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Water hyacinth (Pontederia crassipes, also referred to as Eichhornia crassipes) is one

of the most invasive weed species in the world, causing significant adverse economic

and ecological impacts, particularly in tropical and sub-tropical regions. Large scale

real-time monitoring of areas of chronic infestation is critical to formulate effective control

strategies for this fast spreading weed species. Assessment of revenue generation

potential of the harvested water hyacinth biomass also requires enhanced understanding

to estimate the biomass yield potential for a given water body. Modern remote sensing

technologies can greatly enhance our capacity to understand, monitor, and estimate

water hyacinth infestation within inland as well as coastal freshwater bodies. Readily

available satellite imagery with high spectral, temporal, and spatial resolution, along

with conventional and modern machine learning techniques for automated image

analysis, can enable discrimination of water hyacinth infestation from other floating or

submerged vegetation. Remote sensing can potentially be complemented with an array

of other technology-based methods, including aerial surveys, ground-level sensors, and

citizen science, to provide comprehensive, timely, and accurate monitoring. This review

discusses the latest developments in the use of remote sensing and other technologies

to monitor water hyacinth infestation, and proposes a novel, multi-modal approach that

combines the strengths of the different methods.

Keywords: remote sensing, synthetic aperture radar, ground sensor network, unmanned aerial vehicle, citizen

science, machine learning, aquatic weeds, wetlands

INTRODUCTION

Originating from the Amazon Basin, water hyacinth (Pontederia crassipes) has spread to more
than 80 countries over the past century (Jafari, 2010). This monocotyledonous macrophyte
reproduces asexually using stolons and sexually by seeds (Havel et al., 2015), with a rapid
reproductive capacity enabling it to double its biomass in 6–14 days under conducive growth
conditions (Keller and Lodge, 2009). Researchers have estimated that over 8 months, 10 water
hyacinth plants can reproduce into 655,360 plants, covering approximately half a hectare
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(Gunnarsson and Petersen, 2007). It is thus not surprising
that water hyacinth has been listed among the world’s worst
weeds (Riches, 2001). A comparative assessment of invasive weed
species in China (Bai et al., 2013) introduced two indices using
a scale of 1–4: “impact index,” representing social, economic,
and ecological impacts; and “spread index,” representing rate
of spread. Water hyacinth was assessed as having impact
index 4 and spread index 3, highlighting its enormous adverse
environmental impact. The weed reduces species diversity by
reducing penetration of sunlight (Huang et al., 2008), affecting
turbidity and dissolved oxygen (Chukwuka and Uka, 2007),
depleting nutrients (Brendonck et al., 2003), and disturbing
the food-web (Coetzee et al., 2014; Mironga et al., 2014). The
thick floating weed mats harbor pathogenic micro-organisms,
pests, and insect larvae, promoting diseases like schistosomiasis,
dengue, chikungunya, and malaria (Muyodi, 2000). The mats
challenge boat traffic by obstructing waterways and damaging
propellers, and hamper fishing activity because casting of nets
becomes impossible (European Environment Agency, 2000).
Trends in urbanization and increased eutrophication of inland
and coastal waterbodies imply that these problems will only grow
worse in future (Williams et al., 2005).

Effectively tackling this menace requires accurate and timely
monitoring of potential water hyacinth habitats within aquatic
ecosystems (Shekede et al., 2008). Monitoring is necessary for
estimating the size of an infestation, providing data for use
in developing strategies for management and control (Dube
et al., 2017). Traditionally, water hyacinth infestation monitoring
has relied on field surveys with limited spatial coverage, using
methods that are time and labor intensive (Ritchie et al., 2003).
This limited the amount of data that can be collected, leading
to poor understanding of factors affecting the emergence and
spread of water hyacinth in different geographies. During the last
decade, increasing availability of open sources of satellite data has
created new possibilities for low-cost, large scale monitoring of
water bodies (Turner et al., 2013). Satellites can provide spatial
snapshots, with a short time interval, of areas known for water
hyacinth infestation, particularly valuable for inaccessible and
vulnerable ecologies or areas of significant commercial interests.
However, challenges remain in developing effective automated
methods for accurate detection of the presence of water hyacinth
in satellite images and discriminating it from other aquatic
vegetation that may be present. Potential solutions include using
powerful machine learning algorithms that can handle large
datasets, and the complementary use of data collected using other
methods such as aerial surveys, in-water sensor devices, and
technology-assisted surveillance by local people (citizen science).

We describe some of the ways in which water hyacinth
is currently managed and explain how these can be made
more effective through improved monitoring. Historically, water
hyacinth has been treated as a pest requiring eradication or
strict control, but there are also novel initiatives to use it as a
resource for economic exploitation; improvements inmonitoring
have benefits for both approaches. We then review a range of
technological methods that can be applied and end by proposing
a novel, multi-modal approach.

BENEFITS OF IMPROVED MONITORING
FOR INFESTATION CONTROL

Management practices for water hyacinth infestation have
primarily focused on eradication through physical, biological
or chemical means, with modest success (Wilson et al., 2007).
Mechanical removal of water hyacinth mats is the most common
approach, particularly in navigation channels (Toft et al., 2003).
Over the last few decades, the insect Neochetina eichhorniae and
a suite of other species have been widely used as biocontrol
agents in many parts of the world (Center et al., 2002; Hill and
Coetzee, 2017). When combined with other plant stress factors,
biocontrol has been found to be effective (Reddy et al., 2019).
Use of herbicides in coordination with biocontrol has showed
considerable success in maintaining the weed within acceptable
levels (Tipping et al., 2017). Improvements in monitoring
capability will make it possible to compare the efficacy of various
control measures at a larger scale and within different geographic
and climatic contexts, providing data that can be used to inform
the choice of the most appropriate control method when an
infestation is detected. Improved monitoring will also make it
possible to detect new patches of infestation at an earlier stage,
when they can be more easily and cheaply suppressed.

BENEFITS OF IMPROVED MONITORING
FOR EXPLOITATION OF HARVESTED
WATER HYACINTH BIOMASS

Efficient utilization of harvested water hyacinth biomass for
the production of fuels (biogas, bioethanol, or biohydrogen)
and other value-added products will significantly mitigate the
nuisance caused by the weed. Researchers have demonstrated
bioethanol production potential from the hemicellulose and
cellulose rich biomass (Okewale et al., 2016). Several value-
added products, including cellulose, xanthogenate, levulinic acid,
shikimic acid, biopolymer, biobutanol, composites, biofertilizers,
fish feed, superabsorbent polymer, and xylitol have been
demonstrated. With only minimal treatment, the biomass can be
used as substrate for mushroom cultivation (Kumar et al., 2014;
Prabhu, 2016) or for making handicrafts and other products.

Despite this known potential, none of these ideas has yet seen
widespread adoption. To develop a financially viable proposal
for a large scale processing unit, it is necessary to have data
about the expected biomass quantity and time (to optimize
scale of processing and assess viability), seasonal variation of the
biomass (to schedule operations and plan storage requirements),
and site-specific details such as remoteness of the location and
proximity to transport routes andmarkets. Improvedmonitoring
through remote sensing will be able to precisely measure the
acreage of water hyacinth mats as well as their seasonal and
temporal quantity variations. This will help with quantifying
and forecasting biomass availability for commercial planning.
There is potential in realizing this opportunity for improving
livelihoods in impoverished communities.
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TECHNOLOGY-BASED METHODS OF
MONITORING WATER HYACINTH

Remote Sensing
Satellite remote sensing data has potential for effective and
low-cost short interval monitoring of the temporal and spatial
distribution of water hyacinth infestation at a large scale. The
availability, frequency and coverage of satellite remote sensing
data have increased considerably during the last years, in
particular due to the European space agency (ESA)’s Copernicus
program with Sentinel-1 and Sentinel-2. Currently, this potential
is largely unexploited, due in part to the limited training of
aquatic scientists and hydrologists in using remote sensing
(Nagendra et al., 2013). Table 1 presents a list of currently
available open-access satellite-based sensor systems that can be
used for monitoring water hyacinth. Remote sensing datasets
may come from optical systems or from synthetic aperture radar
(SAR). Optical images are typically well-suited for monitoring
water hyacinth, because of their high spatiotemporal resolution,
wide spatial coverage and broad spectrum. However, they are
severely affected by cloud cover and meteorological conditions,
and they are dependent on solar illumination. The data can be
supplemented with data from SAR sensors which, in general,
are unaffected by day-night, clouds and weather conditions.
These two types of instruments may supplement each other in
operational systems.

The primary focus of efforts using optical datasets has
been to discriminate between hyacinth mats and algal blooms
or other aquatic macrophytes. With improved spectral and
spatial resolution sensors, the 10 m/pixel ground sampling
distance (GSD) of Sentinel-2 MSI (multispectral instrument)
has significantly enhanced research capability to detect and
estimate water hyacinth infestation and coverage. Submerged
macrophytes are clearly distinguished by their lower absolute
reflectance in the near infrared (NIR), while other narrow
hyperspectral channels are used to discriminate species on
the basis of leaf optical properties and other biophysical or

biochemical properties (Vidhya et al., 2014, Cheruiyot et al.,
2014). Additionally, using remote sensing, critical water quality
parameters, such as chlorophyll-a, turbidity and phosphorus
concentration can be estimated (primarily through physics-based
approaches) with high accuracy (Weghorst, 2008; Yao et al., 2010;
Chawira et al., 2013; Kibena et al., 2013; Majozi et al., 2014).

Unlike optical datasets, SAR images have the benefit of being
unaffected by cloud cover. Silva et al. (2010) showed the utility
of SAR in monitoring of aquatic macrophytes, even during
challenging weather conditions. The difference in dielectric
constant and roughness between surface water and vegetation
allows SAR to discriminate between dry and flooded vegetation
(Evans et al., 2010). The lack of penetration of microwaves into
water minimizes the error in signal capturing due to presence
of submerged vegetation. The intensity of the radar backscatter
being directly influenced by surface roughness, volumetric
scattering, wavelength information and polarization makes it
possible to develop vegetation-specific signatures (Robertson
et al., 2015).

Machine Learning Algorithms for
Classifying Water Hyacinth in Remote
Sensing Data
Machine learning algorithms have potential to significantly
improve classification accuracy when identifying water hyacinth
within satellite acquired imagery. For examples, the inaccuracy
of pixel-based (Zhang and Foody, 1998) can be circumvented
using algorithms that can extract expert knowledge derived from
secondary data, and statistical tools such asMaximum Likelihood
Classifier (Xie et al., 2008).

Atmospheric correction is another area where machine
learning can contribute. Traditionally, algorithms for detecting
chlorophyll a in MERIS spectrometer data relied on the water-
leaving reflectance (Gitelson et al., 2009). However, common
atmospheric correction software failed to resolve the shape of

TABLE 1 | Salient features of open access satellite-based sensor systems that can potentially be used for monitoring water hyacinth infestation.

Satellite Sensor type Spatial resolution Temporal

resolution

No. of bands Swath Width

(km)

Sentinel-1 SAR 5–10m

mode-dependent

6/12 days 2 250

mode-dependent

Sentinel-2 Optical 10–60m 5 days 10 290

MERIS Optical 0.3–1.2 km 2 days 15 1,150

Oceansat-2 Optical 300m 2–3 days 15 1,420

LANDSAT 1–7 Optical 30m 16 days 4 185

LANDSAT 8 Optical 30m 16 days 5 185

ASTER Optical 15–90m 16 days 14 60

ALOS AVNIR 2 Optical 10m 14 days 4 70 (at nadir)

NISAR SAR 3–10m

mode-dependent

12 days Polarimetric

(single, dual,

compact, quad)

>240

Some of this information was taken from the following sources: (Shanthi et al., 2013; Oyama et al., 2015; Villa et al., 2015; Guerschman et al., 2016; Dube et al., 2017; Malthus, 2017;

Veloso et al., 2017; Binding et al., 2018).
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the water-leaving reflectance accurately, particularly in the red-
NIRMERIS bands for eutrophic waters (Guanter et al., 2010). An
Artificial Neural Network approach for atmospheric corrections
for Case 2 Regional Coast Color (C2RCC) was developed for
MERIS (Doerffer and Schiller, 2008). C2RCC included a 5-
component bio-optical model, as well as a coastal aerosol model
aimed at expanding MERIS and Sentinel capabilities to coastal
and inlandwaters (Brockmann et al., 2016). The radiative transfer
code derived from the simulation of a satellite signal is based
on successive orders of scattering approximations and it intends
to simulate reflection observed for a typical water surface using
a coupled atmosphere-surface system (Martins et al., 2017).
POLYMER is used for spectral optimization using polynomials
to model separate spectral influence from atmosphere and
sunlight (Steinmetz et al., 2011). POLYMER decomposes the
total signal after Rayleigh correction into a water reflectance
spectrum, a spectrally smooth function for the atmosphere, and
everything else which is “non-water.” The iCOR atmospheric
correction is a completely image-based processor which uses
sun and sensor geometry, aerosol optical depth, ozone, water
vapor, and elevation to derive atmospheric parameters from
pre-computed MODTRAN (MODerate resolution atmospheric
TRANsmission)-5 Look-Up-Tables (De Keukelaere et al., 2018).
These approaches greatly enhance the capacity to discriminate
between cyanobacterial blooms, surface scum, and floating
macrophyte such as water hyacinth.

Other machine learning algorithms that have been applied
to remote sensing data include decision tree approaches, used
in Song et al. (2012) to improve the accuracy of land cover
classification in low-resolution images, random forest (Adelabu
and Dube, 2014), and support vector machines (Mountrakis and
Ogole, 2011).

Aerial Surveys
Historically the identification of individual species was based
on laborious and subjective interpretation of analog or digital
aerial high-resolution photography (Husson et al., 2014).
The availability of low-cost unmanned aerial vehicles (UAVs)
equipped with high-quality digital cameras has resulted in
a resurgence of such systems for environmental monitoring
(Anker et al., 2014). Airborne optical monitoring can greatly
enhance remote monitoring capabilities. The ability of aerial
photography to acquire images under the clouds and with
much higher resolution makes image interpretation easier
compared to satellite data. Common systems in use are
CASI (Compact Airborne Spectrographic Imager), MIVIS
(Multispectral Infrared and Visible Imaging Spectrometer),
HyMAP (airborne hyperspectral imaging sensor), AVIRIS
(Airborne Visible/Infrared Imaging Spectrometer), and sensors
deployed on UAVs. The high cost of hyperspectral UAV/camera
systems is a barrier to their widespread use; however, cheaper
multispectral systems have recently become available and are a
promising alternative.

Challenges such as changing sun angles and variable wind
speeds affect aerial image acquisition, therefore flight scheduling
requires skill and site-specific knowledge (Hestir et al., 2008).
Airborne sensors provide high spectral resolution and facilitate
differentiation of macrophytes strategies (Giardino et al., 2015).

Becker et al. (2007) explored various bands of hyperspectral
scanner data to derive the optimal system parameters (e.g.,
resolution, number of bands) to enable classification of common
wetland vegetation. Their study reported an optimal spatial
resolution of 2m with strategically located bands in the red-NIR
region. Repeated airborne LIDAR acquisitions can be used to
produce a high-resolution canopy digital elevation model and
canopy height model of the water hyacinth. This can help to track
water hyacinth growth and detect infestation at an early stage
(Hopkinson et al., 2005).

Ground-Level Sensors
Sensor devices of various kinds can be placed within water and
used for detecting indicators of the presence of aquatic plants or
the conditions conducive to their growth. Sensors may be used
for spot measurements or placed on site long term to detect
changing conditions. Maintenance of long-term installations
presents various challenges, such as the risk of theft or damage to
devices, or reduced effectiveness due to biological colonization.
However, if these can be overcome, useful data can be gathered.
For example, a spectro-radiometer can be used to detect aquatic
plants using their reflectance spectra and discriminate between
floating and submerged plants (Penuelas et al., 1993). This
ground-level data can be usefully combined with other data
to yield better information: for example, Wolf et al. (2013)
investigated freshwater lakes in Germany using a submersible
spectro-radiometer and suggested that the reflectance spectra
of vegetation or sediments on and below the lake bottom were
useful to control the atmospheric and water column deviations
of remote sensing data from satellites.

Sensors may be combined with actuators and communication
capabilities (Internet of Things) for real-time data gathering
and early warning systems (Abdullah and Hagem, 2020) placed
a Wi-Fi-enabled photon board and an ultrasonic sensor in
an irrigational channel to provide an early warning system
for detecting Ceratophyllum and Eichhornia. Water quality
monitoring was performed using sensors for critical parameters
like turbidity, temperature and dissolved oxygen while assessing
the impact of herbicides used for control of water hyacinth in the
Sacramento-San Joaquin delta (Tobias et al., 2019). Monitoring
of phosphate concentration too is important as it is closely linked
with water hyacinth infestation (Kobayashi et al., 2008; Datta
et al., 2016). An IoT based sensor that monitors water quality in
real-time was demonstrated by Manimegalai (2020). Vaseashta
et al. (2020) developed a prototype from commercial-off-the-
shelf sensors to monitor contaminants in underground and
surface water. A detailed review of microfluidic-based sensors
for monitoring water quality can be found in Jaywant and Arif
(2019).

Citizen Science
The traditional method of monitoring water hyacinth using
manual field surveys can be greatly enhanced by the use
of smartphones and mobile applications to enable quick and
effective data collection. Widespread and growing cellular
network penetration in countries across the world has enabled
citizen science initiatives such as the Plantix mobile application
(Wang et al., 2020), which is used by farmers in India for
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FIGURE 1 | Proposed system architecture for a multi-modal system for monitoring water hyacinth infestation.

quick reporting and diagnosis of agricultural pests and diseases
found in their fields. Gervazoni et al. (2020) used citizen science
to monitor spread of invasive Iris pseudacorus in Argentinian
wetlands. There is potential to develop similar applications
that can be provided to fishermen, farmers, irrigation workers
and other users of waterbodies to report sightings of water
hyacinth. Photographs augmented with timing and geolocation
data can build a valuable repository of data that can be used for
monitoring infestations and can serve as ground-truth data for
the development of algorithms for automated detection of water
hyacinth from remote sensing data.

DISCUSSION AND PROPOSAL FOR A
MULTI-MODAL APPROACH TO
MONITORING WATER HYACINTH

We have seen that a wide variety of technological approaches
for monitoring water hyacinth infestation are available, though
the full potential of most of these is currently underexploited.
Remote sensing has considerable advantages over other methods,
as it is low in cost and can provide extensive spatial and
temporal coverage, enabling ongoing surveillance and reaching
inaccessible locations. Optical images can be used for their high
resolution and broad coverage and can be supplemented with
SAR data to provide datasets that are resilient to cloud coverage
and poor weather conditions. Aerial surveys and citizen science
can provide detailed, very high-resolution imagery that can be
used to complement and ground-truth satellite data. Sensors
placed within waterbodies can provide supplementary data and
provide early warnings of infestations.

A comprehensive solution to the problem of monitoring
water hyacinth must involve a combination of methods.
Our team is working to design and test prototypes of

a multi-modal system (Figure 1) which can be used to
continuously monitor the presence of water hyacinth, using
a data driven approach that merges environmental datasets
obtained from: (i) SAR and optical imaging by European
satellites, essential for understanding spatio-temporal variability
of vegetation cover and distribution; (ii) monitoring of target
sites using drone-mounted multispectral cameras, essential
for collecting very high resolution data to ground truth
satellite observations; (iii) continuous real time data from
an Internet-of-Things enabled ground sensor network placed
permanently in the water, collecting data indicative of water
hyacinth presence, such as dissolved oxygen, nutrients, pH
levels and temperature, and (iv) citizen science, using a mobile
application to gather photographs, timestamps, geolocation
data and other metadata about sightings of water hyacinth
infestations. New algorithms will be developed, leveraging
advances in signal processing, e.g., texture analysis and
machine learning techniques, such as deep learning, along
with multimodal data fusion strategies. We envisage a system
which uses satellite and remote sensing data to detect if weed
infestation is present, producing alerts that trigger a drone
campaign to acquire more detailed information. The system
will include a network of sensors that can sense water quality
conditions conducive to water hyacinth growth and detect
infestation at an early stage. If successful, this system will
provide low-cost, comprehensive, timely, and accurate data for
effective management of what many consider the world’s worst
aquatic weed.

AUTHOR CONTRIBUTIONS

AD conceived the original idea for this paper and
carried out most of the literature review. AD, SM, GP,

Frontiers in Ecology and Evolution | www.frontiersin.org 5 January 2021 | Volume 9 | Article 631338

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Datta et al. Monitoring Water Hyacinth

DB, AM, VA, and SR contributed to the writing and
preparation of figures. JS, GA, SK, and AK provided
feedback on drafts. All authors approved the final
submission and agree to be accountable for the content of
the paper.

FUNDING

This work was supported by the UKRI Global Challenges
Research Fund through grant (FF\1920\1\37) from the Royal
Academy of Engineering.

REFERENCES

Abdullah, N. M., and Hagem, R. M. (2020). Eichhornia and ceratophyllum

monitoring system based on IoT for Iraqi’s irrigation projects. Al-Rafidain Eng.

J. 25, 78–84. doi: 10.33899/rengj.2020.126877.1030

Adelabu, S., and Dube, T. (2014). Employing ground and satellite-based QuickBird

data and random forest to discriminate five tree species in a Southern African

Woodland. Geocarto Int. 30, 457–471. doi: 10.1080/10106049.2014.885589

Anker, Y., Hershkovitz, Y., Ben Dor, E., and Gasith, A. (2014). Application of

aerial digital photography for macrophyte cover and composition in small rural

streams. River Res. Appl. 30, 925–937. doi: 10.1002/rra.2700

Bai, F., Chisholm, R., Sang, W., and Dong, M. (2013). Spatial risk assessment

of alien invasive plants in China. Environ. Sci. Technol. 47, 7624–7632.

doi: 10.1021/es400382c

Becker, B., Lusch, D., and Qi, J. (2007). A classification-based assessment of

the optimal spectral and spatial resolutions for Great Lakes coastal wetland

imagery. Rem. Sens. Environ. 108, 111–120. doi: 10.1016/j.rse.2006.11.005

Binding, C. E., Greenberg, T. A., McCullough, G., Watson, S. B., and Page, E.

(2018). An analysis of satellite-derived chlorophyll and algal bloom indices on

Lake Winnipeg. J. Great Lakes Res. 44, 436–446. doi: 10.1016/j.jglr.2018.04.001

Brendonck, L., Maes, J., Rommens, W., Dekeza, N., Nhiwatiwa, T., Barson, M.,

et al. (2003). The impact of water hyacinth (Eichhornia crassipes) in a eutrophic

subtropical impoundment (Lake Chivero, Zimbabwe). II. Species diversity.

Arch. Hydrobiol. 158, 389–405. doi: 10.1127/0003-9136/2003/0158-0389

Brockmann, C., Doerffer, R., Peters, M., Stelzer, K., Embacher, S., and Ruescas, A.

(2016). “Evolution of the C2RCC neural network for Sentinel 2 and 3 for the

retrieval of ocean colour products in normal and extreme optically complex

waters,” in Proceedings of the Living Planet Symposium (Prague).

Center, T. D., Hill, M. P., Cordo, H., and Julien, M. H. (2002). Water Hyacinth.

Biological Control of Invasive Plants in the Eastern United States. Newtown

Square, PA: USDA Forest Service Publication FHTET.

Chawira, M., Dube, T., and Gumindoga, W. (2013). Remote sensing based water

quality monitoring in Chivero and Manyame lakes of Zimbabwe. Phys. Chem.

Earth Parts A/B/C 66, 38–44. doi: 10.1016/j.pce.2013.09.003

Cheruiyot, E. K., Mito, C., Menenti, M., Gorte, B., Koenders, R., and Akdim, N.

(2014). Evaluating MERIS-based aquatic vegetation mapping in Lake Victoria.

Rem. Sens. 6:77627782. doi: 10.3390/rs6087762

Chukwuka, K. S., and Uka, U. N. (2007). Effects of water hyacinth (Eichhornia

crassipes) infestation on zooplankton population in Awa reservoir, Ibadan

South-west Nigeria. J. Biol. Sci. 7, 865–869. doi: 10.3923/jbs.2007.865.869

Coetzee, J. A., Jones, R. W., and Hill, M. P. (2014). Water hyacinth,

Eichhornia crassipes (Mart.) Solms-Laub. (Pontederiaceae), reduces benthic

macroinvertebrate diversity in a protected subtropical lake in South Africa.

Biodivers. Conserv. 23, 1319–1330. doi: 10.1007/s10531-014-0667-9

Datta, A., Wani, S. P., Patil, M. D., and Tilak, A. S. (2016). Field

scale evaluation of seasonal wastewater treatment efficiencies of free

surface constructed wetlands in ICRISAT India. Curr. Sci. 110, 1756–1763.

doi: 10.18520/cs/v110/i9/1756-1763

De Keukelaere, L., Sterckx, S., Adriaensen, S., Knaeps, E., Reusen, I., and Giardino,

C., et al. (2018). Atmospheric correction of Landsat-8/OLI and Sentinel-2/MSI

data using iCOR algorithm: validation for coastal and inland waters. Eur. J.

Remote Sens. 51, 525–542. doi: 10.1080/22797254.2018.1457937

Doerffer, R., and Schiller, H. (2008). MERIS Lake Water Algorithm for BEAM—

MERIS Algorithm Theoretical Basis Document. V1.0, 10 June 2008. Geesthacht:

GKSS Research Center.

Dube, T., Mutanga, O., Sibanda, M., Bangamwabo, V., and Shoko, C. (2017).

Evaluating the performance of the newly-launched Landsat8 sensor in

detecting and mapping the spatial configuration of water hyacinth (Eichhornia

crassipes) in inland lakes, Zimbabwe. Phys. Chem. Earth 100, 101–111.

doi: 10.1016/j.pce.2017.02.015

European Environment Agency (2000). CORINE Land Cover Technical Guide—

Addendum 2000. Technical Report No 40. Available online at: https://www.eea.

europa.eu/publications/tech40add (accessed November 12, 2020).

Evans, T., Costa, M., Telmer, K., and Silva, T. (2010). Using ALOS/PALSAR and

RADARSAT-2 to map land cover and seasonal inundation in the Brazilian

Pantanal. IEEE J. Sel. Top. Appl. 3, 560–575. doi: 10.1109/JSTARS.2010.2089042

Gervazoni, P., Sosa, A., Franceschini, M., Coetzee, J., Faltlhauser, A., and Fuentes-

Rodríguez, D., et al. (2020). The alien invasive yellow flag (Iris pseudacorus L.)

in Argentinian wetlands: assessing geographical distribution through different

data sources. Biol. Invasions 22, 3183–3193. doi: 10.1007/s10530-020-02331-4

Giardino, C., Bresciani, M., Valentini, E., Gasperini, L., Bolpagni, R., and Brando,

V. E. (2015). Airborne hyperspectral data to assess suspended particulatematter

and aquatic vegetation in a shallow and turbid lake. Rem. Sens. Environ. 157,

48–57. doi: 10.1016/j.rse.2014.04.034

Gitelson, A. A., Gurlin, D., Moses, W. J., and Barrow, T. (2009). A bio-optical

algorithm for the remote estimation of the chlorophyll-a concentration in case

2 waters. Environ. Res. Lett. 4:45003. doi: 10.1088/1748-9326/4/4/045003

Guanter, L., Ruiz-Verdú, A., Odermatt, D., Giardino, C., Simis, S., Estellés, V.,

et al. (2010). Atmospheric correction of ENVISAT/MERIS data over inland

waters: validation for European lakes. Rem. Sens. Environ. 114, 467–480.

doi: 10.1016/j.rse.2009.10.004

Guerschman, J., Donohue, R., Van Niel, T., Renzullo, L., Dekker, A., Malthus,

T., et al. (2016). “Earth observations for monitoring water resources,”

in Earth Observation for Water Resources Management: Current Use and

Future Opportunities for the Water Sector, eds L. García, D. Rodríguez,

M. Wijnen, and I. Pakulski (Washington, DC: World Bank), 79–143.

doi: 10.1596/978-1-4648-0475-5_ch6

Gunnarsson, C. C., and Petersen, C. M. (2007). Water hyacinths as a resource

in agriculture and energy production: a literature review. Waste Manag. 27,

117–129. doi: 10.1016/j.wasman.2005.12.011

Havel, J. E., Kovalenko, K. E., Thomaz, S. M., Amalfitano, S., and Kats, L. B. (2015).

Aquatic invasive species: challenges for the future.Hydrobiologia 750, 147–170.

doi: 10.1007/s10750-014-2166-0

Hestir, E. L., Khanna, S., Andrew, M. E., Santos, M. J., Viers, J. H., Greenberg, J. A.,

et al. (2008). Identification of invasive vegetation using hyperspectral remote

sensing in the California Delta ecosystem. Rem. Sens. Environ. 112, 4034–4047.

doi: 10.1016/j.rse.2008.01.022

Hill, M., and Coetzee, J. (2017). The biological control of aquatic weeds

in South Africa: current status and future challenges. Bothalia 47:a2152.

doi: 10.4102/abc.v47i2.2152

Hopkinson, C., Chasmer, L., Sass, G., Creed, I., Sitar, M., Kalbfleisch, W., et al.

(2005). Vegetation class-dependant errors in LiDAR ground elevation and

canopy height estimates in a Boreal wetland environment. Can. J. Remote Sens.

31, 191–206. doi: 10.5589/m05-007

Huang, L., Zhao, D., Wang, J., Zhu, J., and Li, J. (2008). Scale impacts of

land cover and vegetation corridors on urban thermal behavior in Nanjing,

China. Theoret. Appl. Climatol. 94, 241–257. doi: 10.1007/s00704-007-0

359-4

Husson, E., Hagner, O., and Ecke, F. (2014). Unmanned aircraft systems help

to map aquatic vegetation. Appl. Veg. Sci. 17, 567–577. doi: 10.1111/avsc.

12072

Jafari, N. (2010). Ecological and socio-economic utilization of water hyacinth

(Eichhornia crassipes Mart Solms). J. Appl. Sci. Environ. Manag. 14, 43–49.

doi: 10.4314/jasem.v14i2.57834

Frontiers in Ecology and Evolution | www.frontiersin.org 6 January 2021 | Volume 9 | Article 631338

https://doi.org/10.33899/rengj.2020.126877.1030
https://doi.org/10.1080/10106049.2014.885589
https://doi.org/10.1002/rra.2700
https://doi.org/10.1021/es400382c
https://doi.org/10.1016/j.rse.2006.11.005
https://doi.org/10.1016/j.jglr.2018.04.001
https://doi.org/10.1127/0003-9136/2003/0158-0389
https://doi.org/10.1016/j.pce.2013.09.003
https://doi.org/10.3390/rs6087762
https://doi.org/10.3923/jbs.2007.865.869
https://doi.org/10.1007/s10531-014-0667-9
https://doi.org/10.18520/cs/v110/i9/1756-1763
https://doi.org/10.1080/22797254.2018.1457937
https://doi.org/10.1016/j.pce.2017.02.015
https://www.eea.europa.eu/publications/tech40add
https://www.eea.europa.eu/publications/tech40add
https://doi.org/10.1109/JSTARS.2010.2089042
https://doi.org/10.1007/s10530-020-02331-4
https://doi.org/10.1016/j.rse.2014.04.034
https://doi.org/10.1088/1748-9326/4/4/045003
https://doi.org/10.1016/j.rse.2009.10.004
https://doi.org/10.1596/978-1-4648-0475-5_ch6
https://doi.org/10.1016/j.wasman.2005.12.011
https://doi.org/10.1007/s10750-014-2166-0
https://doi.org/10.1016/j.rse.2008.01.022
https://doi.org/10.4102/abc.v47i2.2152
https://doi.org/10.5589/m05-007
https://doi.org/10.1007/s00704-007-0359-4
https://doi.org/10.1111/avsc.12072
https://doi.org/10.4314/jasem.v14i2.57834
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Datta et al. Monitoring Water Hyacinth

Jaywant, S. A., and Arif, K. M. (2019). A comprehensive review of microfluidic

water quality monitoring sensors. Sensors 19:4781. doi: 10.3390/s19214781

Keller, R. P., and Lodge, D. M. (2009). “Invasive species,” in Encyclopedia of

Inland Waters, ed G. E. Likens (New York, NY: Academic Press), 92–99.

doi: 10.1016/B978-012370626-3.00226-X

Kibena, J., Nhapi, I., and Gumindoga, W. (2013). Assessing the relationship

between water quality parameters and changes in land use patterns in the Upper

Manyame River, Zimbabwe. Phys. Chem. Earth Parts A/B/C 67–69, 153–163.

doi: 10.1016/j.pce.2013.09.017

Kobayashi, J., Thomaz, S., and Pelicice, F. (2008). Phosphorus as a limiting factor

for Eichhornia crassipes growth in the Upper Paraná River Floodplain.Wetlands

28, 905–913. doi: 10.1672/07-89.1

Kumar,. A. V., Sreelakshmi,. T. P., Azmi,. T., Bindu,. P., Unnikrishna Pillai,. P.

R., and Prabhu, G. N. (2014). “Mushroom cultivation using aquatic weeds

of Kerala,” in Proceedings of National Symposium on Emerging Trends in

Biotechnology (Kochi), 166–176.

Majozi, N. P., Salama, M. S., Bernard, S., Harper, D. M., and Habte, M. G.

(2014). Remote sensing of euphotic depth in shallow tropical inland waters

of Lake Naivasha using MERIS data. Remote Sens. Environ. 148, 178–189.

doi: 10.1016/j.rse.2014.03.025

Malthus, T. (2017). “Bio-optical modeling and remote sensing of aquatic

macrophytes,” in Bio-optical Modeling and Remote Sensing of Inland Waters,

eds D. R. Mishra, I. Ogashawara, and A. A. Gitelson (Berkeley, CA: Elsevier),

263–308. doi: 10.1016/B978-0-12-804644-9.00009-4

Manimegalai, R. (2020). “An IoT based smart water quality monitoring system

using cloud,” in 2020 International Conference on Emerging Trends in

Information Technology and Engineering (ic-ETITE) (Vellore: IEEE), 1–7.

Martins, V. S., Barbosa, C. C. F., de Carvalho, L. A. S., Jorge, D. S. F., Lobo, F.

D. L., and Novo, E. M. L. D.M. (2017). Assessment of atmospheric correction

methods for Sentinel-2 MSI images applied to Amazon Floodplain Lakes.

Remote Sens. 9:322. doi: 10.3390/rs9040322

Mironga, J. M., Mathooko, J. M., and Onywere, S. M. (2014). Effects of spreading

patterns of water hyacinth (Eichhornia crassipes) on zooplankton population

in Lake Naivasha, Kenya. Int. J. Dev. Sustain. 3, 1971–1987. Available online

at: www.isdsnet.com/ijds (accessed January 15, 2021).

Mountrakis, G. I. J., and Ogole, C. (2011). Support vector machines in

remote sensing: a review. ISPRS J. Photogramm. Remote Sens. 66, 247–259.

doi: 10.1016/j.isprsjprs.2010.11.001

Muyodi, F. J. (2000). Microbiological Analysis of the Waters of Lake Victoria in

Relation to the Invasion of the Water Hyacinth, Eichhornia crassipes (Mart.)

Solms: A Case Study of the Lakeshores of Mwanza Municipality (Ph.D. Thesis).

University of Dar es Salaam, Dar es Salaam, Tanzania. Available online

at: http://localhost:8080/xmlui/handle/123456789/138 (accessed January 15,

2021).

Nagendra, H., Lucas, R., Honrado, J. P., Jongman, R. H. G., Tarantino,

C., and Adamo, M., et al. (2013). Remote sensing for conservation

monitoring: assessing protected areas, habitat extent, habitat condition, species

diversity, and threats. Ecol. Indic. 33, 45–59. doi: 10.1016/j.ecolind.2012.

09.014

Okewale, A. O., Omoruwou, F., and Ojaigho, R. O. (2016). Alternative energy

production for environmental sustainability. Br. J. Renew. Energy 1, 18–22.

doi: 10.1051/rees/2016040

Oyama, Y., Matsushita, B., and Fukushima, T. (2015). Distinguishing surface

cyanobacterial blooms and aquatic macrophytes using Landsat/TM

and ETM+ shortwave infrared bands. Rem. Sens. Environ. 157, 35–47.

doi: 10.1016/j.rse.2014.04.031

Penuelas, J., Blanchard, B., and Blanchard, A. (1993). Assessing community

type, plant biomass, pigment composition and photosynthetic efficiency of

aquatic vegetation from spectral reflectance.Remote Sens. Environ. 46, 110–118.

doi: 10.1016/0034-4257(93)90088-F

Prabhu, G. N. (2016). Economic impact of aquatic weeds – a third world approach.

J. Aquat. Biol. Fish. 4, 8–14.

Reddy, A. M., Pratt, P. D., Hopper, J. V., Cibils, S., Ximena, W., Guillermo, C.,

et al. (2019). Variation in cool temperature performance between populations

of Neochetina eichhorniae (Coleoptera: Curculionidae) and implications for

the biological control of water hyacinth, Eichhornia crassipes, in a temperate

climate. Biol. Control 128, 85–93. doi: 10.1016/j.biocontrol.2018.09.016

Riches, C. R. (2001). The World’s Worst Weeds. Surrey: British Crop

Protection Council.

Ritchie, J. C., Zimba, P. V., and Everitt, J. H. (2003). Remote sensing techniques

to assess water quality. Photogramm. Eng. Remote Sens. 69, 695–704.

doi: 10.14358/PERS.69.6.695

Robertson, L. D., King, D. J., and Davies, C. (2015). Object-based image analysis

of optical and radar variables for wetland evaluation. Int. J. Remote Sens. 36,

5811–5841. doi: 10.1080/01431161.2015.1109727

Shanthi, R., Poornima, D., Raja, S., Vijayabaskara Sethubathi, G., Thangaradjou,

T., Thangavel, B. et al. (2013). Validation of OCM-2 sensor performance in

retrieving chlorophyll and TSM along the southwest Bay of Bengal coast. J.

Earth Syst. Sci. 122, 479–489. doi: 10.1007/s12040-013-0286-y

Shekede, M. D., Kusangaya, S., and Schmidt, K. (2008). Spatio-temporal variations

of aquatic weeds abundance and coverage in Lake Chivero, Zimbabwe. Phys.

Chem. Earth 33, 8–13. doi: 10.1016/j.pce.2008.06.052

Silva, T. S. F., Costa, M. P. F., and Melack, J. M. (2010). Spatial and temporal

variability of macrophyte cover and productivity in the eastern Amazon

floodplain: a remote sensing approach. Rem. Sens. Environ. 114, 1998–2010.

doi: 10.1016/j.rse.2010.04.007

Song, X., Duan, Z., and Jiang, X. (2012). Comparison of artificial neural networks

and support vector machine classifiers for land cover classification in northern

China using SPOT- 5 HRG image. Int. J. Remote Sens. 33, 3301–3320.

doi: 10.1080/01431161.2011.568531

Steinmetz, F., Deschamps, P. Y., and Ramon, D. (2011). Atmospheric correction

in presence of sun glint: application to MERIS. Opt. Express. 19, 9783–9800.

doi: 10.1364/OE.19.009783

Tipping, P. W., Gettys, L. A., Minteer, C. R., Foley, J. R., and Sardes, S. N.

(2017). Herbivory by biological control agents improves herbicidal control of

water hyacinth (Eichhornia crassipes). Invasive Plant Sci. Manag. 10, 271–276.

doi: 10.1017/inp.2017.30

Tobias, V. D., Conrad, J. L., Mahardja, B., and Khanna, S. (2019). Impacts of water

hyacinth treatment on water quality in a tidal estuarine environment. Biol.

Invasions 21, 3479–3490. doi: 10.1007/s10530-019-02061-2

Toft, J. D., Simenstad, C. A., Cordell, J. R., and Grimaldo, L. F. (2003). The effects of

introduced water hyacinth on habitat structure, invertebrate assemblages, and

fish diets. Estuaries 26, 746–758. doi: 10.1007/BF02711985

Turner, W., Buchanan, G., Rondinini, C., Dwyer, J., Herold, M., and

Koh, L. P. (2013). Satellites: make data freely accessible. Nature 498:37.

doi: 10.1038/498037c

Vaseashta, A., Duca, G., Culighin, E., Bogdevici, O., Khudaverdyan, S.,

and Sidorenko, A. (2020). “Smart and connected sensors network for

water contamination monitoring and situational awareness,” in Functional

Nanostructures and Sensors for CBRN Defence and Environmental Safety

and Security (Dordrecht: Springer), 283–296. doi: 10.1007/978-94-024-

1909-2_20

Veloso, A., Mermoz, S., Bouvet, A., Le Toan, T., Planells, M., and

Dejoux, J. F., et al. (2017). Understanding the temporal behaviour

of crop using Sentinel-1 and Sentinel-2- like data for agricultural

applications. Remote Sens. Environ. 1999, 415–426. doi: 10.1016/j.rse.2017.

07.015

Vidhya, R., Vijayasekaran, D., Ahamed Farook, M., Jai, S., Rohini, M.,

and Sinduja, A. (2014). Improved classification of Mangroves health

status using hyperspectral remote sensing data. The International

archives of the photogrammetry. Remote Sens. Spat. Inf. Sci. 8, 667–670.

doi: 10.5194/isprsarchives-XL-8-667-2014

Villa, P., Bresciani, M., Bolpagni, R., Pinardi, M., and Giardino, C. (2015).

A rule-based approach for mapping macrophyte communities using multi-

temporal aquatic vegetation indices. Rem. Sens. Environ. 171, 218–233.

doi: 10.1016/j.rse.2015.10.020

Wang, S., Di Tommaso, S., Faulkner, J., Friedel, T., Kennepohl, A., and

Strey, R., et al. (2020). Mapping crop types in southeast India with

smartphone crowdsourcing and deep learning. Remote Sens. 12:2957.

doi: 10.3390/rs12182957

Weghorst, P. L. (2008). MODIS Algorithm Assessment and Principal Component

Analysis of Chlorophyll Concentration in Lake Erie. Kent, OH: Kent State

University. Available online at: https://etd.ohiolink.edu/ (accessed January 15,

2021).

Frontiers in Ecology and Evolution | www.frontiersin.org 7 January 2021 | Volume 9 | Article 631338

https://doi.org/10.3390/s19214781
https://doi.org/10.1016/B978-012370626-3.00226-X
https://doi.org/10.1016/j.pce.2013.09.017
https://doi.org/10.1672/07-89.1
https://doi.org/10.1016/j.rse.2014.03.025
https://doi.org/10.1016/B978-0-12-804644-9.00009-4
https://doi.org/10.3390/rs9040322
http://www.isdsnet.com/ijds
https://doi.org/10.1016/j.isprsjprs.2010.11.001
http://localhost:8080/xmlui/handle/123456789/138
https://doi.org/10.1016/j.ecolind.2012.09.014
https://doi.org/10.1051/rees/2016040
https://doi.org/10.1016/j.rse.2014.04.031
https://doi.org/10.1016/0034-4257(93)90088-F
https://doi.org/10.1016/j.biocontrol.2018.09.016
https://doi.org/10.14358/PERS.69.6.695
https://doi.org/10.1080/01431161.2015.1109727
https://doi.org/10.1007/s12040-013-0286-y
https://doi.org/10.1016/j.pce.2008.06.052
https://doi.org/10.1016/j.rse.2010.04.007
https://doi.org/10.1080/01431161.2011.568531
https://doi.org/10.1364/OE.19.009783
https://doi.org/10.1017/inp.2017.30
https://doi.org/10.1007/s10530-019-02061-2
https://doi.org/10.1007/BF02711985
https://doi.org/10.1038/498037c
https://doi.org/10.1007/978-94-024-1909-2_20
https://doi.org/10.1016/j.rse.2017.07.015
https://doi.org/10.5194/isprsarchives-XL-8-667-2014
https://doi.org/10.1016/j.rse.2015.10.020
https://doi.org/10.3390/rs12182957
https://etd.ohiolink.edu/
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Datta et al. Monitoring Water Hyacinth

Williams, A. E., Duthie, H. C., and Hecky, R. E. (2005). Water hyacinth in Lake

Victoria: why did it vanish so quickly andwill it return?Aquat. Bot. 81, 300–314.

doi: 10.1016/j.aquabot.2005.01.003

Wilson, J. R., Ajuonu, O., Center, T. D., Hill, M. P., Julien, M. H., Katagira, F. F.,

and Neuenschwander, P., et al. (2007). The decline of water hyacinth on Lake

Victoria was due to biological control by Neochetina spp. Aquat. Bot. 87, 90–93.

doi: 10.1016/j.aquabot.2006.06.006

Wolf, P., Rößler, S., Schneider, T., and Melzer, A. (2013). Collecting in situ remote

sensing reflectances of submersedmacrophytes to build up a spectral library for

lake monitoring. Eur. J. Remote Sens. 46, 401–416. doi: 10.5721/EuJRS20134623

Xie, Y., Sha, Z., and Yu,M. (2008). Remote sensing imagery in vegetationmapping:

a review. J. Plant Ecol. 1, 9–23. doi: 10.1093/jpe/rtm005

Yao, Y., Zhu, L., Wu, C., Zhang, Y., Wang, P., Wang, W., et al. (2010). “Water

quality remote sensingmonitoring research in China based on the HJ-1 satellite

data,” in 2010 IEEE International Geoscience and Remote Sensing Symposium

(Honolulu, HI), 620–623. doi: 10.1109/IGARSS.2010.5653595

Zhang, J., and Foody, G. M. (1998). A fuzzy classification of sub-urban land

cover from remotely sensed imagery. Int. J. Remote Sens. 19, 2721–2738.

doi: 10.1080/014311698214479

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Datta, Maharaj, Prabhu, Bhowmik, Marino, Akbari,

Rupavatharam, Sujeetha, Anantrao, Poduvattil, Kumar and Kleczkowski. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Ecology and Evolution | www.frontiersin.org 8 January 2021 | Volume 9 | Article 631338

https://doi.org/10.1016/j.aquabot.2005.01.003
https://doi.org/10.1016/j.aquabot.2006.06.006
https://doi.org/10.5721/EuJRS20134623
https://doi.org/10.1093/jpe/rtm005
https://doi.org/10.1109/IGARSS.2010.5653595
https://doi.org/10.1080/014311698214479
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles

	Monitoring the Spread of Water Hyacinth (Pontederia crassipes): Challenges and Future Developments
	Introduction
	Benefits of Improved Monitoring for Infestation Control
	Benefits of Improved Monitoring for Exploitation of Harvested Water Hyacinth Biomass
	Technology-Based Methods of Monitoring Water Hyacinth
	Remote Sensing
	Machine Learning Algorithms for Classifying Water Hyacinth in Remote Sensing Data
	Aerial Surveys
	Ground-Level Sensors
	Citizen Science

	Discussion and Proposal for a Multi-Modal Approach to Monitoring Water Hyacinth
	Author Contributions
	Funding
	References


