized additive quantile models for trends in camera-trapping effort and scale based on median and 0.90 quantiles. Details of model fit are

provided in the text and Supplementary Table 1d. Shaded regions represent standard errors.

images. Manual processing of one million images at these rates
would require 1.1 person-years of effort (40 h/week), a level of
effort that is seldom feasible, even though it improves on the
2.7 person-years required by citizen science volunteers (Swanson
et al., 2015). Image classification clearly poses a substantial
impediment to continued growth in large-scale CT studies
(Ahumada et al., 2020).

Automated image classification using machine-learning
algorithms has the potential to break the bottleneck imposed
by manual classification and substantially expand CT adoption
among researchers. Specifically, deep convolutional neural
networks (DNN) can classify one million images in <10 h on a
standard laptop computer (Tabak et al., 2019) and can identify
empty images as well as humans (96.6–99.8%; Norouzzadeh
et al., 2018; Ahmed et al., 2019; Sundaram and Loganathan,
2020). Unfortunately, thesemodels suffer from two shortcomings
when identifying species (Schneider et al., 2020a): (1) worse
performance for rarer species with few (<500) training images;
and (2) poor transferability, i.e., declines in performance when
classifying images from cameras not in the model training set
(Miao et al., 2019; Green et al., 2020b). Worse performance on
rare species is concerning because rare species are of greatest
conservation interest, but poor transferability is arguably more
serious because it limits classification performance for rare
species by augmentation with training images from other
sites/sources. Therefore, transferability is a major obstacle to
application of DNN models for CT studies in which camera

locations, and thus backgrounds, change over time. Approaches
to improving transferability include: (1) increasing the diversity
of sites, and hence backgrounds, on which to train DNN models
(Tabak et al., 2020), and (2) filtering out the background and
focusing classification on animal features contained within
images. The second currently has two variants: (1) process
images using k-means cluster analysis and graph cutting to
construct animal regions in each image and subject animal
regions to a DNN for species classification (Ahmed et al.,
2019), and (2) use coupled pre-trained object detection and
DNN models with active learning on cropped animal images
(Norouzzadeh et al., 2021). Additional contributions in machine
learning for CT images will likely streamline data extraction,
including automation of individual identification (Schneider
et al., 2020b), distance estimation (Egri et al., 2019), labeling
of behaviors, and counting of individuals (Norouzzadeh et al.,
2018, 2021). Integrating machine learning with citizen science
programs can further improve conversion of images to data
(Green et al., 2020b). Data extraction from videos using machine
learning may also provide opportunities for quick retrieval of
behavioral data and species identification (Conway et al., 2020).

Enhanced Sampling of Microfauna
CT research thus far has focused predominantly on mammals
>1 kg, even though the median body weights for mammals and
birds are 86 g and 38 g, respectively (Blackburn and Gaston,
1994, 1998). Technological CT advances that heighten trigger
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response, improve sensor performance, and diminish weather-
related inefficiencies are needed to reduce field-related issues
with data acquisition (Glover-Kapfer et al., 2019), and we urge
modifications devoted specifically to sampling small species.
Minor modifications of existing technology will suffice in some
cases, although resulting growth in species studied likely will be
incremental rather than transformational. For example, Tennant
et al. (2020) found that camera traps modified to a close-
focal distance of 40 cm detected endangered shrews (Sorex
ornatus, <10 g) at 89% of stations, and Mos and Hofmeester
(2020) sharpened images of weasels (Mustela nivalis and M.
erminea, < 250 g) by placing a +2-diopter lens in front of
the camera. Without any modifications to a close-focusing
Bushnell camera, Ortmann and Johnson (2020) documented
detection probabilities >0.8 for brown rats (Rattus norvegicus)
traveling 0.6−2.0 m from the CT, 0.4−1 for nectar-feeding birds
0.6 m away, and <0.1 for the same birds at 2 m. Yoshioka et
al. (2020) devised an inexpensive and energy-efficient CT that
successfully detected Sympetrum dragonflies at perching sites,
and concluded that automated monitoring of small insects with
CTs was realistic.

Enhanced Sampling of Habitats and Strata
CT studies have been restricted largely to terrestrial species, even
though many vertebrates are primarily arboreal, fossorial, or
aquatic. Expanding CT sampling into novel ecoregions, strata,
and habitats is likely; indeed, McCallum (2013) noted early
evidence of this trend in grasslands and wetlands. Challenges
to expansion often will be largely logistical, and CT use will
remain low in novel environments as long as more suitable
sampling alternatives exist with more favorable information
return per unit of investment. Nonetheless, arboreal CT sampling
has been used to detect species of conservation concern (Mills
et al., 2016; Suzuki and Ando, 2019), survey arboreal fauna
(Gregory et al., 2014), and gain insight into ecological processes
such as seed dispersal and frugivory (Rivas-Romero and Soto-
Shoender, 2015; Godoy-Güinao et al., 2018). For instance,
Nekaris et al. (2020) and Chan et al. (2020) used CTs to monitor
endangered vertebrates crossing manmade arboreal canopy
bridges in fragmented forest landscapes. Aquatic CT sampling
has been more limited, although McCleery et al. (2014) designed
a floating camera trap to sample small mammals in tidal habitats,
and applications in fisheries science are accumulating (Struthers
et al., 2015; Salman et al., 2019). Modifications also are needed to
expand CT sampling of seasonally inaccessible terrestrial species.
For instance, Soininen et al. (2015) designed a camera trap
capable of detecting small mammals in subnivean environments.

Infrastructure to Facilitate Complex,

Coordinated Studies
Steenweg et al. (2017) articulated a vision for interconnected
global networks of CTs, and our trend assessment supports
the need for such networks. Especially as the spatial and
temporal extent of CT sampling expands, coordination of
investigators to address sophisticated questions will benefit
from accessibility to large repositories of labeled CT images
and the development of flexible software to be used for data
processing and analysis. Several large repositories already exist.

These include Wildlife Insights powered by Google (Thau et al.,
2019; http://wildlifeinsights.org; 6.6 million classified images of
1,064 species worldwide), the North American Camera Trap
Images data set (Tabak et al., 2019; http://lila.science/datasets/
nacti; 3.7 million classified images of 28 animal groups across
North America), the Snapshot Serengeti data set (Swanson
et al., 2015; http://lila.science/datasets/snapshot-serengeti; 7.1
million classified images of 60 animal groups across the African
Serengeti), and the eMammal repository (McShea et al., 2016;
https://emammal.si.edu/; ca. 16million images).Wildlife Insights
(Ahumada et al., 2020) and Microsoft AI for Earth (https://www.
microsoft.com/en-us/ai/ai-for-earth) host trained classification
models to which CT users can submit unlabeled images for
classification, or contribute labeled images for further model
improvement. The trained DNN model MLWIC2 is available as
an R Shiny App (Tabak et al., 2020), and customized pre-trained
object detection software using YOLOv2 is also available (Falzon
et al., 2020). Useful software for organization and analysis of CT
data exists in open source format, e.g., R packages “camtrapR”
(Niedballa et al., 2016) “activity” (Rowcliffe et al., 2014; Rowcliffe,
2019), “unmarked” (Chandler et al., 2020), and “AHMbook”
(Kéry et al., 2017). Testing sophisticated hypotheses related to,
e.g., population dynamics, will becomemore feasible as databases
expand and are accompanied by advances in modeling methods
(Kéry and Royle, 2020). We agree with the premise of Ahumada
et al. (2020); armed with tools to improve image acquisition,
streamline image processing, facilitate data sharing, and guide
and enhance data analysis, next-generation CT studies promise
to expand our understanding of wildlife species and aid in their
conservation over unprecedented spatial and temporal scales.

Other Considerations
We have stressed six considerations that our trend analyses
suggest are important to future CT research, but we do
not presume the list to be exhaustive. We acknowledge that
important advances on other fronts, such as study design
(Steenweg et al., 2018; Kays et al., 2020a), are needed to improve
the reliability of knowledge obtained from next-generation CT
research. More generally, economic, engineering, and political
considerations will influence future adoption and applications of
CT. Specifically, cost of cameras is perhaps the single greatest
limitation to expanded CT adoption (Glover-Kapfer et al.,
2019). In addition to cheaper cameras, engineering solutions for
improved sensor performance, faster triggers, extended battery
life, and protection from temperature, humidity and theft were
identified as important current constraints or development
priorities in global surveys of researchers using CTs (Rovero
et al., 2013; Glover-Kapfer et al., 2019), and are likely essential
to significant expansion of the CT research portfolio. Many
of these constraints arise because wildlife researchers represent
a secondary market for CT manufacturers; most cater to the
recreational hunter rather than the needs of the wildlife research
community (Ahumada et al., 2020). Consequently, differences in
sensor sensitivity occur across brands and even different models
of the same brand (Meek et al., 2015; Heiniger and Gillespie,
2018). Such variation has implications for whether CT data are
repeatable and comparable (Apps andMcNutt, 2018; Hofmeester
et al., 2019). In particular, reliable knowledge emanating from
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large collaborative studies using merged data sets will require
quality control standards that encompass sensor quality and
metadata structure (Meek et al., 2014; Forrester et al., 2016).
Empirical measurement of CT sensitivity in the field (Hofmeester
et al., 2017; Apps and McNutt, 2018) including systematic
measurement and reporting of factors affecting detectability
(Hofmeester et al., 2019) are important elements to successful
integration of data from multiple sources. Notwithstanding the
progress noted for large CT data repositories in the preceding
section, numerous operational obstacles to CT data sharing
exist including restrictive policies by some national, provincial,
and state governments, lack of consensus on data rights and
intellectual property, and limited financial support for digital
data curation (Kays et al., 2020b). Practical solutions have been
proposed for several of these issues, with Wildlife Insights as an
implementation platform (Ahumada et al., 2020).

CONCLUSION

The adoption-application diversification model of technological
diffusion provided a useful context in which to evaluate
trends in CT research. Overall adoption has grown at a
robust rate but shows recent signs of slowing. Trends in
application diversity showed signs of recent plateaus, with greater
evidence of stagnation for research topics than for taxa and
ecoregions. Will future CT research diversify to address new
topics, capture more species, and sample a wider array of
environmental conditions? We are optimistic and believe that
further topical diversification of next-generation CT research
likely will rely on an ability to ask complex questions using
images collected over unprecedented spatiotemporal extents,
processed into data with the aid of machine learning, shared
across multiple platforms in a coordinated manner, and analyzed
with increasingly sophisticated statistical tools. Taxonomic
diversification will require technological modifications that
permit more efficient sampling of smaller species and adoption
of recent improvements for modeling unmarked populations.
Environmental diversification will rely on engineering solutions
that allow sampling in previously inaccessible sites. We believe
the elements identified by our review are important to an
expanded next-generation portfolio of CT applications.
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