
ORIGINAL RESEARCH
published: 10 June 2021

doi: 10.3389/fevo.2021.623141

Frontiers in Ecology and Evolution | www.frontiersin.org 1 June 2021 | Volume 9 | Article 623141

Edited by:

Aurore Ponchon,

University of Aberdeen,

United Kingdom

Reviewed by:

Leonardo Montagnani,

Free University of Bozen-Bolzano, Italy

Marcello Vitale,

Sapienza University of Rome, Italy

*Correspondence:

Timothée Poisot

timothee.poisot@umontreal.ca

†ORCID:

Tanya Strydom

orcid.org/0000-0001-6067-1349

Giulio V. Dalla Riva

orcid.org/0000-0002-3454-0633

Timothée Poisot

orcid.org/0000-0002-0735-5184

Specialty section:

This article was submitted to

Models in Ecology and Evolution,

a section of the journal

Frontiers in Ecology and Evolution

Received: 11 November 2020

Accepted: 27 April 2021

Published: 10 June 2021

Citation:

Strydom T, Dalla Riva GV and Poisot T

(2021) SVD Entropy Reveals the High

Complexity of Ecological Networks.

Front. Ecol. Evol. 9:623141.

doi: 10.3389/fevo.2021.623141

SVD Entropy Reveals the High
Complexity of Ecological Networks

Tanya Strydom 1,2†, Giulio V. Dalla Riva 3† and Timothée Poisot 1,2*†

1Département de Sciences Biologiques, Université de Montréal, Montreal, QC, Canada, 2Québec Centre for Biodiversity

Sciences, Montreal, QC, Canada, 3 School of Mathematics and Statistics, University of Canterbury, Christchurch, New
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Quantifying the complexity of ecological networks has remained elusive. Primarily,

complexity has been defined on the basis of the structural (or behavioural) complexity

of the system. These definitions ignore the notion of “physical complexity,” which can

measure the amount of information contained in an ecological network, and how difficult it

would be to compress. We present relative rank deficiency and SVD entropy as measures

of “external” and “internal” complexity, respectively. Using bipartite ecological networks,

we find that they all show a very high, almost maximal, physical complexity. Pollination

networks, in particular, are more complex when compared to other types of interactions.

In addition, we find that SVD entropy relates to other structural measures of complexity

(nestedness, connectance, and spectral radius), but does not inform about the resilience

of a network when using simulated extinction cascades, which has previously been

reported for structural measures of complexity. We argue that SVD entropy provides

a fundamentally more “correct” measure of network complexity and should be added to

the toolkit of descriptors of ecological networks moving forward.

Keywords: singular value decomposition, physical complexity, bipartite network, entropy, pollination, ecological

network analysis

1. INTRODUCTION

Ecologists have turned to network theory because it offers a powerful mathematical formalism
to embrace the complexity of ecological communities (Bascompte and Jordano, 2007). Indeed,
analysing ecological systems as networks highlighted how their structure ties into ecological
properties and processes (Proulx et al., 2005; Poulin, 2010), and there has been a subsequent
explosion of measures that purport to capture elements of network structure, to be related to
the ecology of the system they describe (Delmas et al., 2018). Since the early days of network
ecology, ecological networks have been called “complex.” This sustained interest for the notion of
complexity stems, in part, from the strong ties it has to stability (Landi et al., 2018). As such, many
authors have looked for clues, in the network structure, as to why the networks do not collapse
(Brose et al., 2006; Staniczenko et al., 2013; Borrelli, 2015; Gravel et al., 2016). Yet decades of
theoretical refinements on the relationship between complexity and stability had a hard time when
rigorously tested on empirical datasets (Jacquet et al., 2016); although ecological networks may be
complex, our current measures of complexity do not translate into predictions about stability.

Surprisingly, complexity itself has proven an elusive concept to define in a rigorous way. It has
over time been defined as connectance (Rozdilsky and Stone, 2001), as measures of the diversity of
species or their interactions (Landi et al., 2018), or as a combination of species richness and trophic
diversity (Duffy et al., 2007). In short, network ecology as a field readily assumes that because we
have more information about a system, or because this system has more components, or simply
because this system can be expressed as a network, it follows that the system is complex. But such a
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diversity of definitions, for a concept that is so central to our quest
to understand network stability, decreases the clarity of what
complexity means, and what all of these alternative definitions
do actually capture. This is a common thread in some measures
of ecological network structure, as has been discussed at length
for the various definitions of nestedness (Ulrich et al., 2009).

None of the previous definitions of complexity are formally
wrong, in that they do capture an aspect of complexity that
ultimately ties to the behaviour of the system, i.e., its low
predictability over time. Yet Adami (2002) provides a compelling
argument for why the complexity of the behaviour does not
necessarily reflects the complexity of the system; in fact, one
would be very hard pressed to think of a more simple system
than the logistic map used by May (1976) to illustrate how
easily complexity of behaviour emerges. Rather than yielding
to the easy assumption that a system will be complex because
it has many parts, or because it exhibits a complex behaviour,
Adami (2002) suggests that we focus on measuring “physical
complexity,” i.e., the amount of information required to encode
the system, and how much signal this information contains.
Complex systems, in this perspective, are those who cannot easily
be compressed—and this is a notion we can explore for the
structure of ecological networks.

Ecological networks are primarily represented by their
adjacency matrices, i.e., a matrix in which every entry represents
a pair of species, which can take a value of 1 when the two
species interact, and a value of 0 when they do not. These
matrices (as any matrices) can easily be factorised using Singular
Value Decomposition (Forsythe and Moler, 1967; Golub and
Reinsch, 1971), which offers two interesting candidate measures
of complexity for ecological networks (both of which we describe
at length in the methods). The first measure is the rank of the
matrix, which works as an estimate of “external complexity,”
in that it describes the dimension of the vector space of this
matrix, and therefore the number of linearly independent rows
(or columns) of it. From an ecological standpoint, this quantifies
the number of unique “strategies” represented in the network: a
network with two modules that are distinct complete graphs has
a rank of 2. The second measure is an application of the entropy
measure of Shannon (1948) to the non-zero singular values of
the matrix obtained through SVD. This so-called SVD entropy
measures the extent to which each rank encodes an equal amount
of information, as the singular values capture the importance
of each rank to reconstruct the original matrix; this approach
therefore serves as a measure of “internal complexity.”

In this manuscript, we present and evaluate the use of both
the rank and SVD entropy of ecological networks as alternative
and more robust measures of complexity when compared to
traditional approaches to defining complexity. This is done
by using a collection of 220 bipartite networks from various
types of interaction, sizes, connectances, and environments.
We show that while the rank of the adjacency matrix holds
little information, SVD entropy functions as an appropriate
quantification of the complexity of ecological systems. Notably,
SVD entropy is an intuitive, robust, non-structural approach
to defining the (surprisingly high) complexity of ecological
networks, by relating them to their “physical” as opposed

TABLE 1 | Overview of the web-of-life.es dataset.

Interaction type Sample size Latitude range Richness

(top)

Richness

(bottom)

Host-Parasite 51 38.77 → 72.65 20.47 12.23

Plant-Ant 4 –16.11 → -2.40 18.75 21.75

Plant-Herbivore 4 30.20 → 64.91 49.5 29.25

Pollination 134 –43.09 → 81.81 40.22 18.02

Seed dispersal 33 –28.95 → 53.05 18.75 25.12

We used all networks with up to 500 species. Although there are spatial biases in the

sampling of interaction types (and some interaction types being under-represented), this

dataset covers a range of latitudes from −43 degrees south to 81 degrees north. The

average richess of the top and bottom level of the bipartite networks are also given in the

last columns.

to “behavioural” complexity. In this process we showcase a
breakdown in the assumption that all measures of complexity
of networks are indicative of their robustness to extinctions.
Finally, we show that, despite their high complexity, observed
networks are less complex when compared to pseudo-random
networks, especially for larger networks. We propose that taking
a physical approach to quantifying the complexity of ecological
networks is a step in the right direction to unifying how we
define complexity in the context of ecological networks, as it
restores other measures (like connectance and nestedness) to
their original role and signification.

2. DATA AND METHODS

We used all bipartite networks contained in the
web-of-life.es database. This database extracted species
interaction networks from supplementary materials across all
inhabited continents and covers a large array of sampling years,
environments, organisms, and sampling methodologies. As such,
this dataset is particularly suited to describe general trends across
all ecological networks. We specifically worked on the version of
this dataset distributed with the EcologicalNetworks.jl
package (Poisot et al., 2019) for the Julia (Bezanson et al., 2017)
programming language, in which all analyses were conducted.
Using bipartite networks means that interacting species are
split into two sets (or interacting groups) and along different
dimensions in the interaction matrix. Thus, columns in the
matrix represent one group (or type) of species and rows
represent the other group of species involved in the interaction.
Because SVD gives similar results on thematrix and its transpose,
it captures the complexity of both sides of the system at once. A
summary of the dataset is given in Table 1.

2.1. Estimating Complexity With Rank
Deficiency
The rank of A (noted as r = rk(A)) is the dimension of the
vector space spanned by the matrix and corresponds to the
number of linearly independent rows or columns; therefore, the
maximum rank of a matrix (M = rkmax(A)) will always be equal
to the length of the shortest dimension of A, which ecologically
speaking is the richness of the least species-rich compartment of
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the bipartite network (or the richness in the case of unipartite
networks). A matrix is “full-ranked” when r = M, i.e., all of its
rows/columns are unique. Matrices that are not full-ranked are
called rank deficient, and we can measure rank deficiency using
d = M − r. So as to control for the difference in species richness
of the different networks, we report the relative rank deficiency,
i.e., expressed as a ratio between rank deficiency and the maximal
rank:

D = 1−
r

M
(1)

This measure returns values between 0 (the matrix is full ranked)
and 1 − M−1 ≈ 1 (the matrix has rank 1). This serves as a
coarse estimate of complexity, as the more unique columns/rows
are in the matrix, the larger this value will be. Yet it may also
lack sensitivity, because it imposes a stringent test on uniqueness,
which calls for more quantitative approaches to complexity.

2.2. Estimating Complexity With SVD
Entropy
Singular Value Decomposition (SVD) is the factorisation of a
matrix A (where Am,n ∈ B in our case, but SVD works for
matrices of real numbers as well) into the formU ·6 ·VT . Where
U is an m × m orthogonal matrix and V an n × n orthogonal
matrix. The columns in these matrices are, respectively, the left-
and right-singular vectors of A, were U = AAT and V = ATA.
6 is a matrix that only contains non-negative σ values along
its diagonal and all other entries are zero. Where σi = 6ii,
which contains the singular values ofA. When the values of σ are
arranged in descending order, the singular values (6) are unique,
though the singular vectors (U and V) may not be.

After the Eckart-Young-Mirsky theorem (Eckart and Young,
1936; Golub et al., 1987), the number of non-zero entries (after
rounding of small values if required due to numerical precision
issues in computing the factorisation) in σ is the rank of matrix
A. For the sake of simplicity in notation, we will use k = rk(A))
for the rank of the matrix. Because only the first k elements of σ

are non-zero, and that the result of the SVD is a simple matrix
multiplication, one can define a truncated SVD containing only
the first k singular values.

Intuitively, the singular value i (σi) measures howmuch of the
dataset is (proportionally) explained by each vector—therefore,
one can measure the entropy of σ following Shannon (1948).
High values of SVD entropy reflects that all vectors are equally
important, i.e., that the structure of the ecological network
cannot efficiently be compressed, and therefore indicates high
complexity (Gu and Shao, 2016). Because networks have different
dimensions, we use Pielou’s evenness (Pielou, 1975) to ensure
that values are lower than unity, and quantify SVD entropy, using
si = σi/sum(σ ) as:

J = −
1

ln(k)

k
∑

i=1

si · ln(si) (2)

3. RESULTS AND DISCUSSION

3.1. Most Ecological Networks Are Close
to Full-Rank
Themajority (63% of our dataset) of bipartite ecological networks
have a relative rank deficiency of 0 (Figure 1), which indicates
that all species have different and unique interaction lists.
Interestingly, the networks that had a comparatively larger
relative rank deficiency tended to be smaller ones. Yet because
most of the networks return the same value, matrix rank
does not appear to be a useful or discriminant measure of
network complexity. Another striking result (from Figure 1) is
that the SVD entropy of ecological networks is really large—
although the value can range from 0 to 1, all ecological networks
had SVD entropy larger than 0.8, which is indicative of a
strong complexity.

As expected following the observation that ecological
networks are overwhelmingly full ranked, we do not see a
relationship between SVD entropy and relative rank deficiency,
neither do we observe differences between interaction
types (Figure 2). Based on these results, we feel confident
that SVD entropy provides a more informative measure
of the complexity of ecological networks, and will use it
moving forward.

3.2. Most Elements of Network Structure
Capture Network Complexity
We compared SVD entropy to some of the more common
measures of complexity, namely nestedness (η, as per Bastolla
et al., 2009), connectance (Co), and the spectral radius of the
network (ρ, following Staniczenko et al., 2013). All of these
measures are positively correlated, especially over the range of
connectances covered by empirical bipartite ecological networks.

Nestedness is calculated based on the number of interactions
shared between species pairs and is a measure of the degree of
overlap between species links (or strategies) in the community,
where larger assemblages are made up of a subset of smaller ones
that share common interactions. Networks with a higher degree
of nestedness could be considered simpler when compared to
networks with a lower degree of nestedness. Connectance is
the realised number of interactions (links) in an ecological
network and is calculated as the fraction of the total number
of realised interactions (or links) and the maximum number
of possible interactions in a network (Martinez, 1992). This
has been shown to be a good estimate of a community’s
resilience to perturbation (Dunne et al., 2002). The spectral
radius of a matrix is the largest absolute value of its eigenvalues,
which, in addition to being presented as a measure of
network complexity has also been suggested as an indicator
of the ability of a system to dampen disturbances (Phillips,
2011).

We find that SVD entropy has a clear negative relationship
with nestedness, spectral radius, and connectance (Figure 3).
As in Figure 4, mutualistic networks tend to be more complex,
and they also are both sparser and less nested than other
types of networks. Bastolla et al. (2009) give a convincing
demonstration that mutualistic networks are shaped to minimise
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FIGURE 1 | The relationship between network richness and relative rank deficiency, and SVD entropy. The different types of interactions are indicated by the colours.

FIGURE 2 | The relationship between SVD entropy and the relative rank deficiency of different species interaction networks colours indicate the different interaction

types of the networks.

competition—this can be done by avoiding to duplicate overlap
in interactions, thereby resulting in a network that is close to
full rank, and with high SVD entropy. Interestingly, Figure 3
suggests that both nestedness and connectance measure the
lack of complexity in an ecological network, which contrasts
to how they may commonly be viewed (Landi et al.,
2018).

3.3. Complex Networks Are Not More
Robust to Extinction
One approach to calculating the overall structural robustness of
an ecological network is by simulating extinction events through
the sequential removal of species, which allows constructing
an extinction curve that plots the relationship between species
removed and cumulative secondary extinctions (Dunne et al.,
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FIGURE 3 | The relationship between SVD entropy and the nestedness (left), spectral radius (central) and connectance (right) of ecological networks. Colours

indicate the different interaction types of the networks.

FIGURE 4 | The calculated SVD entropy of different interaction networks of different interaction types.

2002; Memmott et al., 2004). Extinction events can be simulated
in a manner of different ways, either by removing (1) a random
individual, (2) systematically removing the most connected
species (one with the highest number of interactions with other
species), and (3) the least connected species (Dunne et al.,
2002). After each extinction event, we remove species from the
network that no longer have any interacting partners, thereby
simulating secondary extinctions. This is then repeated until

there are no species remaining in the network. Furthermore,
we can restrict extinction events to only one dimension of the
interaction matrix, i.e., removing only top-level or bottom-level
species, or alternatively removing a species from any dimension
of the matrix. Extinction curves are then constructed by plotting
the proportion of species remaining against those that have been
removed; it stands to reason that a flatter curve “maintains” its
species pool for a longer number of cumulative extinctions, and
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FIGURE 5 | The relationship between SVD entropy and the area under an extinction curve (as a proxy for resilience to extinction) for both different extinction

mechanisms (Random = the removal of a random species, Decreasing = the removal of species in order of decreasing number of interactions (i.e., most to least

number of interactions), Increasing = the removal of species in order of increasing number of interactions) as well as along different dimensions (species groups) of the

network (All = any species, Top-level = only top-level species, and Bottom-level = only bottom-level species) colours indicate the different interaction types of the

networks.

FIGURE 6 | The relationship between the maximum and minimum value of SVD entropy of a collection of random interaction networks (using simulated annealing) for

a given connectance spanning from 0 to 1 (left) and how this relates to the relative rank deficiency of networks (right).

could be seen as more resilient, when compared to a curve that
has a much steeper decline. As per previous studies, we measure
the robustness to extinction as the area under the extinction curve
(AUC), calculated using the Trapezoidal rule. AUC values close to
0 means that a single extinction is enough to collapse the network
almost entirely, and values close to 1 means that most species
persist even when the number of extinctions is really high.

When looking at the relationship between SVD entropy and
the area under an extinction curve (as a proxy for resilience to
extinction) we find differences depending on both the extinction
mechanism as well as along which dimension the species removal
occurred (Figure 5). As a whole we do not observe any obvious
relationships between SVD entropy and resilience, nor for
different interaction types. We do however see differences in the
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FIGURE 7 | The counts of the zi-scores of different types of networks for both Type I and Type II null models. Negative zi-scores indicate networks with an SVD

entropy that is lower i.e., less complex than expected.

resilience of networks depending on how the extinctions were
simulated. Generally we see a higher resilience in networks where
species of only a specific group are removed or in networks where
species were either randomly removed or based on an increasing
number of interactions.

As highlighted in Figure 3, SVD entropy can be used as
an additional measure of network complexity. However, as
shown in Figure 5, the assumption that network complexity
begets resilience to extinction begins to unravel when we
use a measure of physical complexity. This is in contrast to
previous studies that have shown how connectance plays a
role in the resilience of networks to extinctions (Dunne et al.,
2002; Memmott et al., 2004). This does not discount the
role of using structural measures of network complexity (e.g.,
connectance, nestedness, or spectreal radius) as indicators of
their resilience (although possibly hinting as to why there is
no strong emerging consensus as to how structural complexity
relates to this), but rather points to an erroneous assumption as
to what aspects of a network we have previously used to define
its complexity.

3.4. Plant-Pollinator Networks Are Slightly
More Complex
Although we don’t observe clear differences in the relationship
between different interaction types when comparing amongst
various measures of complexity, we do find that different
types of interaction networks have differing SVD entropies.
When comparing calculated SVD entropy between interaction
types using an ANOVA (after excluding Plant-Ant and Plant-
Herbivore interactions due to their small sample size in our
dataset) we find a significant difference between group means
(F = 47.047, p < 10−3). A Tukey’s HSD test reveals that plant-
pollinator networks (µ = 0.924) are more complex than both
host- parasite networks (µ = 0.885, p < 10−3) and seed dispersal
(µ = 0.888, p < 10−3). Host-parasite and seed dispersal
networks had apparently no difference in average complexity
(p = 0.889). These results suggest that mutualistic networks
may be more complex, which matches with previous litterature:
these networks have been shown to minimise competition
(Bastolla et al., 2009) and favour unique interactions, thereby
increasing network complexity. This specific structure can appear
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FIGURE 8 | The logistic zi-scores of different types of networks for both Type I and Type II null models compared to the species richness of the network. Where

zi-scores below 0.5 indicate networks with an SVD entropy that is lower i.e., less complex than expected.

as a side-process of either ecological (Maynard et al., 2018) or
evolutionary (Valverde et al., 2018) processes, but nevertheless
leaves a profound imprint on the complexity of the networks.

3.5. Connectance Constrains Complexity
(But Also Rank Deficiency)
We used simulated annealing (Kirkpatrick, 1984) to generate
networks with the highest, or lowest, possible SVD entropy
values. From a set network size (30 species, 15 on each side)
with a random number of interactions (spanning the entire
range from minimally to maximally connected), we reorganised
interactions until the SVD entropy was as close to 0 or 1 as
possible. We repeated the process 25 times for every number of
interactions. We also measured the relative rank deficiency of
the generated networks. This allows identifying the boundaries
of both measures of complexity. The specific simulated annealing
we used is as follows. We set an initial temperature T0 = 2.
At every timestep t (up until t = 104), the temperature is set
to Tt = T0 × λt , so that is decays exponentially at a rate
λ = 1 − 10−4. At each timestep, we switch two interactions in
the network N at random to generate a proposal network M.

The score of this proposal is the difference between the squared
error of N and M i.e. 1 = (f (M) − θ)2 − (f (N ) − θ)2,
where f is the SVD entropy and θ is the target for optimisation
(either 0 or 1 for, respectively minimally or maximally complex).
A proposal is accepted with probability P(N → M|1) =

exp
(

−1 × T−1
t

)

.
By exploring the minimal and maximal values of SVD entropy

for networks of a given size, we can show that the range of
complexity that a network can express varies as a function of
connectance (Figure 6). As reported by Poisot and Gravel (2014),
there is no variation when the networks are either minimally
or maximally connected, but any connectance in between
can give rise to networks of varying complexities. This being
said—minimally connected networks always show the largest
complexity, and an increase in connectance will always decrease
complexity. Interestingly, this relationship is monotonous, and
there is no peak of complexity where the maximal number of
possible networks combination exists, i.e., around Co ≈ 0.5
(Poisot and Gravel, 2014). This is an intriguing result—ecological
networks are indeed extremely complex, but whereas ecologists
have usually interpreted connectance as a measure of complexity,
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it is in fact sparse networks that are the complex ones, and
connectance acts to decomplexify network structure.

The right panel of Figure 6 shows the average rank deficiency
of networks for which SVD entropy was either maximised or
minimised. Complex networks (meaning, maximally complex
given their connectance) had a lower deficiency, indicating
that except at extreme connectances, there are combinations of
networks for which all species can interact in unique ways—this
is a natural consequence of the results reported by Poisot and
Gravel (2014), whereby the number of possible networks is only
really constrained at the far ends of the connectance gradient.
Minimally complex networks, on the other hand, saw their rank
deficiency increase with connectance. This hints at the fact that
the decrease in complexity with connectance may be primarily
driven by the infeasibility of having enough species for them
to all interact uniquely as connectance increases. Because non-
unique interactions tend to result in competition (Bascompte and
Jordano, 2007), this can “push” networks toward the full-rank
configuration (as suggested by the results in Figure 1), thereby
maximising complexity regardless of connectance.

3.6. Larger Networks Are Less Complex
Than They Could Be
To assess whether ecological networks are more, or less, complex
than expected, we applied two null models that generate pseudo-
random networks: Type I (Fortuna and Bascompte, 2006),
where interactions happen proportionally to connectance, and
Type II (Bascompte et al., 2003), where interactions happen
proportionally to the joint degree of the two species involved.
The models are equivalent to, respectively, the Erdos-Renyi
and Configuration models (Newman, 2010), both of which are
maximum entropy generative models that reflect global (Type
I) or local (Type II) constraints (Park and Newman, 2004). We
generated 999 samples for every network in the dataset, and
measured the z-score of the empirical network as

zi =
xi − µi

σi
(3)

where xi is the SVD entropy of network i, and µi and σi
are, respectively the average and standard deviation of the
distribution of SVD entropy under the null model. Negative
values of zi reflect a network that has lower entropy than expected
under the assumptions of the null model. In Figure 7, we show
that despite high absolute values of SVD entropy, ecological
networks are not as complex as they could be. This is consistently
true for both null models, and for the three types of networks that
had a sufficient sample size.

Previous work on random networks (using a model that is
essentially the Type I null model) shows that sufficiently large
networks achieve maximal von Neuman entropy (Du et al., 2010;
Passerini and Severini, 2011). In Figure 8, we compare the logistic
of zi to the richness of the network. Transforming to the logistic

smooths out differences in absolute value that are apparent in
Figure 7, and projects the values in the unit range, with values
above 0.5 being more complex than expected. It is quite obvious
that, across both models and the three types of interactions, only
smaller networks achieve higher entropy. Barbier et al. (2018)
and Saravia et al. (2018) have previously noted that the early
stages of network assembly usually result in severely constrained
networks, due to the conditions required for multiple species to
persist; as networks grow larger, these constraints may “relax,”
leading in networks with more redundancy, and therefore a
lower complexity.

4. CONCLUSION

We present SVD entropy as a starting point to unifying (and
standardising) how we should approach defining the complexity
of ecological networks. The use of a unified definition will
allow us to revisit how complexity relates to the ecological
properties of networks using a standardised method. One
important result from using SVD entropy is that the complexity
of ecological networks is indeed immense, yet despite this high
complexity networks are still not reaching their maximum
potential complexity. We suggest that the assembly dynamics
of networks may explain this observation but this still raises
the question as to why larger (or more mature) networks
are not “maintaining” their expected complexity and prompts
further exploration as to the role of ecological assembly in
structuring networks.
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