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Recently several authors described a family of models, according to which different
cancer types and subtypes fall within a space of selective trade-offs between archetypes
that maximize the performance of different tasks: cell division, biomass and energy
production, lipogenesis, immune interaction, and invasion and tissue remodeling. On
this picture, inter- and intratumor heterogeneity can be explained in part as a product of
these selective trade-offs in different cancers, at different stages of cancer progression.
The aim of this Perspective is to critically assess this approach. I use this case study to
consider more generally both the advantages of using ecological models in the context
of cancer, and the challenges facing testing of such models.
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INTRODUCTION

Cancer evolves; that is, populations of cancer cells change over time in distribution of genotypic
and phenotypic features, and relative survival is due in part to interactions with the surrounding
environment. This idea is not new, and has indeed led to an active research program (Nowell, 1976;
Merlo et al., 2006; Greaves and Maley, 2012). If cancers evolve, then investigating the ecologies of
cancers, and selective trade-offs at work in these different local microenvironments, will be centrally
important to explaining how and why cancers progress slowly or quickly, respond to treatment,
or fail to do so.

What, however, does it mean to explain or describe cancer’s “ecologies” or “ecological
dynamics”? While several scientists have proposed general theoretical frameworks and
mathematical models for predicting and explaining cancer’s evolutionary dynamics (Michor et al.,
2004; Frank, 2007; Wodarz and Komarova, 2014), relatively few have drawn upon ecological theory
(F. Adler and Gordon, 2019). However, Maley et al. (2017) describe what they call the “Evo-” and
“Eco-Index” of cancers – that is, a taxonomy of various features that enable various patterns of
evolutionary and ecological change in cancers over time. Thus, for instance, a major component
of the “Evo-index” of a tumor is extent of heterogeneity, which enables a population of cancer
cells to respond to selection. The “Eco-Index,” in contrast, consists in a “profile” of “hazards” and
“resources” (what can kill a cell, or resources required for cell maintenance and growth), which
might be expected to select for the particular life history strategies (Aktipis et al., 2013). High levels
of hazard or fluctuating resources might tend to yield rapid reproduction and little investment in
maintenance and survival. Low hazards and a steady supply of resources, in contrast, might predict
an expansion of the carrying capacity of the habitat, and competition for limiting resources.

Frontiers in Ecology and Evolution | www.frontiersin.org 1 May 2021 | Volume 9 | Article 666262

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2021.666262
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fevo.2021.666262
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2021.666262&domain=pdf&date_stamp=2021-05-20
https://www.frontiersin.org/articles/10.3389/fevo.2021.666262/full
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-666262 May 14, 2021 Time: 17:52 # 2

Plutynski Testing Multi-Task Cancer Evolution

International sequencing efforts have now provided data that
allows cancer researchers to test some of these hypotheses (Hutter
and Zenklusen, 2018). These sequencing efforts demonstrated
that cancers are enormously heterogeneous. Cancers arising in
different cell types, tissues, or organs vary in the extent and type
of mutations most common. This “inter-tumor” heterogeneity is
often contrasted with “intra-tumor” heterogeneity: the extent of
genetic variation within a single population of cancer cells. In
order to optimize treatment, we need to better understand why
variation arises between cancers, and among cell lineages in a
tumor, both in space, and over time.

Hausser and Alon (2020) apply multitask evolution to
genomic data, in service of identifying the specific trade-offs
at work in different cancers, and among cell lineages (Hausser
et al., 2019, p. 2). They predicted that, given trade-offs among
various tasks of cancer cells in a tumor, both space, and over time,
selection among these trade-offs could also yield “archetypal”
genomic profiles. For instance, early on in the development of
a tumor, one might expect genetic profiles associated with rapid
growth, whereas later on, there may be genetic profiles associated
with immune resistance, or capacity for invasion and metastasis.

To identify the trade-offs at work in cancer progression,
they use a Pareto-optimal modeling strategy, drawing upon
gene expression profile data (transcriptomic data) from TCGA
and METABRIC databases. Using PCA (principal component
analysis), they reduced the number of dimensions in the data,
identifying the most common variants across tumors. They then
subject this reduced dataset to ParTI (Pareto task inference).
ParTI has been used to illustrate the role of selective trade-
offs between tasks in a variety of other systems. The “Pareto
front” represents gene expression profiles for which performance
cannot be improved without decreasing performance in another
task: gene expression profiles along a Pareto front are “Pareto
optimal.” When there are three or more tasks, one can generate
a polyhedron, where the vertices represent the “archetypes” – or,
“specialists” at specific tasks.

They showed that different cancers seem to have distinctive
optima, or gene expression profiles associated with trade-offs
among different tasks. For instance, in glioma, the trade-offs
were between cell division, invasion and tissue remodeling, and
immune interaction, with a cluster close to the cell division
archetype. In contrast, in liver cancer, the trade-offs appear
to be between biomass and energy production, cell division,
and invasion and metastasis, with a cluster closer to biomass
and energy production. Moreover, they found that, depending
upon stage or grade, different cancers within a type (e.g., breast
cancers) seemed to display gene expression of higher frequency
coinciding with one or another Pareto optimum, suggesting
that selective trade-offs likely change from early stage tumors
to invasive metastatic disease. Such selective trade-offs might be
driving change in the distribution of tasks in cell populations in
a tumor over time, and thus, changes in the distribution of gene
expression profiles. Such information could, they argue, be linked
with clinical data, and drug sensitivity data, in service of more
effective therapy.

There were some limitations to their analysis, however. They
“could not reliably detect polyhedra for seven out of 15 cancer

types; these seven cancer types showed gene expression that fell
in a cloud without detectable vertices.” That is, fully half of
the cancer types they analyzed did not fall within the archetype
framework. As they note, future research could determine what
might explain lack of fit, where one option is simply that “trade-
off theory is not applicable such as a lack of strong selection,”
or, perhaps, “too many tasks (many archetypes) that cannot be
resolved given the noise.” (Hausser and Alon, 2020, 250) Below,
this example will be considered as a case study for generating
important insights about what we ought to look for when testing
hypotheses about cancer’s eco-evolutionary dynamics.

CANCER GENOMIC DATA AS A SOURCE
OF BIAS

Hausser et al., generated their archetypes by drawing upon
TCGA and METABRIC data, reducing the dimensions of the
data using PCA (principal component analysis). It’s worth briefly
considering how these data were generated, to consider whether
either the data themselves, or the reduction in of dimensions of
the data (or both), might bias the results they found.

The TCGA “pipeline” had several stages. First, tumor samples
and healthy cells are taken from each patient, typically at first
diagnosis – i.e., early stage cancers. Though, how early this may
have been in the progression of disease likely varied significantly
across cancers – for instance, pancreatic cancers tend to be
diagnosed later than prostate or breast cancers. Second, at least
during the first 5 years during which TCGA was conducted,
whole exome sequencing was not an option. So, initially, the
second stage of the pipeline involved targeted sequencing of
genes known (already) to be tumor drivers: genes, mutation to
which were already known to be common in cancers of this
or that type (Hutter and Zenklusen, 2018). The third stage
involved comparing frequency of different mutations within
cancers of a particular type or subtype. During the last half
decade of sequencing efforts, whole exome sequencing and
“mutation calling” algorithms, systematically generated data on
which mutations were common or rare in different cancer types.
These algorithms were designed to exclude certain genes not
known or believed to be relevant to cancer phenotype, and thus
weighted some genes as likely more significant than others, based
on functions known or likely typically associated with the cancer
phenotype – e.g., if a gene was associated with mitosis, etc.

In other words, the driver mutations identified by TCGA
as more or less common in cancers of this or that type were
identified by algorithms designed to detect mutations to genes
known to be associated “hallmark” functions of cancer cells (e.g.,
TP53, APC, etc.) (Hanahan and Weinberg, 2011). Genes typically
thought to have no role in “hallmark” features of cancer cells
were (by and large) ruled out as “noise.” Thus, one concern
that any analysis of cancer genomic data may have when using
such data to test hypotheses about selective trade-offs is that
cancer genomic data (at least that data published in the consensus
genome papers) were already filtered by algorithms designed
to identify mutations to genes associated with the “hallmarks”
of cancer. Thus, it is no surprise that data drawn from TCGA
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would generate “archetypes,” or show relatively high frequency
of mutation and/or gene expression for these five major tasks.
Hausser and Alon’s (2020) discovery that glioma and bladder
tumors, for instance, fit a polyhedron model, with axes that are
represent trade-offs among gene expression for specialization in
cell division or immune interaction, in other words, may in part
be not entirely unexpected. Further, their analysis reduced the
dimensions of the data, and averaged gene expression patterns
within any given cancer type or subtype – such a process may
have led to loss of important information, such as about unique
gene expression profiles distinctive to particular cancers, or
subpopulations of cells within cancers. This could well explain the
lack of fit with the models, for a proportion of the cancers studied.

STANDARDS OF EVIDENCE IN TESTING
ECOLOGICAL MODELS IN CANCER

A second general concern one might have has to do with
standards of evidence for testing hypotheses about trade-offs.
In a classic discussion, Stearns (1989) gives a brief overview of
what information is required to test hypotheses about life history
trade-offs in whole organism biology:

That trade-offs can be measured and analyzed at the level of
the genotype, the phenotype and what lies between (intermediate
structure) . . . It is not a question of either genetic correlations
or phenotypic correlations or physiological trade-offs but of how
such measurements combine to deliver information about potential
evolutionary responses. A study conducted at just one of these
levels is likely to be of as little use as the information on the nature
of the elephant delivered by one blind man holding its tail ...
Knowledge of all three of these levels is necessary to understand
how a trade-off works (Stearns, 1989, p. 259).

Stearns gives several examples of tests of hypotheses about life-
history trade-offs – for instance, trading off between growth and
reproduction. In all these models, there is a quantitative measure
of the traits in question in a given population, their effects on
fitness, and in some cases, experimental manipulation of the
population to test these hypotheses.

According to Stearns, for a genuine test of an ecological
hypothesis about trade-offs, it is important to give quantitative
measures of how trade-offs between phenotypic traits negatively
covary. Moreover, in principle, one should also establish that
there was sufficient variation within the initial population for
both traits to be subject to selection. If manipulation of the traits
is possible, experimental manipulations should be conducted to
test hypotheses about these proposed trade-offs. Ideally one must
give ecological information about how and why traits are likely to
trade off, and not only demonstrate how they negatively covary.
Testing requires some quantitative measure of fitness, a function
that describes how fitness depends on variable phenotypes (and
trade-offs among them), and a set of alternative phenotypic
profiles that describes options for manipulating the variables
at work in these fitness trade-offs. How does Hausser et al.’s
theoretical framework perform in this regard?

They do cite indirect evidence that there are plausibly selective
trade-offs likely at work in cancer. Some resources, such as ATP,

are needed for both growth and metastasis, and are limited in
supply (Broxterman et al., 1988), metabolic constraints were
also reported (Jerby et al., 2012), harsh conditions cause cancer
cells to become quiescent (Gade et al., 2017), and proliferation
is stimulated more favorable microenvironments (Wang et al.,
2017a,b). Hausser et al., cite several papers that they claim
support the general view that cancer cells face fitness trade-offs
(Hatzikirou et al., 2012; Aktipis et al., 2013; Gillies et al., 2018;
Gallaher et al., 2019).

However, a closer look at these papers indicates that they
show not that cancer cells do as a matter of fact face trade-offs
between various traits in a given environment, but only that this
is a plausible hypothesis. For instance, Aktipis et al. (2013) write,
“The exact nature of tradeoffs between these mechanisms has yet
to be determined in most cases.” Gallaher et al.’s (2019) is an
ingenious simulation, using agent-based modeling to represent
how these trade-offs could evolve in a population of cancer cells.
However, the paper presupposes, rather than documents, the
trade-offs in question. Likewise, Gillies et al. (2018), discussion
is about how it is plausible that various trade-offs are at play
in the EMT (epithelial-mesenchymal transition), associated with
changes in blood flow in the tumor, not a test of this hypothesis.
While they provide evidence suggesting that this hypothesis is
a plausible explanation of patterns and processes of changes
in tumors, it is not an attempt at systematically testing the
hypothesis. Hatzikirou et al. (2012), also cite experiments with
cultures of glioma cells (Giese et al., 2003) that have shown
a “relationship between migratory and proliferative behavior,
indicating cell motion and proliferation are mutually exclusive
processes since highly motile glioma cells tend to have lower
proliferation rates.” (Giese et al., 1996a,b; Godlewski et al., 2010).
However, the Hatzikirou et al. (2012) do not themselves conduct
any experiments; the paper is simulation of how the trade-off
is likely to play out in glioma. So, such studies do not provide
the kinds of tests of life-history trade-offs Stearns takes to be
exemplary; much of the evidence is indirect, at best.

On the one hand, one might argue that holding cancer
researchers to the same standards of testing trade-offs typical in
whole organism ecology is inappropriate. After all, cancers are
often discovered well after the selective processes in question
occurred. Unlike in whole organism biology and ecology, we
cannot do a controlled study of exactly how and how much cancer
cells vary with respect to these trade-offs in situ. Simulations are
as close to tests of such hypotheses as can be provided (Parke,
2014). In the best case scenario, and perhaps with advances in
sampling of tumor biomarkers, we may be able to describe the
dynamics of cancer’s evolution, during the course of treatment.
Just as in testing any evolutionary hypotheses for which the
evidence is long in the past, we can use experimental or computer
simulations of close enough evolutionary processes (Vasi et al.,
1994; Sniegowski et al., 1997).

On the other hand, it does seem worth considering whether
ecological models and evidence in cancer should be held to
lesser standards of. In order to test hypotheses that selective
trade-offs are at work, or that various optima explain the
presence or absence of this variant distribution in a population,
whole organism ecologists are typically expected to generate a
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function relating fitness and variable phenotypes (and trade-
offs among them), and describe a how these fitness trade-offs
can be varied to yield quantitative differences in outcome.
Hausser and Alon (2020) do not provide anything this precise,
nor do they experimentally test the link by manipulating these
variables. Determining whether such fitness trade-offs are at work
might require more precise, quantitative measures. Such context-
specific information may be rather important to have, especially
in treatment contexts.

Indeed, as Hausser et al. suggest, local selective (i.e., ecological)
conditions may vary significantly across cancers. Arguably,
different tumor microenvironments present quite distinctive
challenges, and thus different selective “tasks” for different
cancers, and different trade-offs, other than those they consider.
It seems one important avenue for future work is to consider
more seriously the role of local ecology – and potentially
also, a role for niche construction. While it seems plausible
that cancer cells from a variety of tissues and organs have
relatively similar “driver” or hallmark gene expression profiles,
it’s also plausible that local conditions vary significantly (cf.,
Pong and Gutmann, 2011).

CONCLUSION

Multitask evolutionary theory is potentially a quite fruitful
theoretical framework for generating and testing hypotheses
that may explain the massive heterogeneity within and across
cancer types and subtypes. It seems plausible, as Hausser
et al., argue, that a variety of selection processes, and thus
fitness optima, are universal to all cancers, and that there are
trade-offs among various gene expression profiles. However, a
significant portion of the cancers Hausser et al. studied did not
fall within the archetypal framework. There are many possible
explanations – ranging from the way the data were generated,
to the means of analysis. I’ve argued here that it is worth
exploring how cancers’ dynamics might be governed by different
ecological conditions, in different tissue microenvironments.
Another consideration is drift; selection optimizes only given
sufficient variation to act upon. Drift may play a significant
role in some cancers’ dynamics, limiting variation available for
selection. Cancer stem cells may effectively function as genetic
“bottlenecks,” governing the variation available for selection in
a tumor (Laplane, 2018; Lyne et al., 2020). Such bottlenecks

could be limiting the possible scope of evolutionary change
in some cancers.

I’ve also described two other reasons to be cautious in
interpreting their results in light of the data used. When we
set up an analysis of genomic data, we should be careful to
assess whether the options are “forced” by the data or model
considered. There are two ways in which this forcing could have
come about here; first, their framework required that cancer types
or subtypes be subject to trade-offs in ways that force the choice
between “generalists” or “specialists.” Second, the “tasks” that
they identify were arguably “baked in”: they are the very same
tasks that cancer genomics researchers have been seeking to link
to cancer drivers: the “hallmarks” of cancer. That said, it’s not
implausible that different cancer types in very different tissue
microenvironments have distinctive ecological conditions, and
thus selective trade-offs, at play.

Life history trade-off hypotheses may be easy to develop, but
tests of such hypotheses can be forbiddingly difficult to carry
out. As attested by Stearns (1989), examples of successful tests
in whole organism biology often required decades of field work
and experimental manipulation. On the one hand, it is widely
agreed that life history theory, hypotheses about adaptation to
local environments, and adaptive optima, can be fruitful. On the
other hand, to establish exactly how various trade-offs are at work
(such as a limited supply of energy, time, biomass, or nutrients),
we should in principle give quantitative measures of each traits’
relative effects on fitness. Even better, we should demonstrate how
they change over time, drawing upon some form of experimental
manipulation. Please see the attached figure for a summary of key
parameters of relevance to testing hypotheses about ecological
trade-offs in cancer.
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