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We examined phylogeographic structure in gray fox (Urocyon cinereoargenteus) across
the United States to identify the location of secondary contact zone(s) between eastern
and western lineages and investigate the possibility of additional cryptic intraspecific
divergences. We generated and analyzed complete mitochondrial genome sequence
data from 75 samples and partial control region mitochondrial DNA sequences from
378 samples to investigate levels of genetic diversity and structure through population-
and individual-based analyses including estimates of divergence (FST and SAMOVA),
median joining networks, and phylogenies. We used complete mitochondrial genomes
to infer phylogenetic relationships and date divergence times of major lineages of
Urocyon in the United States. Despite broad-scale sampling, we did not recover
additional major lineages of Urocyon within the United States, but identified a deep
east-west split (∼0.8 million years) with secondary contact at the Great Plains
Suture Zone and confirmed the Channel Island fox (Urocyon littoralis) is nested
within U. cinereoargenteus. Genetic diversity declined at northern latitudes in the
eastern United States, a pattern concordant with post-glacial recolonization and range
expansion. Beyond the east-west divergence, morphologically-based subspecies did
not form monophyletic groups, though unique haplotypes were often geographically
limited. Gray foxes in the United States displayed a deep, cryptic divergence suggesting
taxonomic revision is needed. Secondary contact at a common phylogeographic break,
the Great Plains Suture Zone, where environmental variables show a sharp cline,
suggests ongoing evolutionary processes may reinforce this divergence. Follow-up
study with nuclear markers should investigate whether hybridization is occurring along
the suture zone and characterize contemporary population structure to help identify
conservation units. Comparative work on other wide-ranging carnivores in the region
should test whether similar evolutionary patterns and processes are occurring.
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INTRODUCTION

Past climatic fluctuations have been a major force driving
lineage differentiation and contributing to biodiversity patterns
(Hewitt, 1996, 2000). Like many regions, North America
experienced dramatic changes in climate as repeating cycles
of glacial expansion and retreat occurred throughout the
Quaternary Period (i.e., the past 2.6 million years). The
resulting shifts in vegetation and food resources caused
the distributions of temperate vertebrates to contract and
expand, often leaving phylogeographic signatures of population
decline, fragmentation, and divergence in isolated glacial
refugia contrasted with growth, recolonization, and admixture
during interglacial periods (Lessa et al., 2003; Hewitt, 2004).
For habitat specialists or organisms with low vagility, these
expansion-contraction cycles and intermittent biogeographic
barriers set populations on divergent evolutionary trajectories
that can be recognized today as separate species or subspecies
(Stone et al., 2002; Johnson and Cicero, 2004; Kerhoulas and
Arbogast, 2010; McDonough et al., 2020). In other cases, flexible
ecological requirements and/or high vagility seem to have either
prevented genetic structure from forming or largely erased
the structure following contact and homogenization (Smith
et al., 2011; Koblmüller et al., 2012; Kierepka and Latch,
2016). Yet recent studies have revealed cryptic phylogeographic
structure in mobile taxa with broad, seemingly continuous
distributions (Barton and Wisely, 2012; Harding and Dragoo,
2012; Reding et al., 2012; Goddard et al., 2015; Puckett
et al., 2015), indicating species responses to past environmental
change can be complex (Graham et al., 1996; Hofreiter
and Stewart, 2009). Such cryptic genetic diversity presents
a challenge for assessing and predicting the effects of past
and future global climate change on biodiversity (Pauls
et al., 2013), evaluating speciation hypotheses, understanding
the relative roles of glacial vicariance and ongoing isolating
mechanisms at secondary contact zones (Swenson, 2006),
and directing conservation efforts to preserve evolutionarily
significant units and thus the genetic legacy of species
(Coates et al., 2018).

Although the magnitude and location of phylogeographic
breaks vary depending on an organism’s degree of habitat
specialization, dispersal ability, and potential for development
of reproductive isolating barriers, comparative work has
documented some geographic hot spots in North America
where a variety of sister taxa meet at areas of secondary
contact called suture zones (Remington, 1968; Swenson and
Howard, 2004, 2005; Swenson, 2006; Rissler and Smith, 2010).
The Great Plains Suture Zone, located around the 100th
meridian in the central United States, is one of the strongly
supported secondary contact zones, particularly for forest birds
(Swenson and Howard, 2004, 2005; Swenson, 2006). Indeed,
many avian genera include sister species pairs represented by
eastern and western counterparts (Mengel, 1970; Rising, 1983;
Lovette, 2005). Although debate has centered on whether this
species-level diversification resulted primarily from Pleistocene
vicariance (Johnson and Cicero, 2004; Weir and Schluter,
2004) or much earlier Pliocene events (Klicka and Zink, 1997;

Zink et al., 2004; Barnosky, 2005), mounting evidence supports
a role for Pleistocene events causing species-level divergence
in many cases (Lovette, 2005; Peterson and Ammann, 2013;
McDonough et al., 2020). A leading hypothesis for east-west
divergences is that populations were separated into two or
more disjunct Pleistocene forest refugia south of the glacial
extent, an idea supported by climatic modeling of ecoregions
(Hargrove and Hoffman, 2005) and ecological niche modeling
of historical species distributions (Peterson and Ammann,
2013; Puckett et al., 2015; Loveless et al., 2016; Ferguson
et al., 2017). These populations then diverged in allopatry,
potentially with the eastern counterpart adapting to wetter and
cooler environments and the western to drier and warmer
environments (Rising, 1970, 1983; Webb and Bartlein, 1992;
Swenson, 2006). Changing climatic conditions at the end of
the Pleistocene (∼12,000 ybp) permitted refugia to expand into
secondary contact, with exogenous (i.e., environmental) factors
such as temperature (Rising, 1969; Swenson, 2006), precipitation
(Moore and Price, 1993), and/or vegetation (Moore, 1977)
gradients at the Great Plains likely playing pivotal roles in
maintaining species boundaries along the hybrid zone, perhaps
in combination with endogenous (i.e., genetic-based) factors
(Bronson et al., 2003). Such a major biogeographic pattern
should be common across diverse vertebrate taxa, but evidence
for this phylogeographic break and species-level east-west
divergence remains more equivocal for mammals (Barnosky,
2005). Particularly for generalist mammals, phylogeographic
divergence is typically absent or shallow, and although east-
west breaks have been found within mammalian species at the
Great Plains (Reding et al., 2012), they may instead be located
at physical barriers such as the Rocky Mountains Continental
Divide (Rueness et al., 2003), or Mississippi River (Brant and
Ortí, 2002; Cullingham et al., 2008; Barton and Wisely, 2012;
Harding and Dragoo, 2012).

Recent genetic research involving the gray fox (Urocyon
cinereoargenteus) has indicated populations in the western
United States are surprisingly divergent from those in the
eastern United States (Goddard et al., 2015; Hofman et al.,
2015), though many gaps in our characterization of this pattern
remain. Gray fox range across much of North America and
into Central America and northern South America (Figure 1A;
Hall, 1981). Generally associated with forest, woodland, and
brushland, it is an opportunistic carnivore with a variable diet
(small mammals, invertebrates, and fruits and other plant matter;
Fritzell and Haroldson, 1982) and male-biased dispersal with
recorded distances up to 135 km (Banfield, 1974). Across their
range, 16 subspecies have been described primarily from body
size, pelage color, and geographic differences; 7 subspecies of
U. cinereoargenteus and the island fox endemic to the Channel
Islands (U. littoralis) occur in the United States (Figure 1A;
Hall, 1981). Gray foxes are legally harvested for fur throughout
much of the range (Deems and Pursley, 1978). Despite the
ecological and economic importance of gray fox, few studies
have examined intraspecific genetic variation or evaluated genetic
support for subspecies designations, with existing studies focused
at local or regional scales (Bozarth et al., 2011; Goddard et al.,
2015; Hofman et al., 2015). Bozarth et al. (2011) sequenced a
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portion of the mitochondrial DNA control region from gray
fox from 15 states within the ranges of the 3 subspecies along
the United States East Coast and found a lack of support for
differentiation across this broad area, though the Northeast
samples did show lower levels of genetic diversity indicative of
recent range expansion. In mtDNA analyses focused on island
foxes and mainland gray foxes in California, both Hofman et al.
(2015) and Goddard et al. (2015) included a small number
of gray fox samples from the eastern United States (Virginia
and Georgia, respectively) for comparison and found (1) island
foxes are nested within the gray fox phylogeny (i.e., gray fox
is paraphyletic) and (2) eastern and western gray foxes show a
deep divergence on par with that seen between some currently
recognized species within the Canidae. However, in both of
these studies, sampling was geographically limited and disjunct,
making it uncertain where the suture zone lies and if additional
cryptic structure may exist. In addition, sampling gaps and
limited genetic sequence information also presents challenges
for accurately estimating divergence time to identify whether
the separation occurred during or prior to Pleistocene glaciation
events. Using cytochrome b sequence data, Goddard et al. (2015)
estimated a split time of approximately 500,000 ybp between
the eastern and western lineages. Studies have shown that entire
mitogenomes can sometimes call into question inferences made
using short mitochondrial sequences (Knaus et al., 2011; Feutry
et al., 2014; Hofman et al., 2015), so additional sequence data
would help to clarify the date of this split.

Identifying the location and strength of genetic boundaries
in gray fox is relevant for the conservation and management of
this species. In particular, a recent petition to list the prairie gray
fox (U. c. ocythous; Figure 1A) under the Endangered Species
Act has stimulated the United States Fish and Wildlife Service
to initiate a status review to determine if listing is warranted
(Department of the Interior, 2012). In the petition, Wade and
Alton (2012) argued that the prairie gray fox has experienced
dramatic declines in states like Iowa, Arkansas, Missouri, and
Minnesota due to the loss of early successional habitats from
intensified agriculture or forest maturation, competition with
expanding coyote populations, and hunting/trapping pressure.
It is unclear, however, how much the population has declined
relative to historic abundance or whether the prairie gray fox is
a genetically distinct segment of the contiguous gray fox range in
the eastern United States. Recent studies of mammals have shown
that genetic patterns often do not match previously described
subspecies (Culver et al., 2000; Cullingham et al., 2008; Reding
et al., 2012). Patterns of genetic variation, however, should be
concordant with subspecific boundaries if morphologically-based
subspecies are to be considered valid.

We aimed to characterize gray fox mtDNA phylogeographic
structure across the United States to: (1) identify the location
of suture zone(s) between eastern and western lineages and
investigate the possibility of additional cryptic divergences;
(2) verify the date of divergence between the eastern and
western lineages through additional sampling and data from
full mitogenomes, and (3) assess population genetic structure
within these major maternal lineages to evaluate support for
morphologically-described subspecies.

MATERIALS AND METHODS

Sampling
We collected gray fox DNA samples in 2003–2017 from
legally harvested and road-killed animals in 26 United States
via assistance from state wildlife agencies and furharvesters
(Figure 1A). Tissue sources included muscle, skin or dry pelt,
and toe pad stored at room temperature in sterile vials filled
with silica desiccant. We collected associated geographic location
information for each sample, generally at least to the county
level. We used DNeasy Blood and Tissue centrifugation kits
(Qiagen, Valencia, CA, United States) to extract DNA from
387 samples, selected to provide broad geographic coverage
(Supplementary Appendix 1).

mtDNA Control Region Sequencing and
Analysis
To compare results with the eastern samples analyzed in
Bozarth et al. (2011) and western samples from Goddard
et al. (2015), we sequenced approximately the same ∼426–
431 bp segment of the mtDNA control region using universal
primers H16498 (CCTGAACTAGGAACCAGATG) and L15910
(GAATTCCCCGGTCTTGTAAACC; Kocher et al., 1989). We
used 15 µL PCR reactions containing: 0.5 U IDProof High
Fidelity DNA Polymerase (IDLabs, London, ON, Canada), 1X
IDProof buffer containing 2 mM MgSO4, 0.2 mM dNTPs, 0.4 µM
each primer, and 20 ng template DNA. Cycle conditions were:
95◦C for 2 min, 30 cycles of 95◦C for 30 s, 50◦C for 30 s, 68◦C for
30 s, followed by a final 10 min elongation at 68◦C. We cleaned
the PCR products using the ExoSAP method (Werle et al., 1994)
and submitted them to the Iowa State University DNA Facility for
cycle sequencing and analysis on an ABI 3730xl DNA Analyzer.
Both directions were sequenced with the same primers used
for PCR. We used Sequencher 5.2.3 (Gene Codes Corporation)
to trim and align forward and reverse reads. We obtained
full sequence coverage from 362 samples (including 7 samples
containing 1 or more ambiguities), partial sequence coverage
from 18 samples, and failed to obtain sequence data from 7
samples (Supplementary Appendix 1). Sequences are available
in GenBank as accession numbers: MW597742 – MW598121.

In addition to the 380 sequences we generated, we downloaded
from GenBank an additional 403 control region sequences
(Supplementary Appendix 1): 229 samples with full sequence
information from Bozarth et al. (2011), 134 samples from
mainland (California and Georgia) gray fox from Goddard et al.
(2015), as well as 26 mainland samples (25 California and 1
Virginia) and a single representative sample from each of the 14
Channel Island gray fox mitogenome haplotypes from Hofman
et al. (2015). We aligned sequences using MAFFT in Geneious
10.0.71, trimmed to the same area analyzed in Goddard et al.
(2015) resulting in a 408 bp alignment, and deleted an 8 bp
region of homopolymer C to end with a 400 bp alignment. For
downstream analyses, we included samples with at least 90%
coverage (363 bp or more) of control region sequence, which

1 https://www.geneious.com
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FIGURE 1 | Analysis of 400 bp mtDNA control region sequence data from samples of gray fox (Urocyon spp.). (A) Map shows the ranges of 7
morphologically-based gray fox (U. cinereoargenteus) subspecies (Hall, 1981) and the island fox (U. littoralis); the locations of sample groups (n = 34) and samples
(n = 781) used in the analysis, including newly generated sequences (circles), and previously published sequences (squares; Bozarth et al., 2011; Goddard et al.,
2015; Hofman et al., 2015); and 3 possible locations of a hypothesized secondary contact zone between deeply divergent eastern and western gray fox lineages
(Goddard et al., 2015). Samples are colored according to whether its haplotype fell into the East (white) or West (black) clade. (B) Median joining haplotype network.
Each circle represents a unique haplotype, with size proportional to frequency, as well as a pie chart with color indicating the morphologically-based taxonomic
assignment of the corresponding samples. Black circles reflect inferred haplotypes not present in the dataset, and hash marks on the lines connecting haplotypes
represent the number of mutations separating them. A minimum of 13 steps separates East and West haplotypes. (C) Principal coordinates plot from population
pairwise Fst (K2P-corrected) values, with sample groups colored according to morphologically-based taxa shown in the map. The first axis explained 47.8% of the
variation and clearly divided western from eastern sample groups at the Great Plains, the second axis explained 11.3% of the variation and separated sample groups
within the East (note only scores for East sample groups are shown since West sample groups had scores near 0 for the second axis), and the third axis explained
7.9% of the variation and separated sample groups within the West (note only scores for West sample groups are shown since East sample groups had scores near
0 for the third axis).

resulted in omission of 2 of our sequenced samples. We ordered
the remaining sequences (n = 781) with full sequences first,
followed by sequences containing an ambiguity, and lastly partial
sequences. We exported the aligned sequences from Geneious
in FASTA format and manually replaced ambiguities with Ns.
We used DnaSP 5.10.01 (Librado and Rozas, 2009) to export

the data as a Roehl Data File with gaps/missing considered.
Because it collapses ambiguous and missing data using the most
common state found in the closest sequences, we then used
Network 10.1 (Bandelt et al., 1999) to collapse sequences into
unique haplotypes and to generate a median joining haplotype
network. For improved visualization, we used PopART 1.7
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(Leigh and Bryant, 2015) to draw a median joining network based
on the haplotypes identified by Network.

To permit population-level analyses, we grouped samples into
34 a priori populations based on geographic proximity, state
boundaries, biogeographic patterns, and population information
from Bozarth et al. (2011) and Goddard et al. (2015; Figure 1A
and Table 1). We used ArcGIS 10 (ESRI, Redlands, CA,
United States) to calculate the geographic mean center of
individuals assigned to each sample group, which we used
as the spatial coordinates for the group. We used these
sample groups and the unique haplotypes identified in Network
(Supplementary Alignment 1) to generate Arlequin input files.
We used Arlequin 3.5 (Excoffier and Lischer, 2010) to calculate
population genetic diversity estimates (haplotype number,
haplotype diversity, mean number of pairwise differences, and
nucleotide diversity) and to examine population structure with
pairwise FST and AMOVA. For these, we used the Kimura 2

parameter (K2P; Kimura, 1980) model with gamma = 0.948, since
it was found to be the best model of sequence evolution with
BIC criteria in jModeltest 2.1 (Darriba et al., 2012). Because the
haplotype network revealed a clear separation between eastern
and western United States samples (see section “Results”), we
performed AMOVA with sample groups split into these two
sets (East had 552 individuals in 19 sample groups; West had
229 individuals in 15 sample groups; Table 1). We used the
REG procedure in SAS OnDemand (SAS Institute Inc., Cary,
NC, United States) to perform a regression between diversity
estimates and latitude of the mean center for each sample group,
using sample size and area of the minimum convex polygon as
covariates. We used GenAlEx 6.5 (Peakall and Smouse, 2006,
2012) to calculate geographic distance between sample groups
and to perform a Mantel test (999 permutations) to test for
a positive relationship between K2P-corrected genetic (FST/[1–
FST]) and ln-transformed geographic distance, both overall

TABLE 1 | Information and indicators of molecular diversity (400 bp mtDNA control region) for gray fox (Urocyon cinereoargenteus) sample groups, except *CI = Urocyon
littoralis.

Sample group N Group No. haplotypes Haplotype diversity Mean no. pairwise differences Nucleotide diversity Longitude Latitude

AL 25 EAST 14 0.9367 4.193 0.0105 –87.29709 33.04013

AR 39 EAST 20 0.9622 5.555 0.0139 –93.00905 34.83263

GA_SC 55 EAST 19 0.9333 5.444 0.0136 –82.74340 32.78870

IA_NE 13 EAST 3 0.5128 2.154 0.0054 –93.24201 41.91770

IL_IN 19 EAST 7 0.8304 4.819 0.0120 –87.17613 38.72131

KS_OK 17 EAST 10 0.9338 6.456 0.0161 –95.47474 36.44336

KY_TN 59 EAST 18 0.8884 3.647 0.0091 –85.34366 37.02846

LA 12 EAST 5 0.7273 5.848 0.0146 –91.79872 30.86344

MI 15 EAST 4 0.7143 4.095 0.0102 –84.13028 43.26161

MN_WI_ND 23 EAST 3 0.5296 1.107 0.0028 –91.73157 45.59493

MO 56 EAST 15 0.8578 4.846 0.0121 –91.43874 37.81883

MS 24 EAST 15 0.942 4.772 0.0119 –89.38151 32.46476

NH_VT_MA 25 EAST 2 0.08 0.560 0.0014 –71.92879 43.16988

NJ 19 EAST 13 0.9474 3.591 0.0090 –74.51185 39.94676

NY 32 EAST 3 0.2319 0.488 0.0012 –76.53129 42.56294

OH_WV 46 EAST 10 0.7942 3.500 0.0088 –81.69554 39.20378

RI_CT 11 EAST 2 0.1818 0.182 0.0005 –71.91793 41.63945

SC_NC 31 EAST 10 0.7527 3.376 0.0084 –78.25634 35.13398

VA_WV 31 EAST 14 0.8624 3.333 0.0083 –78.41693 38.46034

AZ_NM 11 WEST 8 0.9273 4.218 0.0105 –109.85023 34.81200

CA_SE 2 WEST 2 1 4.000 0.0100 –115.98000 33.73000

CA1 18 WEST 5 0.7059 2.353 0.0059 –121.39861 40.37276

CA2 39 WEST 9 0.6424 1.833 0.0046 –122.88544 39.16187

CA3 11 WEST 4 0.6 2.182 0.0055 –121.23581 35.98345

CA4 14 WEST 5 0.7802 3.791 0.0095 –118.83584 34.12594

CA5 13 WEST 4 0.7564 3.410 0.0085 –120.74268 37.96298

CA6 28 WEST 8 0.8757 4.098 0.0102 –121.76334 38.95061

CA7 5 WEST 1 0 0 0 –118.15987 36.72518

*CI 14 WEST 5 0.6703 1.429 0.0036 –119.46268 33.64288

CO_NM 25 WEST 8 0.72 2.160 0.0054 –105.30472 35.90776

NV 19 WEST 4 0.6433 2.246 0.0056 –117.04513 38.57304

TX 17 WEST 7 0.7206 2.824 0.0071 –102.10384 31.12794

UT 12 WEST 7 0.9091 4.197 0.0105 –111.65633 39.33499

WA 1 WEST 1 1 0 0 –120.74015 46.45656
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and separately within the east and west sample groups. To
see if additional substructure could be revealed within each
region, we performed SAMOVA (Dupanloup et al., 2002) from
K = 2–10 separately on East and West samples using 500
iterations and the same sequence model specified above. We
also conducted a principal coordinates analysis (PCoA) on the
Arlequin-generated pairwise FST values using GenAlEx 6.5. We
removed three populations (WA, CA-SE, CA7) that had fewer
than 10 individuals from the Mantel and regression analyses,
SAMOVA, and PCoA.

Mitogenome Sequencing and Analysis
We carried out sequence capture to generate complete
mitogenomes from 67 of our samples as well as 28 samples
original to the Bozarth et al. (2011) study (Supplementary
Appendix 1). Captures were completed with samples pooled
in groups of ∼6 libraries following MyBaits protocol v 3.
Following capture, libraries were amplified 14 cycles. Pools were
sequenced on five partial Illumina Miseq runs (2 × 150 bp) at
the Smithsonian Institution Center for Conservation Genomics
and one partial lane of a HiSeq (2 × 138 bp) at UCLA. We
processed the combined reads from all runs using Prinseq-lite
v. 0.20.4 for quality filtering (–min_len 20 –min_qual_mean 15)
and mapped filtered reads to MVZ_206290 using the BWA mem
algorithm. Duplicates were removed with Samtools v. 1.1 and
the bam files were imported into Geneious v. 10.0.8. Consensus
sequences were called in Geneious and all samples with less than
150 ambiguities including missing data (n = 75) were aligned
with MAFFT v.1.36 as implemented in Geneious. The resulting
alignment was visually inspected and indels were assessed by
returning to the original bam alignment files. In one case (sample
VT-101), a NUMT was identified and removed. Additionally,
the genes were translated into amino acids and inspected for
stop codons in Geneious. We used Network 10.1 to collapse the
mitogenomes into unique haplotypes. Sequences are available in
GenBank as accession numbers: MW599994 – MW600068. We
then used PopART 1.7 to visualize a median joining network
consisting of these 75 mitogenome samples with 40 published
Urocyon mitogenomes from Hofman et al. (2015) that included
all 26 U. cinereoargenteus mitogenomes (25 from California, 1
from Virginia) and a representative of each of the 14 unique
U. littoralis mitogenome haplotypes (Figure 2A).

In phylogenetic analyses, we used an alignment consisting
of 106 mitogenomes: 68 unique mitogenomes we recovered
from our 75 U. cinereoargenteus assemblies; 36 unique published
Urocyon mitogenomes from Hofman et al. (2015) which included
14 U. littoralis and 22 U. cinereoargenteus mitogenomes; and
two outgroups from GenBank: Canis latrans (NC_008093.1)
and Vulpes vulpes (NC_008434.1). We used Partition Finder
2.1.1 (Lanfear et al., 2016) to test model and partition selection
using linked, corrected Akaike Information Criterion and greedy
parameters. The Partition Finder analysis detected 25 partitions
that we incorporated in phylogenetic reconstruction. We
performed a Bayesian Inference analysis (BI) in MrBayes 3.2.6
(Huelsenbeck and Ronquist, 2001; Ronquist and Huelsenbeck,
2003) using 50,000,000 generations sampling every 1,000
generations. We visualized output parameters using Tracer v1.7.1

(Rambaut et al., 2018) to check for convergence between runs and
we discarded the first 25% of the trees as burn-in. The final tree
and support values were visualized using FigTree v1.4.4.

To estimate molecular dates of divergence, we used partial
mitochondrial genomes (no D-loop included). The alignment
(Supplementary Alignment 2) included 104 unique haplotypes
of Urocyon and three outgroups from GenBank: Canis latrans
(NC_008093.1), Vulpes vulpes (NC_008434.1), and Ursus
americanus (NC_003426.1). We used BEAST v2.5.2 (Bouckaert
et al., 2014) under an uncorrelated lognormal strict molecular
clock model and the Yule speciation processes model with 25
partitions. We performed Bayesian Markov chain Monte Carlo
searches to obtain the time to the most recent common ancestor
for the main lineages. We sampled trees and divergence dates
for all nodes every 10,000 iterations for 100,000,000 generations.
Divergence time estimates were based on three fossil calibration
points. The first was based on the early Pliocene Urocyon fossil
dated to 5.33–2.558 million years ago [Ma; mean = 3.5 (in real
space), stdev = 0.5; McKenna and Bell, 1997]. The second point
was for the root age of Canidae (offset = 10 Ma, mean = 0.7
[12 Ma], stdev = 0.415 [14 Ma]), as used by Slater et al. (2012).
The third point was for the split of U. cinereoargenteus and
U. littoralis (offset = 0.007, mean [in real space] = 0.704 [0.5 Ma],
stdev = 0.36 [1.2 Ma]), as used by Slater et al. (2012). We checked
convergence statistics for effective sample sizes using Tracer
v1.7.1 (Rambaut et al., 2018) and TreeAnnotator v2.5.2 (available
in the BEAST package) to get a consensus tree with node
height distribution after elimination of 25% of trees as burn-in.
We visualized BEAST results using FigTree v1.4.4. Partition
Finder, MrBayes and BEAST analyses were performed on the
Smithsonian Institution High Performance Computer Cluster2.

RESULTS

mtDNA Control Region
Among 781 individuals successfully sequenced or downloaded
from Genbank, we identified 114 unique haplotypes,
encompassing 63 substitutions and 2 indels observed at
61 polymorphic sites across the 400 bp control region
segment. Overall, haplotype diversity = 0.961, nucleotide
diversity = 0.0255, and mean number of pairwise
differences = 10.181. At the population-level, all three diversity
metrics decreased at northern latitudes in the East (P < 0.05),
but there was no significant relationship in the West (P > 0.05;
Figure 3, Supplementary Figure 1, and Table 1).

The median-joining network (Figure 1B) strongly supported
two highly diverged clades (East and West) separated at the
Great Plains rather than the Mississippi River or Continental
Divide (Figure 1A). Haplotypes from these two clades on the
network are separated by at least 13 mutations (considering gaps).
All individuals within sample groups had strictly East or West
haplotypes with one exception: one sample in Oklahoma (KS-OK
sample group) had a West haplotype when all others had East
haplotypes (Figure 1A).

2https://doi.org/10.25572/SIHPC
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FIGURE 2 | Phylogeographic patterns of United States distribution of Urocyon taxa based on mitogenome sequence data. (A) Map shows distributions of the
morphologically-based Urocyon taxa and locations of mitogenome samples (n = 115) used in the analysis, including newly generated sequences (circles) and
previously published sequences (squares). Samples are colored according to whether its mitogenome haplotype fell into the East (white), West (black), or Island
(gray) clade. (B) Median joining network of mitogenomes from 115 samples, including newly sequenced U. cinereoargenteus samples (n = 75) and a subset of
samples from Hofman et al. (2015) downloaded from GenBank (U. cinereoargenteus, n = 26; U. littoralis, n = 14). Each circle represents a unique haplotype, with
size proportional to frequency, as well as a pie chart with color indicating the morphologically-based taxonomic assignment of the corresponding samples as shown
in the map. Black circles reflect inferred haplotypes not present in the dataset, and hash marks on the lines connecting haplotypes represent the number of
mutations separating them. A minimum of 286 steps separates East and West haplotypes. (C) Bayesian tree based on the analysis of 104 unique Urocyon
mitogenome haplotypes and two outgroups (Vulpes vulpes and Canis latrans, removed for clarity). Nodal support for clades is depicted by the size of black circles,
with most clades showing posterior probability values ≥0.99 (see Supplementary Figure 5 for precise values). Sample codes are colored to reflect the
morphologically-based taxonomic assignment.

Estimates of pairwise FST values between the sample
groups ranged from effectively 0 to 1, with the most
differentiation occurring between East and West sample groups
(Supplementary Figure 2). PCoA showed the first axis explained
47.8% of the variation and clearly divided West from East
sample groups at the Great Plains (Figure 1C). The second axis
explained 11.3% of the variation and separated sample groups
in the East, with the lower-diversity northern populations in
the Upper Midwest (MN-WI-ND, IA-NE) and New England
(RI-CT, NH-VT-MA) clustering away from each other and
the rest of the sample groups. The third axis explained 7.9%
of the variation and separated sample groups in the West,
with the interior sample groups clustering from those in
California. Although there was a general pattern of geographic
concordance, the sample groups did not clearly cluster by

morphologically-defined subspecies (Figure 1C). Similarly, the
AMOVA showed East and West sample groups were significantly
differentiated (FCT = 0.741, P < 0.001). Results of the SAMOVA
indicated that the grouping with the highest FCT value in the East
differentiated the Upper Midwest (MN-WI-ND + IA-NE), New
England (RI-CT+NH-VT-MA), LA, and all other sample groups
(K = 4; FCT = 0.2738, P < 0.001; Supplementary Table 1 and
Supplementary Figure 3). The pattern was more complicated
in the West, where FCT values continued to incrementally
increase with increasing K (Supplementary Figure 3). However,
the largest increase in FCT occurred when moving to K = 4
(FCT = 0.3307, P < 0.001), which differentiated two interior
groups ([CO_NM+ TX] and [AZ_NM+NV+UT]), CA2, and
all other California sample groups (Supplementary Table 1). The
data demonstrated a significant pattern of isolation by distance
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FIGURE 3 | Estimates of haplotype diversity for 31 gray fox sample groups (n > 10) based on 400 bp of mtDNA control region. (A) Circles are located at the
geographic mean center of each sample group and size reflects the quantile of the haplotype diversity value. (B) Linear regression of haplotype diversity by latitude
for East and West sample groups.

overall (r = 0.376, P = 0.001), and within the East sample groups
(r = 0.351, P = 0.001) but not the West sample groups (r = 0.175,
P = 0.159; Supplementary Figure 4).

Mitogenomes
We identified 104 unique mitogenome haplotypes among 115
Urocyon samples. The median-joining network supported a clear
east-west division, with a minimum of 286 steps (considering
gaps) separating East (n = 53) and West (n = 51) haplotypes
(Figure 2B). The island fox (U. littoralis) mitogenome haplotypes
formed a unique cluster in the West and were not shared
with any U. cinereoargenteus samples (in contrast to the
control region haplotypes, Figure 1B), but overall, there was
a lack of phylogeographic cohesiveness of morphologically-
identified taxa (Figure 2B). Bayesian inference also strongly
supported monophyletic East and West clades (BPP = 1),

and a monophyletic clade (BPP = 1) of island foxes was
nested within the West gray fox clade (Figure 2C). Although
phylogeographic structure was somewhat more apparent within
the West, with some subclades restricted to California and
others more broadly distributed across the western interior
(Supplementary Figure 5A), neither the West nor the East
(Supplementary Figure 5B) showed support for geographically-
restricted subclades consistent with recognized subspecies.
The BEAST analysis estimated a mean divergence time of
0.796 Ma (95% HPD = 0.498–1.153 Ma) for the East and
West lineages (Figure 4). Time to most recent common
ancestor (TMRCA) for the East lineage was estimated at
0.132 Ma (95% HPD = 0.080–0.194), TMRCA for the West
lineage was 0.180 Ma (95% HPD = 0.113–0.263 Ma), and
TMRCA for the island fox was 0.087 Ma (95% HPD 0.053–
0.125 Ma).
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FIGURE 4 | Estimated divergence time of eastern and western lineages of Urocyon based on BEAST analysis of mitochondrial genomes (D-loop omitted) for 104
Urocyon samples and 3 outgroups. (A) Full tree with East and West Urocyon clades collapsed and (B) Urocyon subtree. Blue bars on nodes and corresponding
values in parentheses indicate the 95% highest probability density (HPD) interval for the mean time estimates.

DISCUSSION

The control region and mitogenome data strongly support two
major lineages of gray foxes in the United States: East and West
clades that meet at the Great Plains. The pattern was consistently
recovered in haplotype networks, phylogenetic reconstructions,
and population-based analyses. These findings are concordant
with the hypothesis of divergence in disjunct eastern and western

North American forest refugia south of the ice sheets during
glacial episodes. Phylogeographic support for eastern and western
Pleistocene refugia has been reported in other North American
carnivores, including American black bears (Ursus americanus,
Wooding and Ward, 1997; Puckett et al., 2015), American
and Pacific martens (Martes americanus and M. caurina, Stone
et al., 2002), bobcats (Lynx rufus, Reding et al., 2012), red
fox (Vulpes vulpes, Aubry et al., 2009), striped skunk (Mephitis
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mephitis, Barton and Wisely, 2012), spotted skunk (Spilogale spp.,
McDonough et al., 2020), and long-tailed weasel (Mustela frenata,
Harding and Dragoo, 2012).

The Great Plains Suture Zone is recognized as a hotspot
of secondary contact for diverse taxa (Swenson and Howard,
2004, 2005; Lovette, 2005; Swenson, 2006), but it is not as well-
documented for wide-ranging carnivores. Many phylogeographic
studies have focused on montane or boreal species, where the
major divergence occurs between Pacific coastal and interior
continental populations (e.g., V. vulpes, Aubry et al., 2009;
M. caurina/americana, Stone et al., 2002; U. americanus,
Wooding and Ward, 1997; Puckett et al., 2015), but with the latter
sometimes showing shallow subdivision into eastern and western
lineages at or west of the Great Lakes (Aubry et al., 2009; Pelletier
et al., 2011; Puckett et al., 2015). Studies have also examined
open habitat or grassland-associated species, which typically lack
phylogeographic structure consistent with a single mid-continent
Pleistocene refugium (e.g., black-footed ferret [Mustela nigripes],
Wisely et al., 2008; American badger [Taxidea taxus], Kierepka
and Latch, 2016; and coyote [Canis latrans], Koblmüller et al.,
2012). Large carnivores such as the cougar (Puma concolor,
Culver et al., 2000) and gray wolf (Canis lupus, Koblmüller et al.,
2016) also lack phylogeographic structure due to recent (∼10 ka)
recolonization of North America. Because they are often not
of conservation concern, relatively few studies have examined
continental patterns in common, temperate generalist and forest-
associated carnivores, where a mid-continent phylogeographic
break may be most likely (Barton and Wisely, 2012; Reding et al.,
2012; McDonough et al., 2020).

Our study adds to a small but growing list of phylogeographic
research on wide-ranging, common carnivores revealing east-
west divergence. In gray fox, we found the location of secondary
contact to center on the southern Great Plains (e.g., between
western Texas and eastern Oklahoma). Bobcats show a nearly
identical pattern, although the break is more diffuse and
extends north into the northern Great Plains where bobcats are
more common than gray fox (Reding et al., 2012). Divergence
in the spotted skunk complex (Spilogale spp.) is also well
characterized in the region, with the western lineage S. leucoparia
inhabiting western Texas and S. interrupta in eastern Texas
(McDonough et al., 2020). The Great Plains is also a region
of admixture for southern and western lineages of striped
skunk, though eastern lineages appear not to have expanded
west of the Mississippi River drainage, a putative historical and
contemporary geographic barrier (Barton and Wisely, 2012).
Similarly, long-tailed weasels show diverged eastern and western
lineages that appear to split at the Mississippi River (Harding
and Dragoo, 2012). However, sampling gaps in the central
United States lead to uncertainty in the location of secondary
contact for these two species. Although all striped skunks
sampled in Louisiana showed western haplotypes, consistent with
a Mississippi River break, no samples were collected from areas
just west of the river such as Arkansas, Missouri, Iowa, and
Minnesota (Barton and Wisely, 2012). These states were also
unsampled in long-tailed weasels, and eastern haplotypes were
found in Louisiana and Texas, suggesting the break could exist
farther west (Harding and Dragoo, 2012). Although we lacked

samples from eastern Texas to pinpoint the precise location of
secondary contact in gray foxes, all individuals sampled in states
just west of the Mississippi River showed eastern haplotypes,
providing no support for the Mississippi River as a major
phylogeographic barrier in this species, unlike other carnivores
(Cullingham et al., 2008; Barton and Wisely, 2012; Shaffer et al.,
2018). Additional sampling and comparative work in the Great
Plains region could help reveal concordant patterns in these and
other carnivore species. For example, American mink (Neovison
vison, García et al., 2017) and northern raccoon (Procyon lotor,
Cullingham et al., 2008; Louppe et al., 2020) show promising
trends of an east-west division.

Using mitogenomes, we estimated the divergence between
eastern and western gray fox lineages to date to ∼0.8 Ma,
a surprisingly deep division slightly older than the ∼0.5 Ma
estimate reported by Goddard et al. (2015) based on mtDNA
cytochrome b gene but still within the Pleistocene. For
mobile carnivores, the east-west divergence is often shallow,
typically dating to the Last Glacial Maximum at ∼23 ka
(Aubry et al., 2009; Reding et al., 2012) or near the
Penultimate Glacial Maximum at ∼140 ka (Puckett et al., 2015).
Populations of species with high dispersal and flexible ecological
requirements may have repeatedly expanded and interbred
during interglacial periods when habitat was more connected,
largely erasing signatures of divergence during earlier glacial
extents (Barnosky, 2005). Compared to many carnivores, gray
foxes have more intermediate dispersal distances (Whitmee and
Orme, 2013), and with their unique tree-climbing behavior
for foraging and predator avoidance, they are more strongly
associated with forests (Fritzell and Haroldson, 1982). Fossils of
U. cinereoargenteus are recorded at over 40 different Pleistocene
sites in North America, predominantly in southwestern (e.g.,
California, Arizona, New Mexico, and Texas) and southeastern
(Florida, Georgia, South Carolina, and Tennessee) United States
(Kurtén and Anderson, 1980; Williams et al., 2018). Although
records extend to Pennsylvania, Indiana, and Missouri, fossils
appear absent from the Great Plains region prior to the Holocene
(Williams et al., 2018), consistent with the area forming an
ecological barrier for forest species (Mengel, 1970). Given the
degree of divergence, eastern and western gray fox lineages
have been isolated for multiple glacial-interglacial cycles. The
timing is just shy of east-west divergence dates estimated
for smaller carnivores such as spotted skunk and long-tailed
weasel at around 1.5 and 2.2 Ma, respectively, (Harding and
Dragoo, 2012; McDonough et al., 2020), which may warrant
species-level recognition (McDonough et al., 2020). However,
sampling of Urocyon taxa from across its range and the addition
of nuclear markers will be needed to verify the divergence
date estimated here.

In addition to the east-west divergence, Quaternary climate
change influenced patterns of genetic diversity within each of
these lineages. For example, low genetic diversity in northern
areas in the East (e.g., Great Lakes and New England), where
glacial ice persisted until ∼10–15 ka, is consistent with founder
effects associated with rapid, recent recolonization (Hewitt,
1996). A similar pattern was seen with bobcats (Reding et al.,
2012), indicating contemporary gene flow has not erased this
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pattern of recent expansion (Smith et al., 2011). Neither a pattern
of declining diversity with increasing latitude, nor isolation by
distance, was seen in the West. Such results may be indicative of a
more complex scenario of multiple glacial refugia in the western
United States, as indicated in studies of other carnivore taxa
(Harding and Dragoo, 2012; Ferguson et al., 2017). To provide
a more comprehensive view of the biogeography of Urocyon,
additional sampling to cover the full range (e.g., from Mexico and
Central and South America) of gray foxes will be needed, and
ecological niche modeling could help reconstruct the locations
of glacial refugia and recolonization routes (Puckett et al., 2015;
Ferguson et al., 2017).

Our results provide some insight into the validity of
current taxonomic classifications for Urocyon. Despite broad-
scale sampling, we did not recover any additional, cryptic lineages
of gray foxes in the United States. The east-west split does
coincide with some noted phenotypic differences, with pelts
from eastern foxes tending to be darker, duller, and less silvery
(Obbard, 1987), and western forms generally having a more
slender body with a longer tail and longer and more pointed
ears (Mearns, 1891). As argued by Goddard et al. (2015), the
divergence between eastern and western gray fox lineages is
on par with some species-level distinctions in Canidae. Within
the gray fox east-west lineages, we did not recover any clear
phylogeographic structure besides a mitogenome monophyletic
group of island foxes. Although the island fox is currently
recognized as a separate species (U. littoralis), it is nested
within the western gray fox lineage. A similar pattern occurs
with the co-occurring island spotted skunk (Spilogale gracilis
amphialus), which is considered a subspecies of the western
spotted skunk (McDonough et al., 2020). Mitogenomes for
the prairie gray fox (U. c. ocythous) showed no evidence of
monophyly, but some haplotypes were present only in the
Midwest and population-level analyses (PCoA and SAMOVA)
tended to differentiate this subregion. Overall, haplotypes from
major geographic regions and putative subspecies do not form
discrete lineages, but structure within the eastern and western
lineages is likely to be more recent and better characterized
with nuclear markers. Our findings suggest taxonomic revision
will be needed, and we recommend a comprehensive range-
wide analysis considering phenotypic and molecular (mtDNA
and nuclear markers) data to better inform pending conservation
decisions (Department of the Interior, 2012).

The Great Plains may be a common but understudied
phylogeographic break and zone of secondary contact in
North American carnivores. If so, the finding has important
implications for evaluating the importance of Pleistocene climate
change as a driver of mammalian evolutionary divergence
and speciation (Barnosky, 2005), informing conservation and
management of biodiversity (Coates et al., 2018), and providing
insight into the potential for recombination and spread of
lineage-specific pathogens including zoonotic diseases (Dragoo
et al., 2006; Barton and Wisely, 2012). Given the pattern
we revealed with mtDNA, follow-up with nuclear markers
would help with: (1) characterizing hybrid-zone structure and
dynamics, including the extent and direction of admixture; (2)
identifying genome regions potentially under divergent selection

across the zone; and (3) evaluating population genetic structure
within these two lineages. Furthermore, sampling from the
gray fox range in Mexico and Central and South America will
be necessary to fully understand biogeographic patterns and
taxonomic classification of species and subspecies within the
Urocyon genus. Finally, additional wide-ranging carnivore taxa
such as long-tailed weasel, American mink, North American
river otter (Lontra canadensis), and northern raccoon should be
genetically sampled in the Great Plains region to examine broader
support for a mammalian phylogeographic break at the Great
Plains Suture Zone.
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Supplementary Figure 1 | Geographic pattern of nucleotide diversity for 31
Urocyon sample groups (n > 10) based on 400 bp of mtDNA control region. (A)
Circles are located at the geographic mean center of each sample group and size
reflects the quantile of the nucleotide diversity value. (B) Linear regression of
nucleotide diversity by latitude for East and West sample groups.

Supplementary Figure 2 | Matrix of pairwise FST values (K2P-corrected) between
Urocyon sample groups (n = 34) based on 400 bp of mtDNA control region.

Supplementary Figure 3 | Results of SAMOVA for (A) 19 East and (B) 12 West
Urocyon sample groups (n > 10) based on 400 bp of mtDNA control region.

Supplementary Figure 4 | Relationship between pairwise geographic distance
and genetic distance for East (n = 19) and West (n = 12) Urocyon sample groups
based on 400 bp of mtDNA control region.

Supplementary Figure 5 | MrBayes subtrees for (A) West haplotypes and (B)
East haplotypes based on the analysis of 104 unique Urocyon mitogenome
haplotypes and two outgroups (Vulpes vulpes and Canis latrans, removed for
clarity). Support for clades (BPP) is shown next to each node. Urocyon sample
names reflect species (Uc = U. cinereoargenteus; Ul = U. littoralis),
morphologically-based subspecies, location (state or island), and sample ID or
GenBank accession number, and colors correspond to identified major clades.
Maps show the ranges of morphologically-based subspecies, and the sampling
locations of the mitogenomes are depicted as colored dots corresponding to
major clade (as shown in the tree).

Supplementary Table 1 | Results of SAMOVA for 19 East and 12 West Urocyon
sample groups (n > 10) based on 400 bp of mtDNA control region.

Supplementary Appendix 1 | An Excel file containing information about the
samples used in this study.

Supplementary Alignment 1 | Fasta alignment file for mtDNA partial control
region haplotypes.

Supplementary Alignment 2 | Fasta alignment file for mtDNA complete genome
sequences (D-loop omitted) for BEAST analysis.
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