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Species abundance distributions (SADs) describe community structure and are a key
component of biodiversity theory and research. Although different distributions have
been proposed to represent SADs at different scales, a systematic empirical assessment
of how SAD shape varies across wide scale gradients is lacking. Here, we examined 11
empirical large-scale datasets for a wide range of taxa and used maximum likelihood
methods to compare the fit of the logseries, lognormal, and multimodal (i.e., with
multiple modes of abundance) models to SADs across a scale gradient spanning
several orders of magnitude. Overall, there was a higher prevalence of multimodality
for larger spatial extents, whereas the logseries was exclusively selected as best fit for
smaller areas. For many communities the shape of the SAD at the largest spatial extent
(either lognormal or multimodal) was conserved across the scale gradient, despite steep
declines in area and taxonomic diversity sampled. Additionally, SAD shape was affected
by species richness, but we did not detect a systematic effect of the total number
of individuals. Our results reveal clear departures from the predictions of two major
macroecological theories of biodiversity for SAD shape. Specifically, neither the Neutral
Theory of Biodiversity (NTB) nor the Maximum Entropy Theory of Ecology (METE) are
able to accommodate the variability in SAD shape we encountered. This is highlighted
by the inadequacy of the logseries distribution at larger scales, contrary to predictions of
the NTB, and by departures from METE expectation across scales. Importantly, neither
theory accounts for multiple modes in SADs. We suggest our results are underpinned
by both inter- and intraspecific spatial aggregation patterns, highlighting the importance
of spatial distributions as determinants of biodiversity patterns. Critical developments for
macroecological biodiversity theories remain in incorporating the effect of spatial scale,
ecological heterogeneity and spatial aggregation patterns in determining SAD shape.

Keywords: spatial scale, biodiversity, community structure, multimodality, macroecology, maximum entropy
theory of ecology, neutral theory of biodiversity and biogeography

INTRODUCTION

Species Abundance Distributions (SADs) describe the relative abundance of the species within
a community. Looking at the whole distribution allows accounting for different aspects that
univariate metrics measure separately and readily integrating concepts such as rarity and
dominance (Magurran, 2004; McGill et al., 2007). SADs are thus a synthetic measure of biodiversity
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and community structure, and a key component of biodiversity
theory and research. The two most common distributions used
to describe SADs are the logseries (Fisher et al., 1943) and
the lognormal (Preston, 1948). These distributions differ mainly
in the proportion of rare species they predict; specifically, the
logseries has no internal mode, with singletons as the modal class,
whereas an unveiled lognormal has one internal mode for species
with intermediate abundances (Fisher et al., 1943; Preston,
1948). Additionally, multimodal SADs, i.e., with more than one
mode of abundance can also occur (Gray et al., 2006; Dornelas
and Connolly, 2008). While this pattern had been mostly
disregarded, a recent empirical meta-analysis showed that not
only is multimodality more common than previously recognized,
it is also more likely to occur for communities encompassing
larger spatial extents or with higher taxonomic diversity (Antão
et al., 2017). Despite decades of research, multiple hypotheses and
theories proposed to explain SADs, a thorough understanding of
what drives SAD shape is still lacking (Hubbell, 2001; Connolly
et al., 2005; Green and Plotkin, 2007; McGill et al., 2007); this
gap is particularly apparent for large spatial scales (Enquist et al.,
2019; Fukaya et al., 2020). A systematic empirical assessment
of how SAD shape varies with scale is needed to improve our
understanding of the mechanisms underpinning SAD shape, and
consequently community structure. Given the pivotal role of
SADs in biodiversity research, these insights will further facilitate
assessments of ongoing biodiversity change.

Understanding how SAD shape varies with sampling scale
is a long standing question in ecology (Fisher et al., 1943;
Preston, 1948; McGill et al., 2007; Zillio and He, 2010). Both
sampling effects and spatial scale are known to affect SAD shape
(Fisher et al., 1943; Preston, 1948; Pielou, 1977; Hubbell, 2001;
Connolly et al., 2005; Green and Plotkin, 2007). Two approaches
to understanding the scaling properties of SADs can be used:
downscaling—i.e., try to predict the shape of SADs at smaller
scales from the regional scale (e.g., Hubbell, 2001; Green and
Plotkin, 2007), and upscaling—i.e., try to infer the SAD for
larger spatial scales by pooling smaller scale SADs (Šizling et al.,
2009b; Zillio and He, 2010; Borda-de-Água et al., 2012). However,
analyzing SADs across different spatial scales has remained
largely unexplored (but see Rosindell and Cornell, 2013). As
there is no single ideal scale for studying SADs (Wiens, 1989;
Levin, 1992), systematically assessing SADs along spatial scale
gradients allows us to make stronger inferences about patterns
of commonness and rarity across scales, and can potentially
provide insights to help disentangle which processes are relevant
at different scales.

Generally, SAD studies have relied on sampling theory
approaches to address the relationship between the large regional
community and local scale SADs. For instance, Fisher et al. (1943)
viewed the logseries as resulting from a random sample from
a gamma distribution (i.e., SADs at smaller scales are random
subsamples of SADs at larger scales). The “veil line” proposed
by Preston (1948) was a first attempt to explain that the absence
of rare species in small samples would lead to a truncation
of the “true” underlying lognormal distribution, which would
gradually disappear with increasing sampling. The lognormal
has since been a particularly prominent SAD model, emerging

as the statistical expectation of the Central Limit Theorem (i.e.,
SADs result from random multiplicative processes acting on
species abundances), and from population dynamics and niche
partitioning models (Preston, 1948; May, 1975; Magurran, 2004;
McGill et al., 2007). However, unveiling does not simply reveal
the left-end of the distribution by rigidly moving the veil, but
the shape of the overall distribution also changes (Pielou, 1977;
Dewdney, 1998; McGill, 2003b), which can affect the overall
proportion of the rarest species. For instance, McGill (2003b)
showed that pooling repeated autocorrelated small samples can
lead to the log-left-skew reported in many empirical SADs,
i.e., the existence of more rare species than predicted by
a lognormal distribution (Hubbell, 2001). This phenomenon
can nonetheless be driven by biological mechanisms, where
SAD shape reflects changes in community structure, such
as the signature of core-transient species temporal dynamics
(Magurran and Henderson, 2003).

Crucially, SAD shape is affected by how species are distributed
in space. One of the fundamental patterns in ecology is that
individuals are not randomly distributed in space (Condit
et al., 2000; McGill, 2010), with both theoretical and empirical
studies evaluating these effects. Spatial aggregation patterns and
turnover affect SAD shape when upscaling from smaller areas
(Šizling et al., 2009a). Green and Plotkin (2007) developed a
statistical sampling theory for SAD incorporating conspecific
spatial aggregation patterns. They showed that when sampling
from regional SADs with randomly distributed populations (i.e.,
Poisson sampling), the sampled SADs would exhibit the same
functional form as the regional SAD. In contrast, using a more
realistic description of species spatial aggregation patterns (i.e.,
negative binomial sampling), sampled SADs diverged from the
regional SAD. Specifically, this conspecific spatial aggregation led
to sampled SADs skewed toward both rare and more abundant
species (Green and Plotkin, 2007). Interspecific differences
in aggregation rates were also suggested to produce bimodal
abundance distributions (Alonso et al., 2008), which in turn
partially explain the existence of multiple modes (two, but not
the three modes) in a coral SAD (Dornelas and Connolly,
2008). Subsequently, and taking a completely different approach
while attempting to upscale SADs, Borda-de-Água et al. (2012)
similarly predicted a bimodal SAD for larger scales without
including any information on species aggregation patterns. In
this case, bimodality arises from an increase in the number of
rare species with area (Borda-de-Água et al., 2002, 2012), with
one mode occurring for the singletons class and another mode
for intermediate abundance classes.

Two unified theories of biodiversity in particular make explicit
predictions for SAD shape at different scales—the Neutral Theory
of Biodiversity (NTB; Hubbell, 2001) and the Maximum Entropy
Theory of Ecology (METE; Harte et al., 2008). Both theoretical
frameworks can be thought of as null models, as they assume
demographic equivalence between individuals (NTB), or do
not include explicit ecological mechanisms (METE). While not
the only theories of SADs, both provide null expectations for
what SAD shape should emerge at different scales. Systematic
discrepancies between empirical data and theoretical predictions
can help identify important mechanisms that need to be
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accounted if we are to improve our ability to make stronger
inferences about the processes driving SAD shape. Below, we
provide only a brief outline of both theories’ assumptions relevant
for our analysis, given the extensive literature devoted to them.

NTB assumes all individuals in an assemblage have equal
demographic rates of birth, death, dispersal and speciation,
irrespective of species identity (Hubbell, 2001), with stochastic
drift and dispersal limitation as the processes explaining
patterns of species occurrence and abundance. The spatially
implicit NTB model includes two distinct spatial scales: a local
community that consists of a dispersal-limited sample, and
the metacommunity (larger scale) from which this sample is
taken. In the original model, the metacommunity follows a
logseries distribution and the local community follows a zero-
sum multinomial distribution (ZSM), which includes fewer rare
species than the logseries and resembles a left-skewed lognormal
distribution (Hubbell, 2001; Rosindell et al., 2011). This latter
distribution is controversial, with numerous studies comparing
ZSM and lognormal performances on fitting empirical SADs
(Hubbell, 2001; McGill, 2003a; Volkov et al., 2003, 2007;
Dornelas et al., 2006). Subsequent model developments also
yield a logseries SAD for the largest scale [e.g., spatially explicit
model (Rosindell and Cornell, 2013); protracted speciation mode
(Rosindell et al., 2010)].

METE is a spatially explicit theory of biodiversity based on
the principle of maximization of information entropy (MaxEnt).
METE only requires knowledge on four state variables to describe
ecological communities: the area of an ecosystem, species
richness, the total number of individuals, and total metabolic
rate (the latter has been disregarded when analyzing SADs;
Harte et al., 2008; Harte and Newman, 2014). MaxEnt rationale
is that the least-biased inference of the shape of a probability
distribution is as smooth and flat as possible, given the constraints
(Harte et al., 2008). Using only these four state variables and
without incorporating any specific ecological mechanisms, the
most likely distributions for several macroecological patterns
are found by maximizing information entropy. The logseries is
the SAD distribution that emerges across spatial scales (Harte
et al., 2008; Harte and Newman, 2014). Therefore, assessing the
performance of the logseries for large scale SADs, as well as for
different taxa, provides a relevant test both on current neutral
models and a critical assessment of METE’s expectation of a scale-
independent SAD. On the other hand, neither theory accounts for
multimodal SADs.

Here, we systematically assessed empirical SADs shape across
a gradient in spatial scale spanning several orders of magnitude
and for different taxonomic groups spanning both marine
and terrestrial realms. We assessed the effect of sampled area,
taxonomic diversity (species and family richness) and total
abundance on SAD shape. We aimed to compare predictions for
SAD shape from macroecological theories, with sampling theory
predictions and empirical patterns. Specifically, we contrasted
expectations of a better fit of the logseries as outlined above
following NTB or METE predictions (either for larger scales
or invariant with scale, respectively) (1), with the expected
better performance of lognormal distributions for larger samples
(2), and further with recent empirical results showing that

multimodality occurs with higher prevalence for larger areas or
more diverse communities (3).

MATERIALS AND METHODS

Empirical Data
We analyzed 11 datasets sampled over large extents for different
taxa, namely trees, birds, fish and benthos (Table 1). We selected
datasets from the BioTIME database (Dornelas et al., 2018) with
spatial extent larger than 150,000 km2 and for which the unique
sampling locations were distributed across the study area so
that the random splitting of the total extent would not result in
portions without sampling locations (see below). Importantly,
for all these datasets, samples were consistently collected using
standardized methods (e.g., plots, transects or tows), where each
sample consists of records of species and their abundance in
a given time and location (more information can be found in
each dataset’s original metadata, or from the BioTIME database).
For each dataset, we used data corresponding to one year of
sampling only, selecting the year with the most and more evenly
distributed sampling locations. We further analyzed the Forest
Inventory and Analysis Database (FIA; USDA Forest Service,
2010; Woudenberg et al., 2010)1, as we wanted to include a tree
community data in our analysis to ensure the results are robust
across a broad range of taxonomic groups. We obtained the latter
data via the EcoData Retriever (Morris and White, 2013; McGlinn
and White, 2015)2, and selected data from 2013 only. For each
dataset, information of the taxonomic family corresponding to
each species was retrieved. These empirical datasets cover a wide
range of sampling grains (0.0001 to 25.4 km2) and total spatial
extents (167,455 to 16,663,141 km2).

Implementing the Scale Gradient
All analyses were performed in the statistical software R (R
Core Team, 2017). We established a scale gradient by using the
fixed extent of the study area of each dataset and systematically
partitioning this area into smaller portions as follows. We drew
a circle encompassing all the sampling locations from each
dataset and centered on the centroid of the sampling locations.
A random point from the circle was selected to split the circle
into halves, thirds, quarters, eights and sixteenths, using the
initial random point from the bisection as reference (Figure 1).
This process ensures the spatial relationship between the sections
and the sampling locations is maintained. Further details on
implementing the scale gradient can be found in Antão et al.
(2019). Within each section, species abundances were pooled
across all the individual samples to build the species abundance
distributions. Thus, one SAD was calculated for the total extent
(i.e., the largest level in our scale gradient), two SADs for the
bisection level, three for the third level, and so forth. At each level,
each section was annotated with the area, species richness (S),
total abundance (N), and total number of families, to assess the
effect of taxonomic diversity on SAD shape. The areas sampled

1http://fia.fs.fed.us/
2http://data-retriever.org
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TABLE 1 | Community data used and data sources.

Dataset title Abbreviation Taxon Year/usage notes Number of
species

Number of
samples

References

Forest inventory analysis FIA Trees 2013; excluded Alaska 305 19,427 USDA Forest Service, 2010;
Woudenberg et al., 2010

North American breeding bird survey BBS Birds 2015; USA data only
(excluding Alaska)

521 2,420 Pardieck et al., 2016

Maritimes breeding bird atlas MBBA Birds 2009 163 3,243 NatureCounts, 2012a

Landbird monitoring program LBMP Birds 2004 229 5,107 USFS, 2012

Ontario breeding bird atlas OBBA Birds 2003 233 19,611 NatureCounts, 2012b

East Coast North America strategic assessment ECNASAP Fish 1994 110 2,101 Brown et al., 2005

Reef life survey: global reef fish dataset RLS_F Fish Spatial subset around
Australia

1,847 6,666 Edgar and Stuart-Smith,
2014a,b

ICES North sea international bottom trawl
survey for commercial fish species

NSIBT Fish 2011 131 688 DATRAS, 2010a

Irish ground fish survey for commercial fish
species

IGFS Fish 2004 100 163 DATRAS, 2010b

Reef life survey: invertebrates RLS_I Invertebrates Spatial subset around
Australia

1,013 6,817 Edgar and Stuart-Smith,
2008, 2014b

Snow crab research trawl survey database SCRT Benthos 2009 32 354 Wade, 2011

For each community the taxon, species richness and number of unique sample locations are shown.

FIGURE 1 | Schematic representation of the scale gradient, showing an example of how the encompassing circle was drawn to include all the sampling locations
and a random point was selected to establish bisections (A,B) and thirds (C).

were calculated using convex hull polygons encompassing the
sampling locations within each section, using package rgeos
(Bivand and Rundel, 2016; Figure 1).

Model Fitting and Analysis
Along the scale gradient and for each section, each SAD
was fitted with four alternative models, following the method
implemented in Antão et al. (2017). Specifically, we employed
maximum likelihood methods to explicitly compare the fit of
logseries distributions (Fisher et al., 1943) and of mixtures of
1, 2, and 3 Poisson Lognormal distributions (1PLN, 2PLN, and
3PLN, respectively), where 2PLN and 3PLN are multimodal
distributions (Pielou, 1969; Bulmer, 1974). We did not include
the ZSM distribution in our comparisons, since our aim
was to evaluate changes in SADs overall shape, rather than
explicitly test NTB models or focus on detailed comparisons
between alternative models fitting. This is further justified
given: (1) the plethora neutral models, implementations and

assumptions, without a clear way forward (Hubbell, 2001;
McGill, 2003b; Etienne, 2005, 2007, 2009; Dornelas et al.,
2006; Rosindell et al., 2011), (2) PLN mixtures can provide
suitable alternatives to ZSM (Gray et al., 2005), and (3) ZSM
is usually associated with scales overall much smaller than
the lowest levels in our scale gradient. For each model above,
best-fit parameters were found by minimizing the negative
log-likelihood; parameter estimation was performed using the
optimization routine nlminb(), with searches initialized from
multiple starting points due to the possibility of several local
maxima for more complex distributions (Dornelas and Connolly,
2008; Antão et al., 2017). All the fitting routines were run
on non-binned data, and we only binned data for plotting
purposes—SADs are traditionally plotted as histograms of the
number of species as a function of abundance on a log2
scale, conveying the intuitive approach of doubling classes of
abundance, called octaves (Preston, 1948; Gray et al., 2006). The
second order Akaike’s information criterion for small sample

Frontiers in Ecology and Evolution | www.frontiersin.org 4 April 2021 | Volume 9 | Article 626730

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-626730 March 31, 2021 Time: 7:35 # 5

Antão et al. Species Abundance Distributions Across Scales

sizes (AICc, Burnham and Anderson, 2002) was used for model
selection. AICc was used throughout as it converges to AIC when
the sample size is large (Burnham and Anderson, 2002), and
previous work with simulated communities testing this PLN-
mixture method has shown that BIC is too conservative and
can be insensitive to deviations in SAD shape (Antão et al.,
2017). Furthermore, because we were not interested in detecting
multimodality per se, but rather in detecting changes in SAD
shape, we assumed the best model to be the one selected by
AICc, regardless of support level. We plotted smoothed density
estimates of the model selected for each section as a function
of the relevant variables across the scale gradient, i.e., sampling
level, area sampled, species richness, total abundance and number
of families, using the package ggplot2 (Wickham, 2009). These
assessments were built for each community individually and
for all the SADs together to provide an overview of how these
variables affect SAD shape across the different datasets analyzed.
In addition to using AICc as a model selection criterion, we
quantified the deviations between the empirical SADs and the
predictions of each model, by comparing the observed and
expected number of species per octave.

RESULTS

We built 374 SADs, which included 4,684 species and over 142.5
million individuals. Overall, there was a higher prevalence of
multimodal SADs for larger areas and for more taxonomically
diverse datasets (Figures 2, 3 and Supplementary Figure 1),
although some smaller areas or less diverse communities were
also selected as multimodal. The logseries was never selected as
best model for the total extent SADs, and was only selected for
much smaller areas, and when species richness or number of
families were proportionally much smaller (Figures 2, 3). That
is, only 1PLN, 2PLN, or 3PLN provided adequate fit for the total
extent SADs, with a better performance for multimodal models.
As area sampled decreases, both species richness and total
number of individuals are also expected to decrease. However,
while species richness showed a similar effect to that of area on
model selection, there was no clear pattern for total number of
individuals across the datasets analyzed (Figure 3).

For the SADs selected as multimodal at the total extent,
multimodal models most often provided the best fit across the
scale gradient. This was the case for the FIA tree inventory, the
BBS and OBBA bird, and the RLS fish datasets (Figure 2 and
Supplementary Figure 1). The average 1AICc for multimodality
vs. non-multimodality across the scale gradient was 5.53 for
FIA, 11.01 for BBS, 6.39 for OBBA and 9.77 for RLS_Fish
(calculated as (min AICc 2PLN/3PLN–min AICc 1PLN/logser) across
all sections). Additionally, some datasets exhibited the expected
pattern of progressing from multimodality to either 1PLN or
logseries as sampled area decreased (MBBA and LBMP birds and
IGFS fish datasets; Figure 2 and Supplementary Figure 1). The
datasets that were better fit by 1PLN at the total extent showed
some variability in the best fit models as area decreased. For
these, 1PLN was still frequently selected as best model, but both
logseries and multimodal models were selected for smaller scales

(ECNASAP and NSIBT fish, SCRT benthos and RLS invertebrate
datasets; Figure 2 and Supplementary Figure 1).

Deviations between the empirical SADs and each model’s
predictions support the results above. For the datasets with
consistent support for multimodality across the scale gradient,
logseries consistently and severely overestimated the number
of singletons and rare species (i.e., octaves 1–2) across the
scale gradient, while 1PLN often underestimated them. In
addition, both logseries and 1PLN either over- or underestimated
the number of species with intermediate to high abundances
(Supplementary Figure 2). On average, for these assemblages,
deviations were smaller for 2 or 3PLN at every scale (FIA,
BBS, OBBA, and RLS_Fish; Supplementary Figure 2). For the
remaining multimodal SADs at the total extent, logseries again
overestimated the number of rare species, while the PLN mixtures
exhibited large deviations between the observed number of
species and the models’ predictions across the distribution
and across the scale gradient (Supplementary Figure 2). For
the datasets better fit by 1PLN at the total extent, for RLS
invertebrates, deviations are much smaller on average for 2PLN
at every scale, while both logseries and 1PLN underestimated
the number of rare species. For the remaining SADs, there
was no clear pattern, but logseries was systematically unable to
accurately predict the rarest and intermediate abundance classes
(Supplementary Figure 2).

DISCUSSION

Our systematic assessment of empirical SADs shape across a
wide scale gradient and taxa showed consistent variation in SAD
shape. Furthermore, our results support previous findings of
higher prevalence of multimodal SADs for larger areas or more
taxonomically diverse communities (Antão et al., 2017), while
the logseries never provided an adequate fit for larger and more
diverse communities. In addition, we revealed a clear effect of
area and taxonomic diversity in determining SAD shape, and a
non-directional pattern for total abundance (for the aggregate
communities’ results). Our findings clearly depart from two
important macroecological theories predictions for the SAD. We
discuss the implications of our results in turn below.

Variability in SAD Shape Across Spatial
Scales
We compared the performance of different models to describe
the SAD across a wide scale gradient to assess how the
relative abundance patterns depend on spatial scale and also on
taxonomic diversity (measured as species and family richness).
For the communities selected as multimodal at the total extent,
multimodality was consistently and strongly selected across
the scale gradient, even for intense sampling effects of area
and diversity. This indicates that multimodality is a robust
feature of SADs and is indeed reflecting the structure of
the underlying communities, rather than being a sampling
(c.f. Barabás et al., 2013) or scaling artifact. The sections
created across the scale gradient for these spatially large and
taxonomically diverse datasets (FIA tree inventory, BBS and
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FIGURE 2 | Effect of the sampling level on SAD shape across the scale gradient, showing the aggregated pattern across all the communities (barplot) and for each
individual community in the circular plots for terrestrial (top) and marine (bottom) datasets. The colors represent the best model selected by AICc, i.e., either 1PLN,
2PLN, 3PLN, or logseries.

OBBA bird, and RLS fish surveys) still represent very large
spatial extents. Additionally, due to the way the scale gradient
was implemented, the spatial relationship between the sections
is maintained. This further suggests that multimodality reflects
the structure of the communities at these smaller scales, despite
the marked decrease in number of species and total abundance
as area sampled decreased. While using only AICc to select
the best-fit model could potentially lead to the prevalence of
multimodality being overestimated (Antão et al., 2017), there

was consistent and strong support for 2PLN or 3PLN mixtures
for these communities. Hence, we are confident the detection of
multimodality in our analysis is robust. For these communities,
SAD shape was overall conserved across a wide range of areas
sampled, highlighting that dramatic shifts in key aspects of
community structure are required for the overall SAD shape to
change (e.g., Supp and Ernest, 2014). We further note that while
we evaluated SAD scaling patterns using a single initial point
to establish the scale gradient, in a related analysis we obtained
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FIGURE 3 | Effect of area sampled (A), species richness (B), total number of individuals (C), and number of families (D) on SAD shape (best model selected)
aggregated across all the communities (see Supplementary Figure 1 for plots for each individual community). Plots were built using the function geom_density
from the ggplot package in R (Wickham, 2009), which computes smoothed versions of histograms for continuous variables.

consistent beta diversity scaling patterns across ten random initial
points (Antão et al., 2019); we are thus confident the initial
random point is unlikely to drive our results.

Clear shifts in SAD shape can provide information about
relevant ecological and spatial factors affecting community
structure at different scales. For the lognormal SADs at the
total extent, but for which multimodality was frequently selected
for smaller sections, this might be due to haphazard spatial
decomposition of the community when splitting the total extent,
and/or because of sampling effects. This can occur for instance
if the communities become dominated by both rare and very
abundant species, thus yielding multiple modes across the SAD
(Gray et al., 2005; Green and Plotkin, 2007; see also Šizling et al.,
2009b). When the common species are very abundant, 2PLN

or 3PLN models are better able to accommodate both the rare
and the most abundant species in the distribution, hence being
selected despite the increase in number of parameters. Species
spatial aggregation patterns can lead to one or a few species
becoming extremely (proportionally) abundant for smaller areas.
Simultaneously there is also a higher proportion of rare species
in smaller samples, and hence a multimodal model provides a
better fit than 1PLN. In contrast, logseries systematically failed
to simultaneously accommodate rare and very abundant species.

Differences in species aggregation rates have been suggested to
be related to the existence of multiple modes in both theoretical
and empirical SADs (Green and Plotkin, 2007; Alonso et al.,
2008; Dornelas and Connolly, 2008). Our findings suggest that
multimodality occurring at smaller scales might be due to the

Frontiers in Ecology and Evolution | www.frontiersin.org 7 April 2021 | Volume 9 | Article 626730

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-626730 March 31, 2021 Time: 7:35 # 8

Antão et al. Species Abundance Distributions Across Scales

spatial aggregation of individuals and species, where “hitting
or missing” areas where a species is abundant can lead to the
appearance of different modes. Hence, a multimodal model
provides a better description for the SAD by accommodating
both the rarest and the more abundant species, which neither
the logseries nor a single PLN are able to do. Conspecific
aggregation is one of the fundamental features of ecological
communities (McGill, 2010). Our results suggest that species
spatial aggregation is likely an important driver across scales
[from local (see e.g., Šizling et al., 2009b) to truly continental
scales] and taxa, which is consistent with a related analysis
focusing on the scaling patterns of beta diversity (Antão et al.,
2019). Finally, we also found transitions from logseries to
lognormal as scale increased (Preston, 1948; Magurran, 2004).
This finding is consistent with studies showing that the rate at
which these transitions occur depend on species traits linked to
the spatial distribution of individuals (Borda-de-Água et al., 2017;
Dantas de Miranda et al., 2019). Overall, we have extended the
range of scales usually evaluated in this type of analyses, both
highlighting the importance of multimodal SADs, and showing
clear patterns of SAD shape variability emerging across scales.

Comparison With Macroecological
Theories
Our results clearly contrast with two key macroecological
theories. The logseries was never selected as best fit for larger
scales (i.e., larger areas, higher diversity or higher number of
individuals) and was unable to accurately predict the abundances
of both rare and common species. This clearly deviates from
neutral models predictions of the logseries as the expected
SAD for larger scales, including models with realistic speciation
modes, that can produce more flexible metacommunity SADs
and reduce the predicted number of singletons (Rosindell et al.,
2010, 2011), but are still unable to provide adequate fit for large
scale SADs (Fukaya et al., 2020) or accommodate multimodal
SADs. Consistent with our results, a study of global rarity patterns
in plants also found logseries distributions to inadequately
fit global aggregate SAD, being outperformed by lognormal
distributions (Enquist et al., 2019); interestingly multimodality
was not evaluated. In addition, our findings also show a marked
contrast with several studies reporting the success of METE
models in characterizing general SAD shape (Harte et al., 2008;
White et al., 2012; Xiao et al., 2015). For instance, the logseries
was shown to provide a better fit to several empirical SADs
with a wide range of “anchor scales” (White et al., 2012). This
study included two communities analyzed here, namely the
FIA tree and BBS bird datasets, for which multimodality was
strongly selected along the scale gradient (although we did not
analyze the smallest sample grain level). Yet, in agreement with
our results, White et al. (2012) also reported that the logseries
tended to overestimate richness for the lowest abundance classes,
and the authors suggested that other METE formulations or
neutral models could be used as alternatives, since they predict
fewer singletons. While we have not directly analyzed either
METE or neutral models, our results clearly illustrate that the
logseries is not able to simultaneously deal with the rare and

the abundant species tails. Hence, given that the logseries has
been systematically outperformed, particularly for larger scales
[here and in Antão et al. (2017) and Enquist et al. (2019)], it
is unlikely that the logseries is an adequate descriptor of SADs
across spatial scales. The same inability has been shown for the
lognormal distribution, explicitly linked to species turnover and
spatial aggregation patterns between the smaller scale SADs being
pooled together in the theorethical famework proposed by Šizling
et al. (2009a,b). A critical development is then to accommodate
the variability in SAD shape with spatial scale, and crucially to
include multimodality, given its high prevalence across all scales.

Our results do not invalidate the logseries or the lognormal
as “realistic functional forms” for the SAD, as both were selected
as best model for several communities (here, as well as in
Antão et al., 2017). What our results clearly show is that the
logseries is neither adequate as the single SAD distribution,
as METE suggests, nor is it more likely to describe SADs
at larger scales, contrary to NTB predictions (Hubbell, 2001;
Pueyo et al., 2007; Rosindell et al., 2010). A model extending
the neutral theory by incorporating size variation and growth
dynamics [the size-structured neutral theory model (SSNT)] still
assumes a logseries SAD (O’Dwyer et al., 2009). Comparisons of
different model formulations for both METE and SSNT showed
a better performance for the latter (O’Dwyer et al., 2009; Xiao
et al., 2016), with the authors arguing that METE’s constraints
are not fully capturing relevant biological processes influencing
community structure. Furthermore, because derivations for other
macroecological patterns depend on a logseries SAD (Harte
et al., 2008), testing other SAD distributions to ensure those
derivations are robust is warranted. For instance, Šizling et al.
(2011) showed that incorporating spatial turnover at different
scales affected local species area relationships derived from
METE. Moreover, neither neutral nor METE models account
for multiple modes in SADs, not to their higher prevalence at
larger scales and for more diverse communities. Our results also
suggest that the combination of S and N is not sufficient to
determine SAD shape across spatial scales (White et al., 2012;
Locey and White, 2013; Xiao et al., 2015), specifically as the
total abundance across the scale gradient did not exhibit any
systematic effect on SAD shape (for the aggregated results).
Nonetheless, both area and species richness showed a strong
influence on SAD shape, although the two variables are also
strongly correlated (Rosenzweig, 1995). One of the advantages of
using the METE approach is being able to interpret deviations
from the expected distributions solely constrained by richness
and abundance as evidence that other ecological features must be
important in structuring communities (Harte et al., 2008; White
et al., 2012; Xiao et al., 2016). Here, we show this must be the
case for several large-scale empirical communties, and suggest
that spatial aggregation patterns and ecological heterogeneity as
potential such factors.

One potential explanation for the departure of the findings
presented here from the two macroecological frameworks
considered could be the scale gradient examined. This gradient
spanned several orders of magnitude, and included very large
areas, even for the smallest levels analyzed. Hence, it is possible
that discrepancies between our results and those theoretical
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predictions might be at least partially attributable to differences
in the spatial scales investigated (as noted above for the FIA
and BBS datasets). The same is true for the spatial theory
developed by Šizling et al. (2009a,b), which mainly focused on
upscaling SADs for larger plots, but which remain much smaller
than the smallest level in our analysis. In addition, and while
we analyzed extensively and consistently sampled datasets with
hundreds to several thousands of samples, it is particularly hard
to obtain thorough abundance records at such large extents.
Thus, sampling effects could also potentially influence our results,
particularly at the largest scales, where sampling effects known
to affect SAD shape may be more severe. Nonetheless, our
results strongly support the suggestion that both NTB and METE
might be more adequate for smaller scales (smaller areas and/or
fewer individuals) (McGill, 2010), while the traditional SAD
distributions are unable to accommodate SAD shape variability
with scale, as we have clearly shown with consistent empirical
patterns across taxa, and for both marine and terrestrial habitats.

CONCLUSION

Spatial scale and taxonomic diversity emerged as major drivers
of variability in SAD shape. The systematic assessment of SADs
at different spatial scales and for different taxa allows us to
make stronger inferences about the commonness and rarity of
species across scales. Our findings clearly show that neither
NTB nor METE formulations are able to accommodate the
variability in SADs shape across spatial scales. The interplay
of SAD shape at different scales can highlight important
mechanisms acting on ecological communities, namely both
inter- and intraspecific spatial patterns that lead to different
SAD shape as spatial scale changes. Furthermore, a critical
development for macroecological theories is to predict or
accommodate multimodal SADs, and crucially to incorporate
the effect of spatial scale and ecological heterogeneity in
determining SAD shape.
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