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INTRODUCTION

Stethaprioninae, a subfamily of characiform fish, comprises small fishes popularly known as
tetras. Species in this subfamily were initially assigned to the genus Astyanax, which has a broad
geographical distribution ranging from the southern United States to northern Argentina (Ornelas-
Garcia et al., 2008). Some species of Astyanax, however, are hard to accurately identify based on
the lack of diagnostic morphological characteristics (Weitzman and Malabarba, 1998). As noted
by Weitzman and Malabarba (1998), the genus Astyanax is probably not monophyletic, and this
thinking is reflected in the recent revision by Terán et al. (2020), who reassigned some species
of Astyanax to six different genera. The species complexes A. fasciatus and A. scabripinnis, for
instance, were placed in the genus Psalidodon, and Astyanax species from the coastal river basins
of Brazil (e.g., A. giton) were placed in the genus Deuterodon. The only taxa remaining in the genus
Astyanax were the species complex A. bimaculatus and North American species. The revision by
Terán was predicted by previous studies on chromosomes andmitochondrial sequences. Molecular
analysis of 16 species of Astyanax based on the mitochondrial gene ATPase 8 and chromosomal
characteristics obtained four clades (Pazza et al., 2018), and based on a DNA barcoding approach,
Rossini et al. (2016) identified five lineages of Astyanax separated by high levels of divergence.

Despite the great diversity and taxonomic issues, at least one species of the genus Astyanax,
A. mexicanus (formerly cited as Astyanax fasciatus), has been used as a model to understand
the development of its eyes and the evolution of complex traits (Borowsky, 2008; Jeffery, 2008).
Astyanax mexicanus is represented by surface and troglobite populations that show similar traits
for cave dwelling. According to Ornelas-Garcia et al. (2008), populations from Brazil are not the
same species as those seen farther north in middle America and Mexico. Currently, the valid
name for tetras from Brazil is Psalidodon fasciatus, a taxon probably containing cryptic species
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based on their chromosomal variation ranging from 2n = 45
to 49 plus B chromosomes and heterochromatin polymorphism
(Pazza et al., 2006; Ferreira-Neto et al., 2012; Kavalco et al., 2013).
These chromosomal variants display low molecular divergence
(Kavalco et al., 2016).Morphologically, the populations of the São
Francisco river basin are different from the specimens from Alto
Paraná and Paraíba do Sul rivers (Melo, 2001) and the original
morphological description is so broad that it certainly covers
other species outside the complex (Melo and Buckup, 2006).
In this case, P. fasciatus should be restricted to the specimens
from the São Francisco river basin (original basin of the type
species), while the others may be either considered cryptic species
of the complex or even other species (Melo and Buckup, 2006).
On the other hand, despite a clear genetic structure among
populations from the Alto Paraná and São Francisco river basins,
morphometric traits seem to be homoplasy (Pazza et al., 2017).

The A. bimaculatus complex is currently represented by
Astyanax bimaculatus species along with others, such as A.
altiparanae (considered as a junior synonym of A. lacustris by
some authors), A. lacustris, A. assuncionensis, and A. abramis.
With a preference for calm waters, these species inhabit mainly
in the Alto Paraná, Paraguay, Iguassu, and São Francisco river
basins (Domingues et al., 2007). Contrary to what has been
observed in P. fasciatus and P. scabripinnis, A. bimaculatus
shows a constant diploidy number in different populations, 2n
= 50 chromosomes, which is considered a symplesiomorphic
character in Gymnocharacini (Kavalco et al., 2011; Martinez
et al., 2012; Fernandes et al., 2014). The diversity within the
group refers to differences in its karyotypic formula, fundamental
number, and general symmetry of the karyotypes (Kavalco et al.,
2011; Fernandes et al., 2014). These cytogenetic data, associated
with the molecular ones, suggest a relatively recent divergence, as
well as the monophyletic status of this branch (Pazza et al., 2018).

Alongside with the P. fasciatus and A. bimaculatus, the
third species complex explored in this work, P. scabripinnis,
was proposed by Moreira-Filho and Bertollo (1991) based on
morphological and chromosomal characteristics of specimens
collected in the Paraná and São Francisco river basins. In a
review of the P. scabripinnis group, Bertaco and Lucena (2006)
pointed out the existence of 15 species, including P. paranae
and P. rivularis. The species of this complex are known for
their wide karyotypic diversity, with diploid numbers ranging
from 2n = 46 to 50 chromosomes (Moreira-Filho and Bertollo,
1991; Fernandes and Martins-Santos, 2005). In recent studies

Abbreviations: ATP6/8, ATP Synthase Membrane Subunit 6/8; BRIG,
Blast Ring Image Generator; CEUA/UFV, Comissão de Ética no Uso de
Animais/Universidade Federal de Viçosa (Ethics Committee on Animal
Use/Federal University of Viçosa); CONCEA, Conselho Nacional de Controle
de Experimentação Animal (Brazilian Council for the Control of Animal
Experimentation); COI, Cytochrome c oxidase subunit I; D-loop, Displacement
Loop; ENA, Europe Nucleotide Archive; ESS, Effective Sample Size; ESU,
Evolutionarily Significant Unit; mtDNA, mitochondrial DNA; ND6, NADH-
ubiquinone oxidoreductase chain 6; PCG, Protein-coding genes; SISBIO/ICMBIO,
Sistema de Autorização e Informação em Biodiversidade/Instituto Chico Mendes
de Conservação da Biodiversidade (Biodiversity Authorization and Information
System/Chico Mendes Institute for Biodiversity Conservation); SISGEN, Sistema
Nacional de Gestão do Patrimônio Genético e do Conhecimento Tradicional
Associado (Brazilian National System for the Management of Genetic Heritage
and Associated Traditional Knowledge).

using molecular phylogeography and geometric morphometry,
Rocha et al. (2019) reinforced the validity of P. rivularis and
P. paranae as sister species of the complex, inhabiting the São
Francisco and Paraná river basins, respectively. However, among
the populations from the Alto Paranaíba river, the existence of a
new species of the complex was observed due to morphometric
and mtDNA data (Alves R de et al., 2020). This new species,
called Psalidodon rioparanaibanus, was collected only in a small
tributary of the Paranaíba river, surrounded by populations of
P. paranae. Moreover, within the P. paranae and P. rivularis
groups, karyotypic diversity is also present (Maistro et al., 1998)
indicating that, even though delimited by individual lineages,
these groups still constitute compilations of cryptic species.

Hundreds of studies describing mitogenomes have been
published in the last few years. Despite being the most
sequenced genome nowadays (Smith, 2015), to this date, just
the mitogenomes of A. mexicanus (Nakatani et al., 2011), P.
paranae (Silva et al., 2016), Deuterodon giton (Barreto et al.,
2017), P. fasciatus, and A. altiparanae (Calegari et al., 2019)
are published. In an attempt to fill this gap, we focused on
the three species complex of the group (A. bimaculatus, P.
scabripinnis and P. fasciatus) to present here the complete
sequences of the mitochondrial genome of 10 species/cytotypes
of Astyanax/Psalidodon. Such data could be very useful in further
phylogeny studies and to understand the diversity of the group.

MATERIALS AND METHODS

Specimens from the Astyanax/Psalidodon genus were analyzed.
We collected the samples in different locations throughout the
major Brazilian rivers and their vouchers are deposited in the
ichthyological collection of the Laboratory of Ecological and
Evolutionary Genetics at Federal University of Viçosa, campus
Rio Paranaíba, Brazil (Supplementary Table 1). After sampling,
we brought the living specimens to the laboratory, euthanized
them in accordance with the ethical standards of CONCEA, the
Brazilian Council for the Control of Animal Experimentation
and CEUA/UFV—Ethics Committee on Animal Use/Federal
University of Viçosa (760/2018). We performed the sampling
with licenses provided by SISBIO/ICMBIO—Biodiversity
Authorization and Information System (1938128) and SISGEN—
National System for the Management of Genetic Heritage and
Associated Traditional Knowledge (A9FE946).

We extracted the total genomic DNA from the liver and
heart tissues of six specimens according to the instructions
of Invitrogen’s PureLink DNA extraction and purification kit.
After quality checking using fluorometer Qubit (Thermo Fisher
Scientific), the Whole Genome Sequencing was performed using
Novaseq 6000 (Illumina, San Diego, CA) at Novogene, UK.

For broader comparisons, we also assembled the mitogenome
of two Astyanax/Psalidodon species with raw reads available
on ENA (European Nucleotide Archive): P. fasciatus, from the
Alto Paraná river basin (SRR8476332) and A. aeneus, from
Mexico (SRR1927238). Aiming to validate our methodology,
we reassembled the mitogenomes of P. paranae (SRR5461470)
and A. mexicanus (SRR2040423). In the Bayesian analysis,
we also included the mitochondrial complete sequence of
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FIGURE 1 | Phylogenetic tree based on 13 protein-coding genes (PCGs) showing the relationships among the Stethaprioninae fish using Brycon orbignianus as

outgroup. The topology was the same in Maximum Likelihood (100 bootstrap replicates) after the test of the best model (General Time Reversible +G) and Bayesian

Inference after calculation of best evolutionary models for each segment, using four independent chains with 10-million-generations (The first 25% of the generations

were discarded as burn-in). The posterior probabilities/bootstrap are on the branches.

Deuterodon giton (NC_044970.1) and added Brycon orbignianus
(KY825192.1) as outgroup.

We assembled the mitogenome from raw reads on Novoplasty
v3.7 (Dierckxsens et al., 2017) in a parallel cluster computer (64
Gb RAM) using the mitogenome of Psalidodon paranae available
on GenBank (SRR5461470) as seed. We chose this approach
because it is fast and assemble the mitogenomes “de novo” from
raw data using a single mitochondrial sequence as seed, without
the bias of a reference. We annotated the sequences obtained on
MitoAnnotator (Iwasaki et al., 2013) atMitoFish (http://mitofish.
aori.u-tokyo.ac.jp).

We performed comparative genomics analysis by BLAST
comparison of all the Astyanax/Psalidodon mitochondrial
genomes against a reference (Psalidodon paranae) generated
by Blast Ring Image Generator (BRIG) (Alikhan et al.,
2011). To assess the repetitive region, we analyzed the
mitochondrial sequences with Tandem Repeats Finder (Benson,
1999), following we isolate and duplicate the repeats of D-loop,
and we aligned at ClustalW (Thompson et al., 1994) to find the
repeat motif.

To validate the mitogenome as a tool for understanding
the phylogenetic relationships among the samples, we aligned
Fasta sequences with ClustalW and calculated the p-distance
with MEGA X software (Kumar et al., 2018). We used the 13
protein-coding genes (PCGs), extracted by hand from fasta file
produced by Mitoannotator, in Bayesian phylogenetic inference
with MrBayes 3.2.7 (Roquist et al., 2012) after calculating the
best evolutionary models for each segment with Partition Finder
2.1.1 (Lanfear et al., 2016). All PCGs used on phylogeny was
tested by saturation (Xia et al., 2003) on DAMBE v7. (Xia,

2018). Bayesian analyses were performed using four independent
chains with 10-million-generations and the effective sample size
(ESS) and strand convergence were, posteriorly, verified in the
software Tracer 1.7 (Rambaut et al., 2018). The first 25% of
the generations were discarded as burn-in. For the Maximum
Likelihood analysis, we used the concatenated 13 protein-coding
genes (PCGs) after testing for the best model in the software
MEGA X (Kumar et al., 2018).

DATA DESCRIPTION

Our results have shown that all mitogenomes content and
gene order were identical (Figure 1), with 13 PCGs, 22
tRNA genes, and 2 rRNA genes, as already described for
Characiformes mitogenomes. The same is true for other
Astyanax/Psalidodon/Deuterodon species, such as A. mexicanus
(Nakatani et al., 2011), P. paranae (Silva et al., 2016), andD. giton
(Barreto et al., 2017). All PCGs, except the ND6 gene, are on the
heavy chain. All but 8 tRNAs are on the heavy chain as well.

All the new sequences are deposited at GenBank
(Supplementary Table 2). The length of mitochondrial
sequences range from 16,626 bp in the Psalidodon fasciatus from
the São Francisco river basin to 16,812 bp in Psalidodon rivularis
2n= 50. The average length ofD-loopwas 1,061 bp, ranging from
951 bp in Psalidodon fasciatus from São Francisco river basin to
1,136 bp in Psalidodon rivularis with 2n = 50 chromosomes. No
differences between deposited mitogenome of P. paranae and
our reassembling could be seen. On the other side, our pipeline
could extend the D-loop region of A. mexicanus, a problematic

Frontiers in Ecology and Evolution | www.frontiersin.org 3 July 2021 | Volume 9 | Article 650783

http://mitofish.aori.u-tokyo.ac.jp
http://mitofish.aori.u-tokyo.ac.jp
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Pasa et al. Ten Mitogenomes of Gymnocharacini

FIGURE 2 | Comparative mitogenomics analysis of all the 10 Stethaprioninae fish against a reference (Psalidodon paranae), generated by Blast Ring Image Generator

(BRIG). Gaps in rings correspond to regions with <50% identity to the reference sequence (BLAST comparison). Colors from the center: dd9998; cb3b54; a31418;

e85e25; df9856; 95ac42; 38a67f; 79bdbe; 00a8c3; 016db8; 6c5ab1.

region in the deposited sequence (named “almost complete” on
the GenBank entry). The difference in the size of D-loop was due
to a repeat of 35 bp in all D-loops, except in Deuterodon giton
(Supplementary Table 3). For the alignment, we got a repeated
motif (TATGTATTAGTACATATTATGCATAATTATACATA)
slightly variable in some species.

Deepening the knowledge on the mitogenome control region,
called D-loop, can play a fundamental role in understanding
the evolutionary history in the Astyanax and Psalidodon genera.
In this work, we observed that the size variation among
different Astyanax/Psalidodon mitogenomes occurs mainly due
to the extension of the D-loop. Neglecting this region in the
reconstruction of mitogenomes can result in a valuable loss of
information since, in addition to the variation in size, we found
a repetitive sequence of 35 bp in nine of the 10 mitogenomes
studied (Supplementary Table 3). On the other side, studies

based on D-loop sequence must be aware of this kind of feature
that can bias the analysis.

D. giton was the only species that did not present the
repetitive sequence in the D-loop. In addition to occupying a
sister group position in the recuperated phylogeny (Figure 2)
when describing the mitogenome of the species, Barreto et al.
(2017) observed in their phylogeny of Characidae that the species
Grundulus bogotensis was closer to the Astyanax/Psalidodon
group than to D. giton. Therefore, we not only confirm D.
giton as a species outside the genus Astyanax as suggested by
the taxonomic review (Terán et al., 2020) but also that the
repetitive sequence found in the D-loop may correspond to a
synapomorphy absent in the Deuterodon group. However, it
is necessary to reassemble the genome of D. giton under our
methodology and conduct complementary studies on species of
the Deuterodon group to clarify this issue.
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The genetic distance among species (Supplementary Table 4)
is reflected in both the Maximum Likelihood and the Bayesian
tree (Figure 2), which shows strong construction with high
bootstrap value and posterior probabilities, respectively. Once
no gene sequence show saturation, we did the phylogeny with
all 13 PCGs. The Partition Finder analysis results in five subsets
(Supplementary Table 5) used in bayesian phylogeny.

The topology of the tree is congruent with those inferred by
Rossini et al. (2016) and Pazza et al. (2018), except for the North
American clade, which appears as a sister group of A. altiparanae
and A. lacustris here. Besides, our study reinforces the taxonomic
review by Terán et al. (2020), meanwhile disagree with Lucena
and Soares (2016) that describe A. altiparanae as a new junior
synonyms of A. lacustris.

The methodology used to reconstruct the mitochondrial
genome proved to be satisfactory and enabled the assessment
of the length of this type of genome, plus the composition
and nature of the D-loop, solving possible gaps in previous
methodologies (Silva et al., 2016; Barreto et al., 2017; Calegari
et al., 2019). Besides, the study of the complete mitochondrial
genome proves to be a tool with the potential to solve taxonomic
problems and to help understand the evolutionary relationships
in species complexes, such as A. bimaculatus, P. fasciatus, and
P. scabripinnis.
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