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Free-ranging domestic cats are a detriment to wildlife and humans by preying on
native species and transmitting disease. As a result, removing free-ranging cats from
the landscape has become a conservation and public health priority. Estimating cat
population size with an unbiased sampling design, however, especially in human-
dominated areas, is logistically challenging and rarely done. The lack of robust cat
population sampling limits our understanding of where cats pose risks, which is
important for evaluating management strategies, such as trap-remove or trap-neuter-
return. We hypothesized that cat abundance and activity both depend on human land
use and demographics. Using a network of sites participating in a community science
program, we conducted transect and camera trap surveys to test predictions of cat
population abundance and activity across a gradient of residential land use intensity.
Both sampling methods determined that cat abundance was greatest in areas with
intermediate human population density and lower educational attainment. Transect
data also provided evidence that cat abundance was greatest at intermediate levels
of impervious surface cover (e.g., road and buildings), while data from camera traps
also showed that cat abundance was positively associated with household income.
Using counts of cats observed on cameras, we found that the timing of cat activity
varied depending on the degree of urban intensity. Cats were more strictly nocturnal
in medium and high intensity residential land-use areas, possibly because a greater
proportion of these cats are unowned or because they avoid human activity. These
results suggest that transect surveys conducted during the day may undercount cats
in urban environments where unowned free-ranging cats predominate. Taken together,
our results highlight the importance of incorporating human demographics, land use
patterns, and urban context in estimating the abundance of free-ranging cats to better
inform management decisions and improve conservation outcomes.
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INTRODUCTION

Free-ranging domestic cats cause serious ecological damage
and can be hazardous to human health. Cats have caused the
extinction and extirpation of native wildlife (Medina et al., 2011;
Doherty et al., 2016; Greenwell et al., 2019) and represent a
major source of mortality for wildlife populations (Loss et al.,
2013; Loss and Marra, 2017). Cats are also the definitive host
for the protozoan parasite Toxoplasma gondii (Frenkel et al.,
1970), which causes serious human health problems, including
miscarriages, schizophrenia, and increased risk of suicide (Sahwi
et al., 1995; Brown et al., 2005; Ling et al., 2011). As the negative
effects of cats are better understood, there has been an increased
call to remove free-ranging cats from landscapes (Winter, 2004;
Nogales et al., 2013; Doherty et al., 2016; Crawford et al.,
2019). Accurate data on cat abundance, including how cats are
distributed across heterogeneous human-dominated landscapes,
are necessary for developing effective management strategies.

As owned and unowned populations often occupy the same
landscape, enumerating free-ranging cats presents a distinct
challenge. The majority of survey efforts, particularly those
conducted using social surveys, have largely focused on the
owned population (Lepczyk et al., 2004; Baker et al., 2008; Sims
et al., 2008; Murray et al., 2010; Thomas et al., 2012) and
often yield conflicting results. For example, Murray et al. (2010)
surveyed over 3,000 households in the United Kingdom and
reported higher cat abundance in rural and semi-urban areas
than in urban areas whereas Sims et al. (2008) and Thomas
et al. (2012) surveyed over 1,500 and 2,000 United Kingdom
households, respectively, and reported an increase in owned cat
density with increased housing density. Such disparities could
reflect differences amongst cat owners in the propensity to
give cats outdoor access or have them sterilized (e.g., Childs,
1990; Murray et al., 2015). Moreover, because both owned and
unowned cats negatively impact ecosystems (Blancher, 2013; Loss
et al., 2013), further work is needed to understand abundance
patterns across ownership classes and geographic contexts.

Recognizing the limitation of social surveys for estimating
free-ranging cat abundance, researchers have implemented other
approaches. For example, Schmidt et al. (2007b) used mark-
recapture and distance sampling to estimate the abundance
of free-ranging cats in an urban landscape in Caldwell, TX,
United States, and demonstrated that distance sampling provides
adequate estimates of free-ranging cat abundance in urban
areas. Because their study did not include land use covariates,
however, their estimates are not directly applicable across
heterogeneous urban landscapes. Davis and Lepczyk (2010)
used distance sampling transects at known cat aggregations
to estimate cat abundance in a population characterized by
clusters of individuals at feeding locations. Elizondo and Loss
(2016) evaluated cat abundance across a gradient of local
urban land use intensity using camera traps at 15 sites in
Stillwater, OK, United States, but did not observe variation
in abundance across the gradient. The authors recommended
surveying cats across more sites and a wider range of the
urban land use gradient. Cove et al. (2018) used an extensive
camera network at over 100 sites to survey cat populations

on public lands in the Florida Keys and were able to generate
robust population density, activity, and movement estimates.
However, cats also frequently use privately owned residential,
commercial, and industrial areas. Flockhart et al. (2016),
conducted 145 repeated distance sampling transect surveys
across various land-use types in Guelph, ON, Canada and
reported that cat density was highest in residential areas and
increased with increased building density and distance from
wooded areas. They argued these relationships are most likely a
consequence of cat ownership and the dependence of urban cat
populations on anthropogenic resources (Tennent and Downs,
2008; Normand et al., 2019). The same study also reported greater
cat abundance in areas with lower household income, consistent
with past research showing that cat abundance is greater in
areas of lower socioeconomic status (Calhoon and Haspel, 1989;
Finkler et al., 2011).

Behavioral patterns of cats and their owners may also affect
our ability to detect cats on surveys. Cats vary their activity
levels depending on weather (Churcher and Lawton, 1987; Haspel
and Calhoon, 1993) and time of day (Konecny, 1987; Haspel
and Calhoon, 1993; Alterio and Moller, 1997; Horn et al., 2011;
Kays et al., 2015; Cove et al., 2018). No information exists,
however, on variation in the timing of cat activity across an
urban gradient. This is potentially a major gap in knowledge
because surveys conducted at the same times assume similar
activity rates across sites (see Flockhart et al., 2016), which
may not be a safe assumption. For example, Kays et al. (2015)
reported that cats in eastern United States urban yards tended
to be more diurnal than those in forested protected areas. Horn
et al. (2011) reported that unowned cats in Urbana-Champaign,
IL, United States, were more strictly nocturnal than owned
cats. Similarly, Cove et al. (2018) identified two distinct activity
regimes among cat populations in the Florida Keys, United States,
with owned cats most active at dawn and dusk and unowned
cats predominantly nocturnal. These behavioral differences may
temporally bias cat survey efforts if owned and unowned cats are
unevenly distributed across the urban gradient.

Our objective was to characterize the abundance and activity
patterns of domestic cats across a gradient of residential land use
intensity (hereafter, referred to as urban intensity and the urban
gradient). We hypothesized that cat abundance and activity
depend on human land-use and demographics. Considering
the results of Flockhart et al. (2016), we predicted that cat
abundance would increase with impervious surface coverage
[e.g., roads, buildings, and parking lots (Yang et al., 2003)] and
human population density, two indicators of urban intensity,
and decrease with median income and mean education level,
two indicators of socioeconomic status (Calhoon and Haspel,
1989; Finkler et al., 2011; Flockhart et al., 2016). Given previous
findings that owned cats are more likely to be observed during
the day (Haspel and Calhoon, 1993; Cove et al., 2018) and
the propensity to allow owned cats outdoors varies with urban
context (Clancy et al., 2003; Lepczyk et al., 2004), we predicted
that patterns of daily cat activity varies across the urban
gradient, specifically that cats would be more active at night in
high urban intensity areas relative to low and medium urban
intensity environments.
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MATERIALS AND METHODS

Site Selection
This study was conducted between June and August of 2016
in the greater Washington, DC, United States, metropolitan
area (Supplementary Figure 1). Study sites were considered to
comprise a 100-m radius circle geographically centered at private
homes (n = 48) or apartment complexes (n = 5) whose owner,
tenant, or manager participated in the Neighborhood Nestwatch
program (hereafter, NN), a community science program with 280
participants in the region (Evans et al., 2005). The study site area
of 3.14 ha is consistent with estimates of cat home range size
in residential areas (Haspel and Calhoon, 1989; Barratt, 1997;
Schmidt et al., 2007a; Kays et al., 2019).

We obtained land cover data from the Multi-Resolution
Land Cover Characteristics Consortium (Yang et al., 2018)
and human demographic data from the United States Census
Bureau’s 2014 American Community Survey (Walker, 2016;
Glenn, 2019). We used the raster package (Hijmans, 2020) in
R (R Core Team, 2019) to determine the mean percentage
of impervious surface cover within a 100-m radius of the
participants’ homes. Impervious surface correlates strongly with
urban land cover (Evans et al., 2015, appendix A) and is
associated with a number of environmental and ecological
indicators (Schiff and Benoit, 2007; Evans et al., 2015). From
the Census data, we extracted the median household income,
percent of population to obtain at least an associate degree,
and population density at the level of a census tract (see
Flockhart et al., 2016).

We selected a subset of NN sites that maximized the evenness
of the impervious surface distribution and filtered sites such than
none of the 100-m radius circles were overlapping. We evaluated
whether our sites were representative of the urban gradient in our
study region using a two-tailed Kolmogorov–Smirnov test. We
compared the proportion of impervious surface cover at our sites
with a random sample of 1,000 locations within our study extent.
Impervious surface at our sites was not significantly different
from the region at large (P = 0.12).

Data Collection
We sampled cats using distance sampling transects and motion-
sensing camera traps. The cat population in our study area
was assumed to be demographically closed. This assumption is
supported by previous research on the survival of free-ranging
cats. For example, Schmidt et al. (2007a) reported survival among
feral, semi-feral, and owned free-ranging cats to be 56, 90, and
100%, respectively, over a 14-month period – this corresponds
to estimated survival rates of 87, 97, and 100% over our 3-
month study period. We could not account for the possibility
of a cat leaving or arriving in the vicinity of a study site over
the course of the study (see Kilgour et al., 2017); however,
because cats frequently to maintain an established home range
(e.g., Haspel and Calhoon, 1989; Barratt, 1997; Schmidt et al.,
2007a; Kays et al., 2019), we judged this unlikely to meaningfully
affect our final results. To avoid over-counting cats, individuals
that could not be separated based on markings or physical
characteristics were considered to be the same cat, even in

ambiguous cases. Because the ability to detect cats may differ
seasonally, our sampling schedule was designed to avoid temporal
bias. Each camera was deployed for a total of 3 weeks at each site,
divided into three 1-week deployments that were spread over the
3 months of the study. The order of site visits was randomized
within months. To avoid clustering visits temporally, we required
at least a 1-week gap between sampling events.

During distance sampling counts, an observer walked 200 m
of road along a straight-line transect with its center in front of
an NN house or apartment. The boundaries of the transect were
determined using digital orthophotos. The observer counted
any visible cats and estimated their perpendicular distance from
the transect line (see Buckland et al., 2001). Each transect was
sampled six times, and the same observer conducted every count.
Distance sampling assumes transects are placed randomly with
respect to the distribution of the sampled individuals, though
this assumption is violated due to the necessity of sampling
along roads. Though other similar studies have faced this issue
(Schmidt et al., 2007b; Flockhart et al., 2016), the consequences of
the violation of this assumption on abundance estimates are not
clear. We used a second detection method, motion-sensor camera
traps, in part to understand possible biases in transect sampling
of human-dominated environments.

We deployed one Reconyx PC800 Hyperfire (Holmen, WI,
United States) motion-sensor camera per site at all but five sites
(n = 48) to survey cats. Sites without cameras were homeowners
that declined to participate in this aspect of the program. We set
cameras approximately 0.5 m above the ground and programmed
them to take five photographs when triggered, with no delay
period between triggers. We did not change the position of
cameras between deployments, with one exception due to a
vehicle obstructing the camera area. Camera trapping assumes
that cats are distributed randomly with respect to the camera.
Cameras were generally deployed to capture an open yard area,
so detection was not influenced by known cat aggregations.

Statistical Analysis of Abundance
We estimated free-ranging cat abundance for transect and
camera data using the R package unmarked (Fiske and Chandler,
2011). Following Chandler et al. (2011), abundance in the
transect area was modeled as the mean of a negative binomial
random variable, λ. An individual may not have been available
for detection at a given sampling occasion at some probability, φ.
Because owned cats may have been kept inside the home during
the survey, time of day was included as a covariate of φ. An
individual available during a survey was detected at probability
p, calculated by integrating over a hazard rate detection
function that decreases with distance from the observer. Due
to potential temporal and weather-related differences in cat
activity, survey date, time, temperature, and dew point were
included as covariates of p (Supplementary Table 1). We
obtained temperature and dew point using the data reported on
the Weather Underground Weather History and Data Archive
(Weather Underground, 2016) from the closest available weather
station at the nearest hour to the time of the survey.

We used N-mixture models to estimate abundance from
camera data (Royle, 2004). N-mixture models produce more
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reliable estimates of relative abundance than absolute abundance
(Barker et al., 2018) but have been found to perform equivalently
to other common approaches (Ficetola et al., 2018). Abundance
was modeled as the number of trials of a binomial probability
distribution, λ, given the probability of detection, p. Each day
of a camera’s deployment was considered a sampling instance.
This approach allowed us to examine detection covariates at
a finer scale than a full week. We considered date, daily high
temperature, low temperature, high dew point, and low dew point
as covariates for p (Supplementary Table 1). Abundance and
detection variables were scaled to allow model β estimates to be
compared to one another (see van den Berg et al., 2006).

For both transect and camera analyses, we first compared
models including detection and availability covariates
while keeping abundance constant. The detection and
availability covariates of the best-supported null abundance
models were included in the final model set comparing
covariates for abundance.

To test our prediction that cat abundance increases with
increasing urban intensity, we compared models with linear and
quadratic expressions for impervious surface within a 100-m
radius against a model of uniform abundance (Supplementary
Table 1). The quadratic term was included to examine
whether cat abundance peaks in suburban areas. To examine
socioeconomic factors affecting cat abundance, we compared
an additional set of models with human demographic variables
against a model of uniform abundance. Parameters included
human population density, median income, and proportion
of residents with at least an associate degree. Income and
education were correlated (r = 0.50, P < 0.001), but there was
substantial variation in income at high levels of educational
attainment (Supplementary Figure 2). When building model
sets, we first determined whether linear or quadratic expressions
for population density were better supported by comparing
cumulative evidence ratios for all models that included either
form of the variable. For both camera and transect model sets,
a quadratic expression for human population density was best
supported. The final model sets were symmetrical and comprised
of eight models (Supplementary Table 1).

We used Akaike’s Information Criterion (AICc), corrected for
small sample size (Akaike, 1973; Hurvich and Tsai, 1989), to
select the best-supported model or models from the candidate
sets. Models with a 1AICc value <2 were considered to be
substantially better supported than other models (Burnham and
Anderson, 2002). AICc weights were used to evaluate the relative
weight of each model’s support in the set. To determine model
support for a given covariate, we calculated evidence ratios
by dividing the cumulative AICc weight for models with the
covariate by the cumulative weight for models that excluded
the covariate. Because multiple models may provide useful
information about responses to predictor variables (Burnham
and Anderson, 2002), we averaged β coefficients, abundance
estimates and standard errors by their AICc weights using
the R package AICcmodavg (Mazerolle and Mazerolle, 2017).
Because the sample area is not defined for N-mixture models,
we did not directly compare abundance estimates from each
sampling method.

Statistical Analysis of Daily Activity
Cats are generally more active at night, but their degree of
nocturnality can vary (Konecny, 1987; Haspel and Calhoon, 1993;
Alterio and Moller, 1997; Horn et al., 2011; Kays et al., 2015; Cove
et al., 2018). To evaluate the timing of cat activity in association
with urban intensity, we examined the time of day in which cats
were detected on cameras. We first categorized sites as low (<10%
impervious surface), medium (10–40% impervious surface),
and high intensity (>40% impervious surface) residential land
use classes, based roughly on classifications of Lu and Weng
(2006). Detections were then assigned to the three urban
intensity classes based on the location of the camera trap.
Detections that were less than 30 min from the previous detection
of the same cat were considered non-independent and were
excluded from the analysis (Ridout and Linkie, 2009). For each
detection, we then calculated the time of civil sunrise and
sunset on the day of detection using the R package suncalc
(Thieurmel and Elmarhraoui, 2019).

To test our prediction that cats would exhibit different activity
patterns across the urban gradient, we compared the density
distributions of daily activity in low, medium, and high urban
intensity sites. Given that day length varied over the 3-month
period of this study, and this could bias our results (Nouvellet
et al., 2012), we first transformed the times of detection to solar
times, which are defined here as radian time values relative to
civil sunrise times for a given date and location (Nouvellet et al.,
2012; Vazquez et al., 2019). We then fit Von Mises circular kernel
density distributions to detections within each urban intensity
class using the R package activity (Rowcliffe, 2019). Following
Ridout and Linkie (2009), we calculated the degree of overlap
(4̂4) between fitted distributions and used randomization (with
replacement; n = 10,000 iterations) to test the probability that
detections come from the same distribution (α = 0.05).

To test our prediction that cats in urban environments
would be more active at night, we used randomization with
replacement (10,000 iterations) to assess the proportion of
nighttime (civil sunset to sunrise) and daytime (civil sunrise
to sunset) observations in each land use class. We compared
the observed difference, 1, in the proportion of observations
between classes with a null distribution of differences between
classes. Null distributions were generated by randomizing land
use class labels while keeping the number of cats per land use
class constant. Significance was determined by calculating the
proportion of iterations in which 1 values for the resampled
observations were greater than or equal to the observed value of
1 (α = 0.05).

RESULTS

Our transect effort encompassed 318 sampling events across 53
sites, and our camera trapping effort encompassed 1,008 trap
nights across 48 sites. In total, we recorded 335 detections of
43 individual cats during transect counts and 188 detections of
45 individuals with camera traps. Cats were detected at 24 of
53 sites by transect surveys and at 25 of 48 sites by cameras.
Constant detection was best supported by the distance sampling
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data (Supplementary Table 2), so our ability to detect cats on
transects was not dependent on dew point, temperature, or day
of the year. Models that included a negative relationship between
time of day and availability for detection were best supported
by transect data (Supplementary Table 2), providing evidence
that cats were less available for detection on transects as the
day progressed. Among camera-based models, the best supported
models indicated a lower probability of detecting cats at high dew
points (Supplementary Table 2).

Abundance
Across distance sampling transects, the abundance of outdoor
cats was predicted to be 5.9 [95% CI (2.6, 13.2)] with a predicted
density of 2.9 cats/ha [95% CI (1.3, 6.6)]. The abundance of cats
across the impervious surface gradient (Table 1 and Figure 1)
was uniform for camera data whereas distance sampling data
suggested that cat abundance was highest at intermediate levels
of impervious surface, with a peak density of 6.7 cats/ha [95%
CI (2.7, 16.5)] at 34.6% impervious surface. The model-averaged
β coefficient of impervious surface and impervious surface
squared, was 1.11 ± 0.39 (SE) and −1.06 ± 0.35, respectively
(Figure 2). The evidence ratio of transect-based models that
contained the quadratic term for impervious surface to the
models without it was 138.73. The camera trap data did not
provide supportive evidence for an association between cat
abundance and impervious surface cover.

The patterns of association between human demographic
variables and cat abundance were similar for transect and
camera trap data (Figure 2). For the transect data, the best-
supported models showed peak cat abundance at intermediate
levels of human population density (βavg = 1.63 ± 0.51,
β2

avg = −1.25 ± 0.59) and declining cat abundance as education
levels increased (βavg = −0.64 ± 0.25; Table 2 and Figure 3).
The evidence ratio of transect-based models that contained
the quadratic population density term to those without it was
427.55. Among camera-based models (Figure 4), the model best
supported by the data showed peak cat abundance at intermediate
levels of human population density (βavg = 1.27 ± 0.87,
β2

avg = −0.26 ± 0.21), declining cat abundance with increasing

TABLE 1 | Summary statistics of the candidate models examining the relationship
between impervious surface cover and cat abundance in the Washington, DC
region, summer 2016.

Sample Formula Ka AICc 1 AICc wb LLc

Transect φtime
+ p1

+ λimp+imp2
8 449.36 0 0.99 −215.05

φtime
+ p1

+ λ1 6 459.95 10.58 0.00 −223.06

φtime
+ p1

+ λimp 7 461.62 12.26 0.00 −222.57

Camera pdewHigh
+ λ1 4 673.78 0 0.53 −332.43

pdewHigh
+ λimp 5 675.30 1.52 0.25 −331.94

pdewHigh
+ λimp+imp2

6 675.53 1.75 0.22 −330.74

Models are ranked by Akaike Information Criterion, AICc. φ represents availability
for detection, p represents detection, and λ represents abundance.
aNumber of parameters estimated.
bAICc weight.
cLog-likelihood.

levels of education (βavg =−0.94± 0.50), and a slight increase in
cat abundance as income increased (βavg = 0.79 ± 0.51; Table 2).
The evidence ratio of camera-based models that contained the
quadratic population density covariate (four of eight models) to
those without it was 3.13.

Daily Activity
In low, medium, and high intensity urban environments, camera
traps captured 34, 115, and 39 independent detections of cats,
respectively. Overall, cats were most active in the early morning
and late at night, although this pattern was found to be dependent
on urban land use intensity (Figure 5). The distribution of
daily activity differed among urban intensity classes, with low
intensity cats most active in the day, medium intensity cats most
active after midnight, and high intensity cats mostly active in the
evening before midnight. For each paired urban intensity class,
we rejected the null hypothesis that the observations were drawn
from the same distribution (Table 3).

Cats in medium and high intensity urban environments were
more likely to be observed at night than those in low intensity
environments. Nighttime detections represented only 23.5% of
observations in low intensity urban environments but made up
60.9 and 69.2% of detections in medium and high intensity urban
environments, respectively. We rejected the null hypothesis
that the proportion of cats observed at night at low intensity
sites was equivalent to that of medium or high intensity sites
(Table 3). There was no evidence that the proportion of nighttime
observations varied between medium and high intensity sites.

The degree of overlap between the timing of transect surveys
and cat activity differed with respect to land-use class. Though
95% of transect surveys were conducted between 05:56 and
13:24 only 23.4% of camera detections occurred during this time
window. Among low, medium, and high intensity land uses
classes, 35.6, 19.2, and 20.5% of detections occurring during this
time window, respectively. Thus, transect surveys were more
likely to be conducted at times when cats were active in low
intensity areas than medium or high intensity areas (Figure 4).

DISCUSSION

The results from our surveys supported our hypothesis that cat
abundance and activity patterns are associated with land-use
and human demographics. Transect results identified impervious
surface, human population density, and level of education as
important predictors of cat abundance. Camera data supported
associations between abundance and level of education, income,
and population density. Both methods yielded similar patterns
of abundance in response to covariates, though the degree
of influence and variance in the β estimates differed between
methods (Figure 2). Our findings that the timing of cat
activity varies with urban land use intensity provides insight
into the complexity of enumerating free-ranging cats, given
that the populations are often comprised of both owned and
unowned individuals.

Results from both sampling methods suggest that cat
abundance peaks at intermediate levels of human populations
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FIGURE 1 | Estimates of cat abundance across an urban gradient in the Washington, DC region in summer 2016. Shaded regions represent the 95% confidence
intervals in cat abundance estimates at a given proportion of impervious surface.

density, and transect analyses showed highest abundances at
intermediate levels of impervious surface. This may represent
a balance where provisioning of cats in human-populated areas
(Tennent and Downs, 2008) is offset by high mortality in urban
centers, e.g., from automobiles (Childs and Ross, 1986) or disease
(Natoli et al., 2005), or less outdoor access for owned urban
cats (Lepczyk et al., 2004). Previous studies found that cat
abundance increased linearly with human population density or
urban intensity (Lepczyk et al., 2004; Sims et al., 2008; Murray
et al., 2010; Thomas et al., 2012; Flockhart et al., 2016). The
discrepancy between our results and those of social surveys may
be due to differential patterns of abundance for owned and
unowned cat populations across the urban gradient. Horn et al.
(2011) showed that owned and unowned cats occupied different
home range sizes, used different habitat types, and had different
temporal activity patterns. Social surveys primarily focused on
owned cats may therefore miss part of the picture that is available
to transect or camera sampling efforts, for example, unowned cats
in mid-intensity urban areas. Additionally, human pet-owning
behavior varies by region. For instance, urban cat owners in the
United Kingdom, where several previous studies were conducted,
may be more likely to allow owned cats outside than owners in
the United States (Hall et al., 2016; Crowley et al., 2019). Urban
context may be another determinant of observed abundance
patterns across the urban gradient. Previous research has found a
linear positive relationship between cat abundance and building
density in Guelph, ON, Canada (Flockhart et al., 2016), a linear
negative relationship between cat abundance and the distance
from human dwellings in Big Pine Key, FL, United States (Cove
et al., 2018), and no relationship between cat abundance and
urban density in Stillwater, OK, United States (Elizondo and Loss,
2016). The urban gradients in these communities represent only

a portion of the gradient across the greater Washington, DC
metropolitan region. Moreover, other location-specific factors
may also influence cat abundance. For example, cats may avoid
areas frequented by predators such as coyotes (Crooks and Soulé,
1999; Kays et al., 2015). The extent to which predators use
different habitats may vary geographically (Slate, 1985; Prange
et al., 2003) or over time (Hody and Kays, 2018). Likewise,
latitude may influence abundance through altering carrying
capacity and limiting annual fecundity (see Flockhart and Coe,
2018). The discrepancy in results between our study and previous
efforts may therefore suggest that cat abundance is dependent
on more complex factors than any single measure of urban
intensity and not directly comparable across regions or between
different urban contexts.

Both transects and camera traps suggested an association
between socioeconomic status and cat abundance. Among
transect-based models, college education was an important
covariate, and among camera-based models, college education
and income were important covariates. In both analyses, as level
of education increased, cat abundance decreased. If education
is viewed as a component of socioeconomic status, our results
support previous findings that areas of lower socioeconomic
status have larger free-ranging cat populations (Finkler et al.,
2011), possibly owing to lower rates of sterilization (Chu et al.,
2009; Finkler et al., 2011) and more available food resources
(Calhoon and Haspel, 1989). Surprisingly, in the camera analysis,
cat abundance was also found to be positively associated with
income, though this had a limited effect on abundance (Figure 4).
One possible explanation for a lack of a negative association
between income and cat abundance in our study is the range of
incomes sampled—the lowest median income in a census block
for our study was roughly $50,000/year, which is close to the
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FIGURE 2 | Model-averaged estimates of β coefficient (effect sizes) of
predictor variables on cat abundance in the Washington, DC region in
summer 2016, estimated using data from transect and camera trap surveys.
Thick lines represent the model-averaged standard errors relative to the β

prediction. Thin lines represent the 95% confidence intervals. All variables
were converted to a common scale prior to model fitting, so β values
represent the slope associated with scaled variables. An explanation of each
variable can be found in Supplementary Table 1.

highest median income in the study by Flockhart et al. (2016).
Education may also play a role beyond being an indicator of
socioeconomic status. Survey respondents with a college degree
from across the United States were less likely than those without a
degree to hold the view that cats fill a natural role in the ecosystem
(Peterson et al., 2012). Relatedly, Loyd and Miller (2010) reported
that as education increased, so did the preference for euthanasia-
based cat management among Illinois survey respondents. Our
study points to the importance of considering social factors in
management of cat populations.

By examining when cameras detected cats, we characterized
how cat activity differs over the course of the day. Overall, cats
were most active late at night and in the early morning. This
finding agrees with the results of our transect analysis, which
showed that cats’ availability for detection declined between early
morning and mid-afternoon. This result is also consistent with
previous findings that cats were most active at dawn and dusk and
least active around midday in the Galápagos Islands (Konecny,
1987) and Florida Keys (Cove et al., 2018) and that cats were four
times as active between 22:00 and 07:00 as during the rest of the
day in Brooklyn, NY, United States (Haspel and Calhoon, 1993).

Timing of cat activity also varied among land-use classes.
Cats at low intensity residential sites were active in the mid-
morning and early evening whereas cats at medium and high
intensity sites were most active at night. These differences may
reflect behavior of cat owners and differences among owned and
unowned cats. Cat owners’ propensity to let their cats outside
and when they do so may depend on the characteristics of
their local neighborhood. In southern Michigan, for example,
urban residents were less likely than rural or suburban residents
to have partially or fully outdoor cats (Lepczyk et al., 2004).

A survey of cat owners from the eastern United States reported
that rural residents allowed their cats more outdoor access
compared to urban or suburban residents, though the difference
was not statistically significant (Clancy et al., 2003). Differences
in cat owner behavior across the urban gradient may result in a
greater proportion of cats in Washington, DC being unowned in
high and medium intensity residential areas than low intensity
residential areas. Evidence from previous studies suggests that
unowned and owned cats exhibit distinct activity patterns. Of the
respondents to the survey of Clancy et al. (2003), 97% of indoor-
outdoor cat owners reported keeping their cats inside overnight.
Unowned cats in central Illinois were more definitively nocturnal
than owned cats (Horn et al., 2011). Owned cat activity varied
less over the course of the day with peaks around dawn and
dusk (Horn et al., 2011), a pattern similar to the one observed
among cats at our low intensity residential sites. This pattern
would also explain the results of Kays et al. (2015), who reported
that cats captured on camera traps in forested protected areas
exhibited more nocturnal activity patterns than cats in residential
yards. Similarly, Cove et al. (2018) reported that in the Florida
Keys, a population of largely owned cats was most active at
dawn and dusk, while a population of largely unowned cats
was mostly active late at night. These results suggest that low
intensity residential areas in Washington, DC may contain more
owned cats, while medium and high intensity residential areas
may contain more unowned cats, resulting in more nocturnal
activity. An alternative possibility is that activity patterns of
humans vary across the urban gradient, and cats vary their
activity accordingly. For example, in areas of high and medium
urban intensity, cats may avoid car and foot traffic by limiting
their active hours to nighttime.

The observed differences in cat activity over the land-use
gradient in this study has important implications for sampling
cat populations. Transect surveys are a common method for
sampling animal populations (Marshall et al., 2008) but are often
conducted at a particular time each day. Our transect surveys
were conducted only during the day, so low intensity residential
land-use cats may have been overrepresented relative to medium
and high intensity land-use cats. However, because our transect
and camera results were largely in agreement, and the timing
of activity was similar at medium and high intensity sites, it is
unlikely that differences in activity patterns introduced undue
bias into our transect results. Nevertheless, researchers should not
assume that daytime transects will provide an unbiased sample
of cat abundance across an urban gradient. Cat activity patterns
may differ across the gradient and between owned and unowned
cats. Ecological and cultural differences among cities, in addition
to affecting cat abundance, may also affect their behavior. We
recommend that, when feasible, exploratory camera trap surveys
should be used to identify optimal times to conduct transect
surveys across different study areas.

Several limitations of this study should be noted. First, because
transect and camera surveys sampled the landscape at different
spatial scales, we were unable to directly compare abundance
estimates between sampling approaches. Future studies can
address this limitation by deploying multiple cameras per site
(see Rowcliffe et al., 2008). Second, like other similar studies

Frontiers in Ecology and Evolution | www.frontiersin.org 7 July 2021 | Volume 9 | Article 643845

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-643845 July 8, 2021 Time: 20:3 # 8

Bennett et al. Urban Cat Abundance and Activity

TABLE 2 | Summary statistics of the candidate models examining the relationship between human demographics and cat abundance in the Washington, DC
region, summer 2016.

Sample Formula Ka AICc 1 AICc wb LLc

Transect φtime
+ p1

+ λhDensity+hDensity2
+ edu 9 443.70 0 0.73 −210.76

φtime
+ p1

+ λhDensity+hDensity2
+ income + edu 10 446.01 2.31 0.23 −210.39

φtime
+ p1

+ λhDensity+hDensity2
+ income 9 450.95 7.25 0.02 −214.38

φtime
+ p1

+ λhDensity+hDensity2
8 451.64 7.94 0.01 −216.19

φtime
+ p1

+ λedu 7 456.42 12.72 0.00 −219.97

φtime
+ p1

+ λincome 7 458.55 14.85 0.00 −221.03

φtime
+ p1

+ λincome + edu 8 458.68 14.98 0.00 −219.71

φtime
+ p1

+ λ1 6 459.95 16.24 0.00 −223.06

Camera pdewHigh
+ λhDensity+hDensity2

+ income + edu 8 669.16 0 0.73 −324.73

pdewHigh
+ λedu 5 673.38 4.22 0.09 −330.98

pdewHigh
+ λ1 4 673.78 4.62 0.07 −332.43

pdewHigh
+ λincome + edu 6 674.13 4.97 0.06 −330.04

pdewHigh
+ λincome 5 676.28 7.12 0.02 −332.43

pdewHigh
+ λhDensity+hDensity2

+ edu 7 676.79 7.63 0.02 −330.00

pdewHigh
+ λhDensity+hDensity2

6 677.96 8.80 0.01 −331.95

pdewHigh
+ λhDensity+hDensity2

+ income 7 680.62 11.46 0.00 −331.91

Models are ranked by Akaike Information Criterion, AICc. φ represents availability for detection, p represents detection, and λ represents abundance.
aNumber of parameters estimated.
bAICc weight.
cLog-likelihood.

FIGURE 3 | Estimates of cat abundance from models using transect data across gradients of population density and the proportion of the population with a college
education within a census tract. Shaded regions represent the 95% confidence intervals in cat abundance estimates at a given level of each human demographic
variable.

(Schmidt et al., 2007b; Flockhart et al., 2016), we conducted
distance sampling along roads, which violates the assumption
that sampled animals are randomly distributed with respect
to the transect. Though this may bias abundance estimates,
especially in high intensity land use areas with many human
structures along the road, similar abundance patterns between
methods suggest that this did not meaningfully affect our results.
Third, we sampled cats at a relatively small scale centered
around a single home or apartment, but human demographic
data was measured at the census tract scale. A future remedy

would be to conduct transects throughout the census tract
to thoroughly sample for cats at the same scale as predictor
variables for human demographics. Finally, although NN sites
presented a unique opportunity for this work, our study sites
were almost exclusively in neighborhoods comprised of single-
family homes. This led to low confidence in our estimates within
the rural and urban portions of the urban gradient. Regional
assessment of cat abundance in urban areas requires sampling
across multiunit dwellings, undeveloped land, commercial, and
industrial areas, as each likely exhibits unique patterns of cat
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FIGURE 4 | Estimates of cat abundance from models using camera trap data across gradients of population density and the proportion of the population with a
college education within a census tract. Shaded regions represent the 95% confidence intervals in cat abundance estimates at a given level of each human
demographic variable.

FIGURE 5 | Estimated daily timing of cat activity in the Washington, DC region in summer 2016 based on detections by camera traps. Land-use classes of sites
were defined as follows: 0–10% impervious surface within a 100 m radius, “low intensity” urban; 10–40% impervious surface, “medium intensity”; greater than 40%
impervious surface, “high intensity.”

TABLE 3 | Summary statistics describing differences in the daily activity of cats in low, medium, and highurban intensity sites under the null hypotheses that: (1) the
circular kernel density distributions are equivalent across land use classes; and (2) the proportion of observations at night are equivalent across land use classes.

Null hypothesis Urban intensity Urban intensity

Medium High

Detections come from the same distribution Low 4̂4 0.529 P = 0.0000 4̂4 0.527 P = 0.0004

Medium 4̂4 0.671 P = 0.0002

Proportion of observations at night are equivalent Low 4 = −0.373 P = 0.0001 4 = −0.457 P = 0.0001

Medium 4 = −0.084 P = 0.2250

Test statistics are 4̂4, the degree of overlap between fitted distributions (Ridout and Linkie, 2009) and 4, the difference in the proportion of daytime observations.
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abundance and behavior (Schmidt et al., 2007a; Flockhart et al.,
2016). Additionally, areas of high urban intensity or containing
mostly clusters of cats in colonies may require their own survey
methods (see Davis and Lepczyk, 2010).

Estimates of domestic cat abundance and understanding the
predictors of abundance are critical for wildlife conservation.
Deterministic models, some of which are currently being
implemented to explore management alternatives like trap-
remove and trap-neuter-return, often rely on accurate abundance
estimates (Andersen et al., 2004; Flockhart and Coe, 2018).
Because vital rates in these models may be constrained by
estimated carrying capacities, inaccurate abundance estimates
can yield unrealistic outcomes. Moreover, accurate count data
are necessary for monitoring the efficacy of management
programs following implementation (Gunther et al., 2020).
Our results suggest that future efforts should account for
predictors of cat abundance, such as human population density
and socioeconomics, to estimate model parameters. Differences
between our results and those of other studies, especially those
based on social surveys, highlight the need to take geographic and
cultural context into account when estimating cat abundance –
predictors of cat abundance for one region may not be directly
applicable to others.
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