
fevo-09-650726 March 10, 2021 Time: 15:49 # 1

HYPOTHESIS AND THEORY
published: 16 March 2021

doi: 10.3389/fevo.2021.650726

Edited by:
Pedro Martinez,

University of Barcelona, Spain

Reviewed by:
Ricard Sole,

Pompeu Fabra University, Spain
Nora S. Vaage,

Nord University, Norway

*Correspondence:
Michael Levin

michael.levin@tufts.edu

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Models in Ecology and Evolution,
a section of the journal

Frontiers in Ecology and Evolution

Received: 07 January 2021
Accepted: 22 February 2021

Published: 16 March 2021

Citation:
Bongard J and Levin M (2021)

Living Things Are Not (20th Century)
Machines: Updating Mechanism

Metaphors in Light of the Modern
Science of Machine Behavior.

Front. Ecol. Evol. 9:650726.
doi: 10.3389/fevo.2021.650726

Living Things Are Not (20th Century)
Machines: Updating Mechanism
Metaphors in Light of the Modern
Science of Machine Behavior
Joshua Bongard1† and Michael Levin2,3*†

1 Department of Computer Science, University of Vermont, Burlington, VT, United States, 2 Allen Discovery Center, Tufts
University, Medford, MA, United States, 3 Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston,
MA, United States

One of the most useful metaphors for driving scientific and engineering progress has
been that of the “machine.” Much controversy exists about the applicability of this
concept in the life sciences. Advances in molecular biology have revealed numerous
design principles that can be harnessed to understand cells from an engineering
perspective, and build novel devices to rationally exploit the laws of chemistry, physics,
and computation. At the same time, organicists point to the many unique features
of life, especially at larger scales of organization, which have resisted decomposition
analysis and artificial implementation. Here, we argue that much of this debate has
focused on inessential aspects of machines – classical properties which have been
surpassed by advances in modern Machine Behavior and no longer apply. This
emerging multidisciplinary field, at the interface of artificial life, machine learning, and
synthetic bioengineering, is highlighting the inadequacy of existing definitions. Key
terms such as machine, robot, program, software, evolved, designed, etc., need to
be revised in light of technological and theoretical advances that have moved past the
dated philosophical conceptions that have limited our understanding of both evolved
and designed systems. Moving beyond contingent aspects of historical and current
machines will enable conceptual tools that embrace inevitable advances in synthetic
and hybrid bioengineering and computer science, toward a framework that identifies
essential distinctions between fundamental concepts of devices and living agents.
Progress in both theory and practical applications requires the establishment of a novel
conception of “machines as they could be,” based on the profound lessons of biology at
all scales. We sketch a perspective that acknowledges the remarkable, unique aspects
of life to help re-define key terms, and identify deep, essential features of concepts for a
future in which sharp boundaries between evolved and designed systems will not exist.

Keywords: biology, computer science, robot, artificial life, machine learning

“Can machines think?” This should begin with definitions of the meaning of the terms “machine” and
“think.”

– Alan Turing, 1950
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INTRODUCTION

Living things are amazing – they show resilience, purposeful
action, unexpected complexity. They have true “skin in the
game” – they actively care about what happens, and can be
rewarded or punished by experience. They surprise us at every
turn with their ingenuity, their wholism, and their resistance to
naïve reductionist approaches to analysis and control. For these
reasons, some (Varela and Maturana, 1972; Varela et al., 1974;
Rosen, 1985; Nicholson, 2012, 2013, 2014, 2019) have argued
against modern cell biology and bioengineering’s conceptions of
cells as machines (Diaspro, 2004; Davidson, 2012; Kamm and
Bashir, 2014). Are living things machines? Defining “life” has
proven to be notoriously difficult, and important changes in
how we view this basic term have been suggested as a means
of spurring progress in the field (Fields and Levin, 2018, 2020;
Mariscal and Doolittle, 2020). What is an appropriate definition
of “machine,” and does it apply to all, some, or no living forms
across the tree of life?

Although not unanimously accepted, a powerful view is that
all scientific frameworks are metaphors (Honeck and Hoffman,
1980) and the question should be not one of philosophy but
of empirical research: does a suitable machine metaphor apply
sufficiently to biology to facilitate experimental and conceptual
progress? Here we focus attention on common assumptions
that have strongly divided organicist and mechanist thinkers
with respect to the machine metaphor, and argue that stark
classical linguistic and conceptual distinctions are no longer
viable or productive. At the risk of making both sides of this
debate unhappy, we put our cards on the table as follows.
We see life from the organicist perspective (Gurwitsch, 1944;
Goodwin, 1977, 1978, 2000; Ho and Fox, 1988; Gilbert and
Sarkar, 2000; Solé and Goodwin, 2000; Belousov, 2008). We do
not hold reductionist views of the control of life, and one of us
(ML) has long argued against the exclusive focus on molecular
biology as the only source of order in life (Pezzulo and Levin,
2015, 2016) and the importance of multiple lenses, including a
cognitive one, on the problem of biological origins, causation,
and biomedical interventions (Manicka and Levin, 2019; Levin,
2020b). However, as often happens, advances in engineering
have overtaken philosophical positions, and it is important to
re-examine the life-as-machine metaphor with a fair, up-to-
date definition of “machine”. Our goal here is not to denigrate
the remarkable properties of life by equating them with 18th
and 19th century notions of machines. Rather than reduce the
conception of life to something lesser, we seek to update and
elevate the understanding of “machines,” given recent advances
in artificial life, AI, cybernetics, and evolutionary computation.
We believe this will facilitate a better understanding of both –
living forms and machines, and is an essential step toward
a near future in which functional hybridization will surely
erase comfortable, classical boundaries between evolved and
engineered complex systems.

Here, we make three basic claims. First, that the notion of
“machine” often used to claim that living things are not machines
tends to refer to an outdated definition of the term which
simply no longer fits. Thus, we have the opportunity (and need)
to update the definition of “machine” based on insights from

the information, engineering, and life sciences toward a better
understanding of the space of possible machines (Table 1). We
challenge relevant communities to collaborate on a better, more
profound definition that makes it clear which aspects fruitfully
apply to biological research. Indeed, many other terms such as
robot, program, etc. need to be updated in light of recent research
trends: these existing concepts simply do not “carve nature at
its joints” in the way that seemed obvious in the last century.
Second, that progress in the science of machine behavior and in
the bioengineering of tightly integrated hybrids between living
things and machines breaks down the simplistic dualism of life
vs. machine. Instead, we see a continuum of emergence, rational
control, and agency that can be instantiated in a myriad of novel
implementations, not segregating neatly into categories based on
composition (protoplasm vs. silicon) or origin story (evolved vs.
designed). Finally, we stress an emerging breakdown not only
of distinctions in terminology but of disciplines, suggesting the
merging of aspects of information sciences, physics, and biology
into a new field whose subject is embodied computation in a
very wide range of evolved, designed, and composite media at
multiple scales.

WHAT IS MEANT BY “MACHINE”?

To claim that living things are not, or are, machines, it is first
necessary to specify what is meant by a “machine” (Turing,
1950; Arbib, 1961; Lucas, 1961; Conrad, 1989; Davidson, 2012;
Nicholson, 2012, 2013, 2014, 2019). We view the main aspects
of a machine to refer to a device, constructed according to
rational principles that enable prediction (to some threshold of
accuracy) of their behavior at chosen scales. Machines constrain
known laws of physics and computation to achieve specifiable
functionality. In addition to this basic description, numerous
properties are often assumed and then used to highlight
differences from living forms. Let us consider some of these, to
understand to what extent they are based on fundamental aspects
of what is essential about the concept of machine, not merely
contingent aspects due to historical limitations of technological
capability. Each of the sections below focuses on one commonly
voiced claim regarding the definitions of “machine,” which we
think is in need of revision in light of advances in the science of
machine behavior.

Machines Are Independent: Life Is
Interdependent
The Turing machine, a theoretical construct of which all
computers are physical instantiations, demonstrated that a clear
demarcation exists between a machine and its environment: input
and output channels mediate between them. This conception of
machines also reaches back further, into the industrial revolution,
when mechanical devices formed a new class of matter alongside
those of inanimate, animate, and divine phenomena: from the
outset, machines were considered as something apart, both
from the natural world and from each other. In contrast,
living systems are deeply interdependent with one another,
simultaneously made and maker. Similarly, the Internet, and
now the Internet of Things, is demonstrating that more useful
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TABLE 1 | A summary of past differences between machines and living systems and proposed updates that blur the boundaries.

Properties of classical machines
that don’t apply to life:

Current and future machines are not distinguished
from life because:

Proposed new emphasis:

Structure is single-level Built as multi-scale systems of active, goal-seeking
components

Machines composed of parts with self-similar
structure and function

Described by a pre-determined list of
parts

Protean machines add or subtract components as
needed

Machines that make machines of increasing
complexity

Machines arise from a design
“blueprint”

Self-organizing systems modify their own structure on
the fly

Great emphasis on self-controlled allostasis

Tightly constrained operation toward
pre-determined functions

Goals are acquired and modified by AI and similar
systems

Godel, Turing, deterministic chaos, and other
limits apply to predictability and control in
machines just as they do in living forms

Highly efficient operation Noise is exploited, and fallibility of components are
expected

Achieving wholistic certainty from uncertain
parts.

Function can be interrupted and
restarted

Machines modify/improve/complexify their internal
structure on the fly

Synergies between useful function and dynamic
homeostasis

Behavior is predictable and linear Perverse instantiation and creativity increasingly result in
machines that are not predictable bottom-up

Machines that can perform a desired task in
increasingly diverse ways

machines can often be built by composing simpler machines
into ever-more complex interdependencies. Modern physical
machines are composed of vast numbers of parts manufactured
by increasingly interconnected industrial ecologies, and most of
the more complex parts have this same property.

Likewise, software systems have very long dependency trees:
the hierarchy of support software that must be installed in order
for the system in question to run. Software systems are often not
considered machines, but rather something that can be executed
by a particular class of machine: the Turing machine. However,
modern computer science concepts have blurred this distinction
between software and machine. A simple example is that of
a virtual machine, which is software that simulates hardware
different from that running the virtual machine software. This in
turn raises the question of whether there is a distinction between
simulating and instantiating a machine, but this deep question
will be dealt with in forthcoming work.

Moreover, some machines are now becoming part of highly
integrated novel systems with living organisms, for sensory
augmentation (Sampaio et al., 2001), brain-machine interfaces
(Danilov and Tyler, 2005; Shanechi et al., 2014), brain implants to
manage epilepsy, paralysis, and other brain states (Shanechi et al.,
2014; Alcala-Zermeno et al., 2020), performance augmentation
(Suthana et al., 2012; Salvi et al., 2020), and internal physiological
homeostatic devices [e.g., increasingly more intelligent devices
to manage context-specific, homeostatic delivery of insulin,
neurotransmitters, etc (Lee et al., 2019)]. Machines (such as
optogenetics interfaces with machine learning components)
can even be used to read memories or incept them directly
into biological minds (Shen et al., 2019a,b; Vetere et al.,
2019), bypassing traditional mechanisms of perception, memory
formation, and communication, to access the core of what it
means to be a sentient agent. These biohybrid machines require
a constellation of particularly dense software and hardware
support, maintenance and monitoring, since any cessation of

function could injure or mortally endanger a human wearer.
In their more exotic implementations, hybridized biological
tissue (including brains) with electronics provide a plethora of
possible constructs in which obviously alive components are
tightly interweaved, in both structure and function, with machine
components (Green and Kalaska, 2011; Wilson et al., 2013; Pais-
Vieira et al., 2015). The function, cognition, and status of these
hybrid systems make clear that no simple dichotomy can be
drawn between life and machine.

Machines Are Predictable: Life Is
Unpredictable
Intuitively, a useful machine is a reliable one. In contrast, living
systems must be noisy and unpredictable: a reliable organism
can be easily predated upon; a stationary species can be out-
evolved. But, emerging technologies increasingly achieve reliable
function by combining uncertain events in novel ways. Examples
include quantum computers and machine learning algorithms
peppered with stochastic events to ensure learning does not
become trapped in partial solutions (Kingma and Ba, 2014). We
are also now learning that unpredictability in the long run is often
the signature of particularly powerful technologies. Indeed, the
inability to predict the “killer app” for a new technology such
as a quantum computer or driverless cars is often a signature
of particularly disruptive technologies. The utility of surprising
machines has historical roots: Gray Walter’s physical machines
(Walter, 1950) and Braitenberg’s hypothetical machines were
capable of startlingly complex behavior despite their extreme
simplicity (Braitenberg, 1984). Today, robot swarms are often
trained to exhibit useful “emergent behavior,” although the global
behavior of the swarm may not be surprising, the irreducibility
of swarm behavior to individual robot actions is a new concept
to many roboticists (McLennan-Smith et al., 2020). Finally, the
ubiquity of perverse instantiation – automatically trained or
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evolved robots often instantiate the requested, desired behavior
in unexpected ways - in AI has been cited as a potentially useful
way of designing machines (Lehman et al., 2020).

Nicholson (2019) defined a machine as having four clear
specifications. For 21st century machines, it is becoming
increasingly difficult to write down a clear set of specifications
for them which spans all the possible ways in which they
may change, and be changed by their increasingly complex
environments. Instead, it is more useful to think about
specifications for the algorithms that then build machines much
more complex than the algorithms: canonical examples include
the “specification” of the backpropagation of error algorithm
that trains deep networks, and the traversal of a search space by
genetic algorithms.

Machines Are Designed by Humans: Life
Is Evolved
Almost all machines have a human provenance; whereas the
very definition of a living system is that it arose from an
evolutionary process. Somewhat surprisingly, economic theory
provided one of the first intuition pumps for considering the non-
human generators of machines: machines arise from the literal
hands of human engineers but also the “invisible hand” of a
free market; the latter set of pressures in effect “select,” without
human design or forethought, which technologies proliferate
(Beinhocker, 2020). More recently, evolutionary algorithms, a
type of machine learning algorithm, have demonstrated that,
among other things, jet engines (Yu et al., 2019), metamaterials
(Zhang et al., 2020), consumer products (Zhou et al., 2020),
robots (Brodbeck et al., 2018; Shah et al., 2020), and synthetic
organisms (Kriegman et al., 2020) can be evolved rather than
designed: an evolutionary algorithm generates a population
of random artifacts, scores them against human-formulated
desiderata, and replaces low-scoring individuals with randomly
modified copies of the survivors. Indeed, the “middle man” has
even been removed in some evolutionary algorithms by searching
for novelty rather than selecting for a desired behavior (Lehman
and Stanley, 2011). Thus, future agents are likely to have origin
stories ranging across a very rich option space of combinations
of evolutionary processes and intelligent design by humans and
other machines.

The cost of evolving useful machines, rather than designing
them by hand, is that that they are often inefficient. Like
organisms, evolved machines inherently include many sub-
functions exapted from sub-functions in their ancestral
machines, or mutations that copy and differentiate sub-functions
leads to several modules with overlapping functions. Nicholson
(2019)’s third necessary feature of machines is that they are
efficient: again, 21st century machines increasingly lack this
property. The increased use of evolutionary dynamics by
engineers, and the ability of both kinds of processes to give
rise to highly adapted, complex systems makes it impossible to
use evolved vs. designed as a clear demarcation between two
classes of beings.

An especially powerful blow to the conceit that machines
are the direct result of human ingenuity are machines that

make machines. Mass production provided the first example of
a machine — a factory – that could produce other machines.
John von Neumann postulated theoretical machines that could
make perfect copies of themselves, which in turn make copies
of themselves, indefinitely, assuming a constant supply of raw
building materials (von Neumann and Burks, 1966). Theory has
been partly grounded in practice by rapid prototyping machines
that print and assemble almost all of their own parts (Jones
et al., 2011). Similarly, many are comfortable with the idea
that the Internet, a type of machine, helps “birth” new social
network applications. Those applications in turn connect experts
together in new ways such that they midwife the arrival of
brand new kinds of hardware and software. Indeed, most new
technologies result from complex admixtures of human and
machine effort in which economic and algorithmic evolutionary
pressures are brought to bear. Indeed, one defensible metric of
technological progress is the growing number of intermediate
machine design/optimization layers sandwiched between human
ingenuity and deployment of a new technology.

Life Is Hierarchical and Self-Similar:
Machines Are Linearly Modular
Living systems exhibit similar structure and function at many
different levels of organization. As one example of self-similar
structure, at small scales, branching structures are not just self-
similar but even fractal. Another example is the interdependence
between hierarchical structure and function in the brain
(Sporns et al., 2000). Even more important is self-similar
function, in the sense of multi-scale competency, allostasis, or
homeostasis (Vernon et al., 2015; Schulkin and Sterling, 2019):
organelles, cells, organisms, and possibly species evolved adaptive
mechanisms to recover when drawn away from agreeable
environmental conditions or even placed in novel circumstances.
Machines are typically assumed to be hierarchical and modular
for sound engineering reasons, but self-similarity in machines is
less obvious. Although fractality is currently under investigation
in software (Semenov, 2020), circuit design (Chen et al., 2017),
and metamaterials (De Nicola et al., 2020), it is conspicuously
absent from other classes of machines. Thus, unlike the other
features considered in this section, self-similarity remains a
feature that, for now, does tend to distinguish living systems
from machines. It is important to note, however, that this is not
fundamental – there is no deep reason that prevents engineered
artifacts from exploiting the deep, multi-scale organization of
living organisms to improve problem-solving and robustness.
Although many current machines are highly modular and
efficient by design, machines produced by other machines
increasingly exhibit differing amounts and types of modularity.
Indeed artificially evolved neural networks (Clune et al., 2013)
and robots (Bernatskiy and Bongard, 2017) often lack modularity
unless it is directly selected for, and many exhibit inefficiencies
caused by evolutionarily duplicated and differentiated sub-
structures and sub-functions (Calabretta et al., 2000).

Autonomy at many scales is especially important with respect
to function, not only structure (Pezzulo and Levin, 2016; Fields
and Levin, 2017, 2020). Biological systems are holarchies in which
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each subsystem is competent in achieving specific goals (in the
cybernetic, allostatic sense) despite changing local circumstances
(Pezzulo and Levin, 2016). For example, a swarm of tadpoles
organizes its swimming in a circular pattern to ensure efficient
flow of nutrients past their gills. At the same time, individual
tadpoles perform goal-directed behaviors and compete with each
other, while their craniofacial organs re-arrange toward a specific
target morphology of a frog [able to pursue this anatomical
goal regardless of their starting configuration (Vandenberg et al.,
2012)], their tissues compete for informational and nutritional
resources (Gawne et al., 2020), and their individual cells maintain
metabolic and homeostatic and transcriptional goal states. Such
nested architecture of competing and cooperating units achieves
unprecedented levels of robustness, plasticity, and problem-
solving in novel circumstances (Levin, 2019; Levin, 2020a). It is
also likely responsible for the remarkable evolvability of living
forms, because such multi-scale competency flattens the fitness
landscape: mutations have fewer deleterious effects if some of the
changes they induce can be compensated by various subsystems,
allowing their negative effects to be buffered while the positive
effects accumulate. At present, this is a real difference between
how we engineer machines and how living things are constructed;
for now, defections of parts from the goals of the whole system
(robot “cancer”) are rare, but this will not be the case for long.
We expect near-future work to give rise to machines built on
the principles of multi-scale competency in a fluid “society” of
components that communicate, trade, cooperate, compete, and
barter information and energy resources as do living components
of an organism (Gawne et al., 2020).

Life Is Capable of Intelligence (And Free
Will, Subjectivity, Consciousness,
Agency, and Metacognition): Machines
Are Not; Indeed, They Never Will
Nowhere does the specter of Cartesian dualism loom more
prominently than in the debates about whether current machines
possess any of the cognitive and affective features usually
associated with higher animals, such as intelligence, agency, self-
awareness, consciousness, metacognition, subjectivity, and so on
(Cruse and Schilling, 2013). Indeed, the most intense debates
focus on whether machines will ever be able to attain one or
more of these internal states. As many have pointed out, the
stronger the claim that higher cognition and subjectivity is only
accessible to living systems, the stronger the evidence required
to prove that living systems possess them. It is still strongly
debated what aspects of the body organization are required for
these capacities, or even whether such phenomena exist at all
(Lyon, 2006; Bronfman et al., 2016; Dennett, 2017). Until such
time as firm definitions of these terms is arrived at, claiming them
as a point of demarcation between machines and life is an ill-
defined exercise. Moreover, it is now clear that composite, hybrid
creatures can be bioengineered with any desired combination
of living cells (or whole brains) and real-time optical-electrical
interfaces to machine-learning architectures (Grosenick et al.,
2015; Newman et al., 2015; Pashaie et al., 2015; Roy et al., 2017).
Because the living tissue (which houses the symbol grounding

and true “understanding”) closely interacts with the machine
learning components, forming a single integrated system, such
chimeras reveal that there is no principled way to draw a crisp
line between systems that have true subjectivity and those that
are mere engineered systems.

Machines are increasingly occupying new spaces on the
scale of persuadability, which ranges from low-level, physical
control that has to be applied to change the function of a
mechanical clock, to the use of experiences (positive or negative
reinforcement), signals, messages, and arguments that one can
use with agents of increasing cognitive sophistication. One way to
formalize this distinction is through the relative amount of energy
or effort used in an intervention compared to the change in
the system’s behavior. Messages, unlike physical pushes, require
relatively low energy input because they count on the receiving
system to do a lot of the hard work. If one wants a 200 kg
block of aluminum to move from point A to point B, one has
to push it. If one wants a 200 kg robot to make the same
journey, it may be sufficient to provide only a simple signal;
and if one is dealing with a human or complex AI, one could
even implement the move to occur in the future, in some
specific context, by providing a rational reason to do it (via
a low-energy message channel (Hoffmeyer, 2000; Pattee, 2001).
Modern autonomous machines require increasingly low-energy
interventions to produce useful work – a trend begun decades
ago by developments in cybernetics. Indeed, in their increasing
large-scale lability in the face of very subtle signals, they may get
closer to the edge of chaos that is so prevalent in biology (Hiett,
1999; Kauffman and Johnsen, 1991; Mora and Bialek, 2011).

Machines Can Be Studied in a
Reductionist Framework: Life Cannot
Until very recently, the very fact that machines could be rapidly
disassembled into their component parts, repaired or improved,
and then reassembled, was one of their primary advantages
over living machines such as domesticated animals or human
slaves. This modularity and hierarchy continues today in our
most complex technologies, like state-of-the-art computer chips,
which contain billions of transistors. Progress in circuit design
now requires reaching into the quantum realm (Preskill, 2018),
or enlisting DNA to store and transmit information (Chatterjee
et al., 2017). Reductionist approaches in Artificial Intelligence are
rapidly losing explanatory power as AI systems assume greater
complexity. Considering the weight of a particular synaptic
connection or a local neural cluster in a deep neural network
provides little understanding of the machine’s behavior as a
whole. Making progress in these domains may incur a cost of
not being able to guarantee how local behavior will resolve into
global behavior, like computation speed (a feature related to
the predictability issues discussed above). Instead, AI methods
may have to be enlisted to design such circuits. Ironically, the
AI methods and their products, like neural networks, are both
extremely resistant to reductionist analysis. As just one example,
although the most common form of training neural networks,
the backpropagation of error, is a simple mathematical technique,
one of the co-founders of this method and other AI “insiders”
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have admitted to being baffled at its surprising effectiveness
(Sejnowski, 2020). As for AI’s objects – neural networks – the
very nature of their immense interconnectivity frustrates most
attempts to summarize their global behavior by only referring
to the individual behavior of their edge weights. Indeed, the fact
that neural networks are modeled on biological nervous system
principles makes it unsurprising that they would exhibit many
biological features, including that of resistance to reductionist
analysis. Many machines, especially swarms, exhibit behavior that
requires the same techniques used to study cognition in biological
systems (Beer, 2004, 2014, 2015; Swain et al., 2012; Pavlic and
Pratt, 2013; Nitsch and Popp, 2014; Beer and Williams, 2015;
Slavkov et al., 2018; Valentini et al., 2018), and even relatively
straightforward machines are surprisingly resistant to analysis
using today’s analytical tools (Jonas and Kording, 2016).

Today’s and future autonomous machines, like living things,
will be subject to deterministic chaos (amplification of very small
differences in initial conditions), inputs from their environment
that radically affect downstream responses, highly complex
interactions of a myriad diverse internal parts, and perhaps
even quantum uncertainty (Thubagere et al., 2017). For the
most sophisticated agents, a high level of analysis (in terms of
motivations, beliefs, memories, valences, and goals) may be far
more effective than bottom-up prediction approach – much as
occurs in biology (Marr, 1982; Pezzulo and Levin, 2015, 2016).

If reductionist analysis is impossible for current and future
machines, what remains? A consortium of social scientists,
computer scientists and ethologists recently called for the
creation of a new field, “machine behavior,” in which the
best explanations of machines, and predictions of their
likely behavior, are a combination of wholistic methods
drawn from ethology, the social sciences, and cognitive
science (Rahwan et al., 2019). As just one example, most
modern deep learning analytic methods attempt to discover
pathological holistic behavior in neural networks, such as
bias. Then, these methods attempt to discover the likely
root cause of that behavior and rectify it, such as de-
biasing biased training data sets (Bolukbasi et al., 2016).
Indeed in many cases, the most effective explanations of
animal and human behavior stop far short of detailed
neurological, chemical or small-scale physical phenomena
(Noble, 2012). This call for wholistic thinking is partly intellectual
and partly pragmatic: we require compact, falsifiable and
predictive claims about how autonomous machines will act
in the world, in close proximity to humans. Such claims
provide a firm foundation for new knowledge, but also
for new legislation, regulation, and social norms. Finally,
the deeply social and, increasingly, biological components of
modern machines further complicate reductionist thinking:
extrapolating what a million people will do with a million
plows, given knowledge of a plow, is tractable. Predicting
what 3.8 billion people will do with 3.8 billion social
media accounts1, or an equivalent number of brain-computer
interactive devices, is not.

1The current estimate of people with social media accounts as of January 2020
(statista.com;bit.ly/2KSdA9U).

Nicholson (Nicholson, 2019) concluded his list of three
necessary features for machines – specificity, constraint, and
efficiency – with a fourth and final feature: non-continuity. By
this, he meant that machines could be halted, disassembled,
understood, repaired, and reassembled. As with the first three
features, 21st century machines are increasingly resistant to
reductionist manipulations as well as reductionist explanations
(Guidotti et al., 2019; Rudin, 2019). Put differently, modern
technologies only achieve utility when they are emplaced
appropriately into the technosphere; it is difficult or impossible
to describe their function independently of it.

Life Is Embodied: AIs Are Not
Above, we have considered increasingly untenable distinctions
between machines and living systems. Another commonly
voiced distinction inherited from Cartesian dualism, but one
which is also rapidly deteriorating in the face of advances
in technology, is that between embodied creatures and pure
(software-based) AI. The staying power of this distinction is
mostly due to its seeming intuitive nature: a living being (or
robot) acts directly on the world, and is affected by it; “AI”
are programs that run inside a computer and thus only impact
the world indirectly. The sharp separation between AIs, whose
essential nature is an algorithm (which can be run on many
different kinds of hardware) seems categorically different than
a living being which is defined by its particulars, in both
mind and body. It is curious that a discipline only 70 years
old should be so deeply cleaved along fault lines established
at the outset of Western thought, millennia ago. Much ink
has been spilled on this subject that we will not attempt to
summarize here; instead, we will highlight a few thrusts within
both disciplines that unintentionally or intentionally attempt to
close this gap.

“Embodied AI” has come to be associated with efforts to
run deep learning algorithms on autonomous robots (Savva
et al., 2019). However, these methods can be seen as deepening
rather than narrowing the brain/body distinction: In these
approaches, the robot’s form is usually a fixed shell, previously
designed by human engineers, controlled by the machine learning
algorithm. In contrast, there is a small but growing literature
on embodying intelligence directly into the body of the robot
(Nakajima et al., 2015), and in machine learning methods
that evolve robot bodies to enhance this and other forms
of intelligence (Powers et al., 2020). A small but growing
literature on robots capable of self-modeling also blurs the
distinction between embodied robots and non-embodied AI
methods. Attempts here focus on enabling a robot to model
its own body (Bongard et al., 2006; Kwiatkowski and Lipson,
2019), and model unexpected changes to that body such as
damage, using AI methods. In such systems, morphological
change is occurring alongside mental changes, such as improved
understanding of the robot’s current internal and external
states (Kwiatkowski and Lipson, 2019). Likewise, an important
distinction for the biosciences is between disciplines like zoology,
which focus on very specific examples of life, and the study
of deep principles of biological regulation [“life as it could
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be,” (Langton, 1995; Walker and Davies, 2013)] which, like AI
software, can be implemented in a wide range of media.

Machines Have Clear
Hardware/Software Distinctions: Life
Does Not
One of the most enduring technological metaphors applied to
organisms is that of DNA as software and cells as hardware. The
metaphor sometimes considers transcription and translation as
the interface between the two. In this guise, transcription and
translation serve as the biological equivalent of finite automata,
which translate code into physical changes imposed on the
world. Biological nervous systems acquire a similar metaphor by
extension, but here software is often considered to be electrical
activity in the brain. Software, as the name implies, is usually
restricted to “fluid” systems: chemical, electrical, or sub-atomic
dynamics. Hardware is instead usually applied to macroscale,
Newtonian, mechanical objects such as switches and relays
in artificial systems, and physiology in living systems. Several
advances in neuroscience and regenerative biology challenge
the claim that biology never exploits the software/hardware
distinction. For example, it has been argued that changes
in blood flow in the brain can convey information (Moore
and Cao, 2008), as does the function of astrocytes (Santello
et al., 2019) and neurotransmitters (Ma et al., 2016). The
non-electrical components of these structures and mechanisms
complicate extending the software metaphor to encompass
them. The hardware/software distinction is also blurring in
technological systems: increasingly specialized hardware is being
developed to support deep learning-specific algorithms (Haensch
et al., 2018), and the physics of robot movement can be
considered to be performing computation (Nakajima et al., 2015).
DNA computing further complicates the hardware/software
distinction: In one recent application (Chatterjee et al., 2017),
DNA fragments simultaneously house the “software” of a given
species yet also serve as logic gates and signal transmission
lines, the atomic building blocks of computer hardware. Robots
built from DNA (Thubagere et al., 2017) reduce the distinction
yet further (Thubagere et al., 2017). Moreover, recent work
on bioelectric control of regenerative setpoints showed that
planarian flatworms contain voltage patterns (in non-neural
cells) that are not a readout of current anatomy, but are a
re-writable, latent pattern memory that will guide regenerative
anatomy if the animal gets injured in the future (Levin et al.,
2018). These patterns can now be re-written, analogous to
false memory inception in the brain (Ramirez et al., 2013; Liu
et al., 2014), resulting in worms that permanently generate 2-
headed forms despite their completely wild-type genetic sequence
(Durant et al., 2017). This demonstrates a sharp distinction
between the machine that builds the body (cellular networks) and
the data (stable patterns of bioelectric state) that these collective
agents use to decide what to build. The data can be edited in real
time, without touching the genome (hardware specification).

Most recently, the authors’ work on computer-designed
organisms (Kriegman et al., 2020) calls this distinction into
question from another direction. An evolutionary algorithm was

tasked with finding an appropriate shape and tissue distribution
for simulated cell clusters that yielded the fastest self-motile
clusters in a virtual environment. A cell-based construction kit
was made available to the algorithm, but it was composed of just
two building units: Xenopus laevis epithelial and cardiac muscle
cells. The fastest-moving designs were built by microsurgery
using physical cells harvested from X. laevis blastulae. The
resulting organism’s fast movement, with anatomical structure
and behavior entirely different from that of normal frog larvae,
was thus purely a function of its evolved, novel shape and tissue
distribution, not neural control or genomic information. Such
an intervention “reprograms” the wild type organism by forcing
it into a novel, stable, bioelectric/morphological/behavioral state,
all without altering the DNA “software.” This inverts the normal
conception of programming a machine by altering its software
but not its hardware.

IMPROVING DEFINITIONS

Given the increasingly unsupportable distinctions between
machines and life discussed above, we suggest that updated
definitions of machine, robot, program, software, and hardware
are in order. The very fact that many of these systems are
converging makes delineating them from one another an
almost paradoxical enterprise. Our goal is not to etch in stone
precise new definitions, but rather to provide an update and
starting point for discussion of terms that often are used
without examination of their limitations. We emphasize aspects
that we hope summarize important emerging structure and
commonalities across these concepts. Wrestling with these
concepts helps identify previously unasked research questions
and unify research programs that previously were treated as
distinct with respect to funding bodies, educational programs,
and academic and industrial research environments.

Machine
Any system that magnifies and partly or completely automates
an agent’s ability to effect change on the world. The system
should be composed of parts several steps removed from raw
materials and should be the result of a rational, or evolutionary
(or both), design process. Importantly, a machine uses rationally
discoverable principles of physics and computation, at whatever
level (from molecular to cognitive), to achieve specific functions
and is controllable by interventions either at the physical level or
at the level of inputs, stimuli, or persuasion via messages that take
advantage of its computational structure. The definition would
include domesticated plants and animals (systems with rationally
modified structure and behavior), and synthetic organisms.
Machines often have exhibit information dynamics that enhance
an agent’s ability to effect change on the world. The agent may
be the entity who constructed the machine, or a third party.
Similarly, the agent need not be self-aware or even sentient.

We propose that physicality is not a requirement. Physicality
too easily becomes a seemingly obvious, Cartesian border
between one class of phenomena and another. Of more interest
are machines in which small-scale physical phenomena, such
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as quantum and electrodynamic forces in biological cells or
microscale robots, influence macroscale behavior, such as whole-
body motion or swarm intelligence. By removing the physicality
requirement, a machine may be a machine learning algorithm
that generates better machine learning algorithms or designs
robots or synthetic organisms.

Robot
A machine capable of physical actions which have direct
impacts on the world, and which can sense the repercussions
of those actions, and is partly or completely independent
of human action and intent. This definition is related to
embodiment and situatedness, two previous pillars supporting
the definition of robot (Pfeifer and Bongard, 2006). Crucially,
the property of being a robot is not a binary one, but rather a
spectrum – a continuum (independent of origin story or material
implementation). The determinant of where a given system
lands on the continuum is the degree of autonomous control
evidenced by the system (Rosen, 1985; Bertschinger et al., 2008).
A closely related continuum reflects the degree of persuadability
of the system (Dennett, 1987). On one end of the continuum
are highly mechanical systems that can only be controlled by
direct physical intervention – micromanagement of outcome by
“rewiring”. In the middle are systems that can be stimulated to
change their activity – they can be sent signals, or motivated
via reward or punishment experiences based on which they can
make immediate decisions. At the far end are systems in which
an effective means of communication and control is to alter the
goals that drive their longer-term behavioral policies – they can
be persuaded by informational messages encoding reasons, based
on which they will change their goals. The important variables
here are the causal closure of the system in its behavior (Rosen,
1974; Montevil and Mossio, 2015), and the amount of energy and
intervention effort that need to be applied to get the system to
make large changes in its function (the smaller the force needed to
affect the system, the more sophisticated the robot). A continuous
measure of the level of roboticism is required, to handle the
growing class of hybrids of biological and mechano-electronic
devices. For example, smart prosthetics, which are mostly under
human control via muscle activation or thought processes, are
less robotic than an autonomous car.

Program
A program is typically conceived as an abstract procedure that
is multiply realizable: different physical systems can be found or
constructed that execute the program. We see no need to alter this
definition, except to state that execution need not be restricted
to electrical activity in a computer chip or nervous tissue;
chemical (Gromski et al., 2020) and mechanical (Silva et al.,
2014) processes may support computation as well. However,
a couple of aspects are important for discussing programs in
biology. First, that programs do not need to be written by
humans, or be a linear one-step-at-a-time procedure – the kinds
of programs that (rightly) cause many to say that living things
do not follow programs. The set of possible programs is much
broader than that, and subsumes distributed, stochastic, evolved
strategies such as carried out by nervous systems and non-neural

cellular collectives. Indeed the question of whether something is
a program or not is relative to a scale of biological organization.
For example, genetic sequence is absolutely not a program with
respect to anatomical shape, but it is a program with respect to
protein sequence.

Software/Hardware
The common names for this technological pairing hint that
material properties are what distinguish software from hardware;
one can contrast the fluid flow of electrons through circuitry
or photons through photonic circuits (Thomson et al., 2016)
against the rigidity of metal boxes, vacuum tubes, and transistors.
However, another, operational interpretation of their etymology
is possible: it is harder to change hardware than software, but
examples abound of both, radical structural change (Birnbaum
and Alvarado, 2008; Levin, 2020a) and learning/plasticity at
the dynamical system level that does not require rewiring
(Biswas et al., 2021). Programmable matter (Hawkes et al.,
2010) and shape changing soft robots (Shah et al., 2020)
are but two technological disciplines investigating physically
fluid technologies. In one study the assumption that changing
hardware is hard was fully inverted: it was shown that a soft
robot may recover from unexpected physical injury faster if
it contorts its body into a new shape (a hardware change)
rather than learning a compensating gait [a software change;
(Kriegman et al., 2019)]. These distortions and inversions of the
hardware/software distinction suggest that a binary distinction
may not be useful at all when investigating biological adaptation
or creating intelligent machines. However, a continuous variant
may be useful in the biosciences as follows: a living system
is software reprogrammable to the extent that stimuli (signals,
experiences) can be used to alter its behavior and functionality,
as opposed to needing physical rewiring (e.g., genome-editing,
cellular transplantation, surgical interventions, etc.).

We suggest that the low-hanging fruit of specifiable,
constrained, efficient, and fully predictable 20th century
machines have now been picked. We as a society, and researchers
in several fields, can (and must) now erase artificial boundaries to
create machines that are more like the structures and processes
that life exploits so successfully.

AN EMERGING FIELD: RE-DRAWING
THE BOUNDARIES

“Computer science is no more about computers than astronomy
is about telescopes”

– Edsger Dijkstra

The differences that have been cited between living beings
and machines are generally ones that can (and will) be overcome
by incremental progress. And even if one holds out for some
essential ingredient that, in principle, technology cannot copy,
there is the issue of hybridization. Biological brains readily
incorporate novel sensory-motor (Bach-y-Rita, 1967; Sampaio
et al., 2001; Ptito et al., 2005; Froese et al., 2012; Chamola et al.,
2020) and information-processing (Clark and Chalmers, 1998)
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functions provided by embedded electronic interfaces or
machine-learning components that provide smart, closed-loop
reward neurotransmitter levels (Bozorgzadeh et al., 2016) or
electrical activity which can modulate cognition. Even if “true”
preferences, motivations, goal-directedness, symbol grounding,
and understanding are somehow only possible in biological
media, we now know that hybrid functional systems can be
constructed that are part living tissue and part (perhaps smart)
electronics (Reger et al., 2000; DeMarse and Dockendorf, 2005;
Hamann et al., 2015; von Mammen et al., 2016; Ando and
Kanzaki, 2020), presumably conferring all of those features onto
the system. No principled limits to functionalization between
living systems (at any level of organization) and inorganic
machinery are known; even if such limits exist, these ineffable
components of living things will still tightly interact with
engineered components through the interface of other biological
aspects of cells and tissues that are already known to be
closely interoperable with inorganic machine parts. Thus, we
visualize a smooth, multi-axis continuum of beings being made
of some percentage of parts that are uncontroversially biological
and the remaining percentage of parts that are obviously
machines (Figure 1). They are tightly integrated in a way that
makes the whole system difficult to categorize, in the same
way that molecular machines (e.g., ATPase motors or folding-
programmed DNA strands) work together to make living beings
that implement much more flexible, high-order behavior.

The near future will also surely contain systems in which
biological and artificial parts and processes are intermixed across
many levels of organization, and many orders of spatial and
temporal scales. This could include a swarm composed of robots
and organisms, and in which this admixture gradually changes
over time to respond to slow time scale evolutionary pressures:
the biological units reproduce and evolve, and the mechanical
units self-replicate and evolve. Each individual in the swarm
may itself be a cyborg capable of dynamically reconfiguring
its biological and artificial components, while each of its cells
may include more or less genetic manipulation. Where in
such a system could a binary dividing line between life and
artifice be placed?

Working as coherent wholes, such constructs make highly
implausible a view of strict life/machine dualism, in the same
way that the problem of explaining interaction vexed Descartes’
dualism between body and mind. Thus, the hard work of the
coming decades will be to identify what, if any, are essential
differences – are there fundamentally different natural kinds,
or major transitions, in the continuum of fused biological and
technological systems? At stake is a conceptual framework to
guide basic research and applied engineering in the coming
decades, which is essential given the exponential rate of progress
in capabilities of altering and hybridizing the products of biology
and computer engineering.

Familiar boundaries between disciplines may be more a relic
of the history of science than optimal ways to organize our
knowledge of reality. One possibility is that biology and computer
science are both studying the same remarkable processes, just
operating in different media. We suggest that the material
implementation and the back-story of a given system are not

sufficient information to reliably place it into a category of
machine vs. living being, and indeed that those categories may
not be discrete bins but rather positions in a multidimensional
but continuous space. By asking hard questions about the
utility of terminology whose distinct boundaries were calcified
centuries ago, a number of advantages will be gained. The obvious
trajectory of today’s technology will result in the presence of
novel, composite creatures that in prior ages could be safely
treated as fun sci-fi that didn’t have to be dealt with seriously.
Updating our definitions and clearly articulating the essential
differences between diverse types of systems is especially essential
given the aspects of bioengineering and machine learning
advances that cannot yet be foreseen.

THE INTERDISCIPLINARY BENEFITS OF
A NEW SCIENCE OF MACHINES

The biosciences have much to gain from a more nuanced, non-
binary division between life and machine, and the emergence
of the field of machine behavior. First, the fact that modern
machines are multi-scale, surprising systems that are often as
hard to predict and control as living systems (Man and Damasio,
2019; Rahwan et al., 2019) drives improvement in strategies for
reverse-engineering, modeling, and multi-level analysis. This is
exactly what is needed to break through complexity barriers
facing regenerative medicine and developmental biology (Levin,
2020a). For example, solving the inverse problem in biomedical
settings (what molecular-level features can be tweaked in order to
achieve large-scale outcomes, such as forming an entire human
hand via manipulation of gene and pathway activity in single
cells) (Lobo et al., 2014; Pezzulo and Levin, 2016) will likely
be advanced by the development of engineering approaches to
harness noise, unpredictability, and top-down programming of
goal-directed multiscale systems.

Second, grappling with issues of control, programmability,
agency, and autonomy helps biologists identify and refine
essential features of these concepts, freed from the frozen
accidents of evolution and the history of biology, where
contingent categories (e.g., “consisting of protoplasm”) offered
distinctions that were easy to use in every-day life but misleading
for a deeper scientific understanding. Asking how one can
implement intrinsic motivation (Oudeyer and Kaplan, 2007),
optimal control (Klyubin et al., 2005), and the ability to
pursue and set goals in synthetic constructs (Kamm et al.,
2018) will help reveal which aspects of living forms are the
wellspring of these capacities and which are contingent details
that do not matter.

Third, the engineering and information sciences offer many
conceptual tools that should be tested empirically for their
utility in driving novel work in basic biology, biomedicine, and
synthetic bioengineering. Modular decomposition, software-level
reprogrammability, embodied and collective intelligence (Sole
et al., 2016), morphological computation (Fuchslin et al., 2013;
Corucci et al., 2015), codes and encodings (Barbieri, 1998, 2018,
2019; Levin and Martyniuk, 2018), and much more. Finally, an
inclusive, continuous view of life and machines frees the creative
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FIGURE 1 | Multi-scale option space for possible living machines. (A) Two orthogonal axes define important aspects of any complex system: the degree of design
vs. evolution that created it, and the degree of amount of autonomy it is able to implement. We suggest that both of these principal components are not binary
categories (such as evolved vs. designed, mechanical vs. autonomous/cognitive) but rather continuous. Together, they form a 2-dimensional option space within
which a great variety of possible agents can be placed. (B) Importantly, such an option space exists at each level of organization (for example, the familiar biological
nested scales of cells, individual organisms, and hives/swarms), and each level comprising a complex agent could occupy a different position in the option space –
the levels can be independent with respect to how much evolution, design, and cognition they involve. For example, a given system could be in one corner of the
option space at the lowest level (e.g., contain cells that include highly predictable synthetic circuits), but be evolved and intelligent at the level of the individual, and at
the same time be part of a swarm containing a mix of designed and evolved agents made up of different elements elsewhere on the option space in (A).

capacity of bioengineers, providing a much richer option space
for the creation of novel biological systems via guided self-
assembly (Kamm and Bashir, 2014; Kamm et al., 2018). Advances
in this field even help address controversies within the biological
sciences, such as whether behavior and intelligence are terms that
can apply to plants (Applewhite, 1975; Trewavas, 2009; Garzon
and Keijzer, 2011; Cvrckova et al., 2016; Calvo et al., 2017).

Likewise, the breaking down of artificial boundaries between
the life and engineering sciences has many advantages for
computer science and robotics. The first is bioinspiration. Since
its cybernetic beginnings, researchers in Artificial Intelligence
and robotics have always looked to biological forms and functions
for how best to build adaptive and/or intelligent machines.
Notable recent successes include convolutional neural networks,
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the primary engine of the AI revolution, which are inspired by the
hierarchical arrangement of receptive fields in the primary visual
cortex (Krizhevsky et al., 2017); deep reinforcement learning,
the primary method of training autonomous cars and drones,
inspired by behaviorism writ large (Mnih et al., 2015); and
evolutionary algorithms, capable of producing a diverse set of
robots (Bongard, 2013) or algorithms (Schmidt and Lipson,
2009) for a given problem. However, bioinspiration in technology
fields is often ad hoc and thus successes are intermittent. What
is lacking is a systematic method for distilling the wealth of
biological knowledge down into useful machine blueprints and
algorithm recipes, while filtering out proximate mechanisms
that are overly reliant on the natural materials that nature had
at hand. The products of research in biology (e.g., scientific
papers and models) are often brimming with molecular detail
such as specific gene names, and it is an important task for
biologists to be able to abstract from inessential details of one
specific organism and export the fundamental principles of each
capability in such a way that human (or AI-based) engineers
can exploit those principles in other media (Slusarczyk et al.,
2012; Bacchus et al., 2013; Garcia and Trinh, 2019). Design of
resilient, adaptive, autonomous robotics will benefit greatly from
importing deep ideas discovered in the principles at work in the
biological software that exploits noise, competition, cooperation,
goal-directedness, and multi-scale competency.

Second, there is much opportunity for better integration
across these fields, both in terms of the technology and the
relevant ethics (Levin et al., 2020; Lewis, 2020). Consider the
creative collective intelligence that will be embodied by the
forthcoming integrated combination of human scientists, in silico
evolution in virtual worlds, and automated construction of living
bodies (Kamm and Bashir, 2014; Kamm et al., 2018; Kriegman
et al., 2020; Levin et al., 2020), working together in a closed
loop system as a discovery engine for the laws of emergent
form and function. All biological and artificial materials and
machines strike careful but different balances between many
competing performance requirements. By drawing on advances
in chemistry, materials science, and synthetic biology, a wider
range of material, chemical and biotic building blocks are
emerging, such as metamaterials and active matter (Silva et al.,
2014; Bernheim-Groswasser et al., 2018; McGivern, 2019; De
Nicola et al., 2020; Pishvar and Harne, 2020; Zhang et al., 2020),
novel chemical compounds (Gromski et al., 2020), and computer-
designed organisms (Kriegman et al., 2020). These new building
blocks may in turn allow artificial or natural evolutionary
pressures to design hybrid systems that set new performance
records for speed, dexterity, metabolic efficiency, or intelligence,
while easing unsatisfying metabolic, biomechanical and adaptive
tradeoffs. Machine interfaces are also being used to connect
brains into novel compound entities, enhancing performance
and collaboration (Jiang et al., 2019). If the net is cast wider,
and virtual reality, the Internet of Things, and human societies
are combined such that they create and co-create one another,
it may be possible to obtain the best of both, of all worlds.
This would not be the purely mechanistic World-Machine that
Newton originally envisioned, but closer to the transhumanist
ideal of a more perfect union of technology, biology, and society.

CONCLUSION

Living cells and tissues are not really machines; but then again,
nothing is really anything – all metaphors are wrong, but some
are more useful than others. If we update the machine metaphor
in biology in accordance with modern research in the science of
machine behavior, it can help deepen conceptual understanding
and drive empirical research in ways that siloed efforts based on
prior centuries’ facile distinctions cannot. If we do not take this
journey, we will not only be left mute in the face of numerous
hybrid creatures in which these two supposedly different world
interact tightly but will also have greatly limited our ability to
design and control complex systems that could address many
needs of individuals and society as a whole.

Are living things a computer (Wang and Gribskov, 2005;
Bray, 2009)? It is a popular trope that humans naively seek
to understand mind and life via the common engineering
metaphors of the age - hydraulics, gears, electric circuits.
However, this easy criticism, suggesting myopia and hyperfocus
on each era’s shiny new technology, is mistaken. The reason
such technologies are compelling is that they are showing us the
space of what is possible, by exploring newly discovered laws
of nature in novel configurations. Are cells like steam engines?
Not overtly, but the laws of thermodynamics that steam engines
helped us to uncover and exploit are as important for biology
as they are for physics. Cells and tissues are certainly not like
the computers many of us use today, but that critique misses
the point. Today’s familiar computers are but a tiny portion
of the huge space of systems that compute, and in this deeper,
more important sense, living things are profitably studied with
the deep concepts of computer science. Computer science offers
many tools to help make more profound our understanding
of the relationship between “minds and bodies” – physical
structures that facilitate and constrain robustness, plasticity,
memory, planning, intelligence, and all of the other key features
of life.

It is now essential to re-draw (or perhaps erase) artificial
boundaries between biology and engineering; the tight separation
of disciplines is a hold-over from a past age, and is not
the right way to carve nature by its joints. We live in a
universe containing a rich, continuous option space of agents
with which we can interact by re-wiring, training, motivating,
signaling, communicating, and persuading. A better synergy
between life sciences and engineering helps us to understand
graded agency and nano-cognition across levels in biology, and
create new instances (Pattee, 1979, 1982, 1989, 2001; Baluška
and Levin, 2016). Indeed, biology and computer science are
not two different fields; they are both branches of information
science, working in distinct media with much in common.
The science of behavior, applied to embodied computation in
physical media that can be evolved or designed or both, is a new
emerging field that will help us map and explore the enormous
and fascinating space of possible machines across many scales
of autonomy and composition. At stake is a most exciting
future: where deep understanding of the origins and possible
embodiments of autonomy help natural and synthetic systems
reach their full potential.
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