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Rational Design of a Novel
Hawkmoth Pollinator Interaction in
Mimulus Section Erythranthe

Kelsey J. R. P. Byers*t and H. D. Bradshaw Jr.

Department of Biology, University of Washington, Seattle, WA, United States

Diversification of the ca. 275,000 extant flowering plant species has been driven in
large part by coevolution with animal pollinators. A recurring pattern of pollinator
shifts from hummingbird to hawkmoth pollination has characterized plant speciation
in many western North American plant taxa, but in the genus Mimulus (monkeyflowers)
section Erythranthe the evolution of hawkmoth pollination from hummingbird-pollinated
ancestors has not occurred. We manipulated two flower color loci and tested the
attractiveness of the resulting four color phenotypes (red, yellow, pink, and white) to
naive hawkmoths (Manduca sexta). Hawkmoths strongly prefer derived colors (yellow,
pink, white) over the ancestral red when choosing an initial flower to visit, and generally
preferred derived colors when total visits and total visit time were considered, with no
hawkmoth preferring ancestral red over derived colors. The simple flower color genetics
underlying this innate pollinator preference suggests a potential path for speciation into
an unfilled hawkmoth-pollinated niche in Mimulus section Erythranthe, and the deliberate
design of a hawkmoth-pollinated flower demonstrates a new, predictive method for
studying pollination syndrome evolution.

Keywords: Mimulus, floral color, Manduca sexta, experimental evolution, pollination, reproductive isolation,
speciation

INTRODUCTION

Darwin called the dramatic radiation of the ca. 275,000 flowering plant species “an abominable
mystery,” though he recognized the potential role of the strong coevolutionary relationships
between plants and their pollinators (Darwin, 1862). It is now clear that animal pollination is
responsible for high rates of speciation in the flowering plants (Coyne and Orr, 2004; van der Niet
and Johnson, 2012). Shifts between pollinator guilds (e.g., bumblebees, hummingbirds, hawkmoths,
bats) often coincide with plant speciation events (Whittall and Hodges, 2007; Forest et al., 2014),
and each pollinator guild is attracted by a different suite of floral traits (e.g., color, scent, pattern,
shape, nectar reward, anthesis time) collectively known as a pollination syndrome (Fenster et al.,
2004). Although some controversy around the validity of these syndromes exists (Ollerton et al.,
2009; Wang et al., 2020), evidence suggests they are valid in the broad taxonomic sense (Rosas-
Guerrero et al.,, 2014) as well as in specific taxonomic groups (Murta and Espindola, 2014).
Extensive work has identified pollination syndromes among various plant families (Fenster et al.,
2004), but the detailed genetics of traits involved in pollinator shift-driven plant speciation remain
largely unresolved outside of a few key systems (Yuan et al., 2013; Fattorini and Glover, 2020).
Have we learned enough about the genetic basis of the origin of flowering plant species to engineer
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a shift in pollinator guilds? Borrowing from Gould’s metaphor of
the “tape of life,” (Gould, 1989) can we anticipate (rather than
recapitulate) evolutionary trajectories, and, instead of replaying
the tape of life, run the tape in fast forward? Can we predict, and
then produce, a pollinator shift into a previously unfilled niche
within a specific group, and is this shift genetically simple enough
to potentially occur in the wild?

A recurring pattern of pollinator shifts from hummingbird
to hawkmoth pollination has characterized plant speciation in
many western North American taxa (e.g., Aquilegia, Ipomopsis,
and Mimulus section Diplacus: Grant, 1993; Whittall and
Hodges, 2007) and more globally (Rosas-Guerrero et al,
2014), but in the genus Mimulus (monkeyflowers) section
Erythranthe (sensu Lowry et al., 2019) the evolution of hawkmoth
pollination from hummingbird-pollinated ancestors has not
occurred. “Hawkmoth flowers” share several characteristics with
“hummingbird flowers,” including a large volume of dilute nectar
and a long tubular corolla (Martins and Johnson, 2013; Johnson
etal., 2016). But most hummingbird flowers are red (Grant, 1966;
Rodriguez-Gironés and Santamaria, 2004; Lunau et al,, 2011),
hence not easily visible to hawkmoths, whose visual sensitivity
does not extend into the longer wavelengths (Cutler et al.,
1995). Hawkmoth flowers are usually white (or pale) and highly
reflective in the visual wavelengths while lacking UV reflection
(Grant, 1993; Goyret et al., 2008; Martins and Johnson, 2013;
Johnson et al., 2016), adapted for detection by crepuscular and
nocturnal hawkmoths.

Our goal is to design and synthesize a new Mimulus species
(sensu Duffy et al, 2007; Villa et al., 2019), pollinated by
hawkmoths and reproductively isolated from its red-flowered,
hummingbird-pollinated ancestor, M. cardinalis. Several traits
already present in Mimulus, including nocturnal anthesis, large
nectar volume in M. cardinalis, and floral scent, suggest that the
evolution of hawkmoth pollination in section Erythranthe should
be genetically tractable and require few mutational changes.
We set out to determine if the minimal combination of only
two flower color changes—loss of anthocyanins and loss of
carotenoids, either separately or together, both of which are found
in wild M. lewisii and M. cardinalis—(Vickery, 1992; Wu et al,,
2013) would be necessary and sufficient to change the behavior of
a model hawkmoth, Manduca sexta. Given the extensive existing
data on hawkmoth color preferences (White et al., 1994; Kelber,
1997; Goyret et al., 2008; Kuenzinger et al., 2019; and others),
largely demonstrating a naive preference for blue colors but the
potential for training to prefer the more common hawkmoth-
pollinated white colors (Goyret et al., 2008), we predicted that
hawkmoths would prefer flowers with two mutational steps from
the “ancestor” (white flowers, with the loss of both anthocyanins
and carotenoids) over the ancestral state (red flowers). Moths
might also show an intermediate preference for single mutational
steps (yellow or pink flowers, with the loss of anthocyanins and
carotenoids, respectively).

As a first step, we manipulated two flower color loci in
M. cardinalis and tested the attractiveness of the resulting four
color phenotypes (red, yellow, pink, white; Figure 1A) to naive
hawkmoths. If we are able to demonstrate a potential pro-
hawkmoth change in Mimulus section Erythranthe via color shift,

this suggests that a transition into the hawkmoth niche not yet
fulfilled in this section might be a potential future evolutionary
trajectory in the group resulting in a novel species.

METHODS

Genetic Stocks

The red color of M. cardinalis flowers is produced by the
combination of high concentrations of anthocyanin (pink) and
carotenoid (yellow) pigments (Hiesey et al., 1971). Mimulus
cardinalis Douglas ex Benth. (inbred line CE10, derived by single
seed descent from a plant collected along the South Fork of the
Tuolumne River, Yosemite, CA) was crossed to Mimulus lewisii
Pursh (inbred LF10 line derived in the same way from the same
area) homozygous for a recessive EMS-induced mutation at the
BOO1 locus (Pince, 2009), producing an anthocyanin-less flower.
M. lewisii is homozygous for a dominant suppressor of carotenoid
pigmentation (YUP: Bradshaw and Schemske, 2003), and the
mutant has the genotype bool/bool YUP/YUP. M. cardinalis is
homozygous for the alternative alleles (BOO1/BOO1 yup/yup).
A resulting pink-flowered F; offspring (BOOI1/bool yup/YUP)
was selfed to produce the segregating F, study population
(n = 500). Flowers of four colors were selected (Figure 1A),
corresponding to the four combinations of alleles at the two
flower color loci: red, similar in color to the “ancestral” M.
cardinalis (BOO1 yup); pink (BOO1 YUP); yellow (bool yup); and
white (bool YUP). Three F, plants of each color were selected
based on similarity of flower size, shape including petal reflexing,
and nectar volume. Neither M. lewisii nor M. cardinalis reflect
in ultraviolet wavelengths (Vickery, 1992; Owen and Bradshaw,
2011), meaning the only visible signals to hawkmoths (whose
visual receptors peak at 357, 450, and 520 nm: UV, blue, and green
respectively, Cutler et al., 1995) should be in the visible spectrum.

Experimental Animals

Carolina hawkmoths (Manduca sexta) were raised on artificial
diet (Bell and Joachim, 1976) under controlled conditions at
the University of Washington. As this typical diet is lacking in
vitamin A, these moths likely differ in their visual sensitivity
compared with wild moths or those reared on a complete diet,
which might affect our behavioral results (Goyret et al., 2009).
Hawkmoths were eclosed in full artificial lighting and were
not fed or light-cycled prior to the experimental runs. Female
hawkmoths eclosed four to six days prior to the experiment were
used in all experiments, as this is within the approximate range
where feeding motivation is highest (Goyret et al., 2007).

Test Chamber Experiments

Hawkmoths were tested ina 1 m x 1 m x 70 cm chamber
constructed of black Coroplast (Coroplast, Dallas, TX) with a
clear Plexiglas top for observation. The chamber was located
within a darkroom illuminated with red safelight; the chamber
itself was illuminated with a single blue-white LED emitting 2
lumens mounted on the Plexiglas top. One flower, including
pedicel, of each color was mounted at a height of 50 cm on a
long side of the symmetrical chamber using matte black tape.
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Red: yup BOO1
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Yellow: yup bool

Number of total visits
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Total time visited (seconds)
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White: YUP bool °

differences are shown (see section “Methods”).

FIGURE 1 | Mimulus color mutants and behavioral results. (A) Red, yellow, pink, and white Mimulus flowers from a single F» population with their inferred genotypes.
(B) First choices to the flowers across all moths, with letters indicating statistically significant differences between colors. (C) Total visits to the flowers across all
moths. (D) Total time each flower color was visited across all moths. Data from individual moths were not pooled for statistics for (C,D) and therefore no statistical

Red Yellow Pink White
yup BOO1  yup bool YUP BOO1  YUP bool

Red Yellow Pink White
yup BOO1 yup bool YUP BOO1 YUP bool

Red Yellow Pink White
yup BOO1 yup bool YUP BOO1  YUP bool

Each run was randomized for both flower color at each position
and one of three parent plants for each color. As hawkmoths are
able to see color in dim starlight (Kelber et al., 2002), the black
Coroplast and blue-white LED may not fully reflect the visual
environment and background contrast these hawkmoths would

encounter in the wild; the darker background may have instead
increased contrast between the color morphs and might affect
preference (Kuenzinger et al., 2019).

Each hawkmoth was observed until an initial naive choice—
defined as proboscis extension and contact with the floral surface
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(Raguso and Willis, 2003)—was made. At that point, number
of visits and time for each visit were recorded until nectar
exhaustion or hawkmoth exhaustion. Nectar exhaustion was
defined as a visit of one second or less and hawkmoth exhaustion
as the hawkmoth becoming unwilling to fly. At this point
the hawkmoth was removed and the flowers replaced before
a new hawkmoth was introduced. Each moth was used for
only one experiment.

Statistical Analysis

Initial visit data (first choice) were analyzed using a chi-square
goodness-of-fit and individual ranking was done with pairwise
chi-square tests with a sequential Bonferroni correction (Rice,
1989). Visit profiles were examined to rule out initial preference
having an effect on further visits (e.g., moths preferring only
their first flower color once they discover it is rewarding). Of 28
moths, 22 visited all three non-red colors, distributed evenly with
initial preference (X? = 1.375, p = 0.503, df = 2); additionally, 17
of the 28 moths visited another color as often as or more than
their initial choice.

Chi-square goodness-of-fit tests were considered for total
visit numbers and visit time, but a two-way chi-square test on
the individual moth data showed that moths differed in their
behavior for total visit time (X? = 1449.638, p = 1.286 x 10724,
df = 81), and a Fisher’s exact test (chosen instead of chi-square
due to the expected values violating the chi-square assumptions)
showed that moths differed in their behavior for total visit
number (p = 5 x 10~%) as well. Therefore, these data were
not pooled across moths. Instead, visit time and visit number
data from individual moths that made over 20 visits (7 of 28
moths) were analyzed using chi-square goodness-of-fit tests with
sequential Bonferroni correction separately for each moth.

RESULTS

Using naive captive-bred female hawkmoths (Manduca sexta)
in a dimly lit flight chamber with one flower of each color
(Supplementary Figure 1), we counted their first choices, the
total number of pollinator visits to each flower color, and the
time spent on each color (Supplementary Table 1). A total of
28 hawkmoths were observed, resulting in a total of 454 visits
with between 3 and 40 visits per moth. First choices differed
significantly between color morphs (Figure 1B; n = 28, X? = 20,
df = 3, p = 1.70 x 10~%), with hawkmoths preferring white and
pink morphs equally, also visiting yellow morphs equally to pink,
and ignoring red morphs. These results indicate that hawkmoths
are attracted to flowers with at least one allele substitution step
(yellow or pink) from the red flower color characteristic of the
ancestral hummingbird-pollinated M. cardinalis.

Since hawkmoths differed in their visitation profiles between
moths (see section “Methods”), we present statistics for
individual moths instead of pooling them when discussing total
visit count (Figure 1C and Supplementary Figure 2A; n = 28)
and total visit time (Figure 1D and Supplementary Figure 2B;
n = 28). Five out of seven moths making more than 20 visits
differed in their visit numbers between color morphs (p < 0.05),

while one moth trended toward a difference (p = 0.0534) and
one moth showed no difference (p = 0.572). All seven moths
making more than 20 visits differed in their visit times to different
colors (p < 0.05). Sequential Bonferroni correction for each
moth demonstrated some general trends. When total visits were
considered, all significant comparisons between red and another
color showed higher visitation to the other color (white vs. red:
4 of 5 moths significant; pink vs. red: 3 of 5 moths significant;
yellow vs. red: 2 of 5 moths significant). The same was true
for total time, i.e., red flowers were visited for a shorter time
overall by most moths (white vs. red: 6 of 7 moths significant;
pink vs. red: 5 of 7 moths significant; yellow vs. red: 5 of 7
moths significant).

We also considered the transitions between flower morphs
in the array (Figure 2). Nearly 20% of transitions were from
the white flower back to the white flower, while same-flower
transitions were rarer to pink (4.7%) and yellow (5.6%) flowers
and absent for red flowers. As suggested by visitation numbers,
transitions to red flowers were rare (1.4% from all three other
colors). Transition rates were similar in both directions, i.e.,
transitions from white to pink were similar in frequency (12.7%)
to transitions from pink to white (12.0%). As suggested by visit
numbers, transitions to/from white and pink were more frequent
than transitions to/from white and yellow, with transitions
to/from pink and yellow intermediate. When accounting for the
position of flowers in the array (Supplementary Figure 3), we
see that red flowers were never visited when more than two
positions away in the array, suggesting that moths could not see
the red flowers very well from a distance, while white flowers
were frequently visited when three positions away in the array,
suggesting they are more conspicuous at a distance than any of
the other colors. Anecdotally, most visits to red flowers seemed to
occur after accidental contact between the moth and the flower,
while most visits to white, pink, or yellow flowers appeared to be
the result of more deliberate navigation, most likely due to the
known visual receptor sensitivities of Manduca sexta, peaking in
the UV to green range (Cutler et al., 1995) in combination with
the higher brightness of the other color morphs. When moths
did visit red flowers, however, they did not appear to visit for
shorter amounts of time (white: 12.1 s/visit; pink: 9.2 s/visit;
yellow: 8.1 s/visit; red: 9.7 s/visit), suggesting that they found red
flowers equally rewarding once they were encountered.

DISCUSSION

When given the choice between four color phenotypes (red,
yellow, pink, and white) representing four genotypes at two
genetic loci, hawkmoths preferred the “derived” non-red colors
for their initial choice, and generally preferred these colors
to red (or in a few cases treated them equally) when total
visits and total time were considered. Red flowers seemed less
conspicuous in the flight chamber than other colors, consistent
with the lack of visual sensitivity at these wavelengths (Cutler
et al, 1995), while white flowers, with the highest brightness,
were frequently visited even when at the opposite end of the
array from the previous flower. These results are in agreement
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FIGURE 2 | State change diagram for the four floral colors, with values
averaged across all moths. All values in the diagram sum to 1, i.e., the
numbers are the proportion of all total changes, not of changes to/from each
color.

with existing data on hawkmoth color preferences (White et al.,
1994; Kelber, 1997; Goyret et al, 2008; Kuenzinger et al,
2019; and others), though they may have been influenced
by the experimental diets deficiency in beta-carotenes (see
section “Methods”).

Testing these four flower color phenotypes with naive
hawkmoths in an experimental chamber has established
the remarkably simple genetic basis (two mutational steps)
of phenotypic change required to initiate a potential
pollinator guild shift from hummingbirds to hawkmoths.
Observations of pollinator preference and pollen movement
in the native environment of M. cardinalis using near-isogenic
lines for the YUP and bool alleles will be needed for a
definitive assessment of reproductive isolation between the
hummingbird-pollinated ancestral M. cardinalis and the
rationally designed hawkmoth-pollinated derivatives with
yellow, pink, or white flowers. Of note, many hummingbird-
pollinated flowers are also white (Lunau et al, 2011), and
thus our potential pollinator shift would reflect a “pro-
hawkmoth” rather than an “anti-hummingbird” trait shift
(sensu Castellanos et al., 2004).

Although not measured in this floral study population,
floral scent and anthesis time are known to be important
characteristics in the hawkmoth pollination syndrome (Faegri
and van der Pijl, 1979). Mimulus lewisii and M. cardinalis,
the two parent species of our test population, both emit
moderate amounts of terpene volatiles (Byers et al., 2014a) that
provoke electroantennographic responses in the hawkmoths
Hyles lineata (Raguso et al, 1996) and Sphinx perelegans
(Raguso and Light, 1998). In addition, Mimulus lewisii
demonstrates nocturnal anthesis (Supplementary Video 1).

In combination, the scent, nocturnal anthesis, and potential
color shift (including a lack of UV reflection, White et al.,
1994) would argue that a hawkmoth niche shift is possible
in Mimulus section Erythranthe. Although Manduca sexta
largely feeds on members of the Solanaceae (the nightshade
family), we expect that other local hawkmoths (for which
we are here using Manduca as a proxy) would be potential
pollinators of these novel color variants should they
arise in nature.

The classical approach to understanding plant speciation
by pollinator shift is retrospective—sister taxa with different
pollinators are analyzed for differences in key floral traits, often
with known effects on pollinator preference (e.g., Bradshaw
and Schemske, 2003; Streisfeld and Kohn, 2007; Whittall and
Hodges, 2007; Byers et al., 2014a; Wessinger et al., 2014), and
their underlying alleles (e.g., Schliiter et al,, 2011; Hermann
et al, 2013; Streisfeld et al, 2013; Byers et al, 2014b)
to infer the evolutionary history of divergence from their
common ancestor. But perhaps the most stringent test of our
understanding of flowering plant diversification is the prospective
approach we have used here. Darwin famously predicted that
the Malagasy star orchid (Angraecum sesquipedale), which
has a white flower and ca. 35cm nectar spur, must be
pollinated by a (then-undiscovered) hawkmoth with a ca. 35
cm proboscis (Darwin, 1862). Building on similar predictions,
and backed by experimental evidence, we have shown that
critical steps toward the origin of a new, human-designed,
hawkmoth-pollinated plant species can, likewise, be simple and
predicted based upon a fundamental knowledge of pollination
syndromes and genetics.
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SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fevo.2021.
658710/full#supplementary-material

Supplementary Figure 1 | Carolina hawkmoth (Manduca sexta) feeding
from white Mimulus mutant in flight chamber.

Supplementary Figure 2 | Visit and visitation time data for individual moths.
Individuals are presented in order of experiments, which were randomized, and
the order is the same for parts (A,B). (A) Total number of visits broken down by
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