
fevo-09-676369 June 8, 2021 Time: 13:26 # 1

BRIEF RESEARCH REPORT
published: 14 June 2021

doi: 10.3389/fevo.2021.676369

Edited by:
Casper J. Van Der Kooi,

University of Groningen, Netherlands

Reviewed by:
Markus Friedrich,

Wayne State University, United States
Jair E. Garcia,

RMIT University, Australia

*Correspondence:
Camilla R. Sharkey

camilla.r.sharkey@gmail.com

Specialty section:
This article was submitted to

Behavioral and Evolutionary Ecology,
a section of the journal

Frontiers in Ecology and Evolution

Received: 05 March 2021
Accepted: 14 May 2021

Published: 14 June 2021

Citation:
Sharkey CR, Powell GS and

Bybee SM (2021) Opsin Evolution
in Flower-Visiting Beetles.

Front. Ecol. Evol. 9:676369.
doi: 10.3389/fevo.2021.676369

Opsin Evolution in Flower-Visiting
Beetles
Camilla R. Sharkey1* , Gareth S. Powell2 and Seth M. Bybee2

1 Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, United States, 2 Department
of Biology & Monte L. Bean Museum, Brigham Young University, Provo, UT, United States

Flowers have evolved signals that exploit the sensory systems of insect visitors. In the
case of visual cues, color signals are thought to have been shaped in large part by the
spectral sensitivity of key pollinators, such as hymenopterans. Beetles were some of the
first plant pollinators, pre-dating the angiosperm radiation but with the exception of a
few well-studied species, the evolution of flower-visiting beetle visual systems is poorly
understood. Thus, the ability of beetles to detect and distinguish flower color signals and
perhaps their potential role in shaping flower coloration is not well understood. Traditional
models of pollinator visual systems often assume a putative tri- or tetrachromatic flower-
visitor, as is found in bees, flies and butterflies. Beetles are unique among modern
pollinators as ancestrally they did not possess the machinery for trichromatic vision,
lacking the blue-sensitive photoreceptor class. Research on the evolution of visual genes
responsible for wavelength sensitivity (opsins) has revealed that beetles with putative tri-
and tetrachromatic visual systems have evolved independently, along multiple lineages.
We explore the evolution of beetle visual genes using newly generated and publicly
available RNA-seq data from 25 species with flower associations, including previously
unexplored key flower-visitor groups and 20 non-flower visiting relatives. Our findings
serve as a resource to inform and guide future studies on beetle-flower interactions,
where insight from both signal and receiver is needed to better understand these poorly
explored systems.
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INTRODUCTION

Beetles were some of the earliest pollinators and remain the primary pollinators of ancient plant
group, gymnosperms (Toon et al., 2020), while also functioning as common pollinators of more
recent angiosperm (flowering plant) radiations. Angiosperm radiations during the Cretaceous co-
occurred with accelerated diversification among the holometabolous insects that comprise the
dominant insect pollinators: hymenopterans, lepidopterans, dipterans and coleopterans (Doyle,
2012; Misof et al., 2014). This co-radiation is thought to be in part due to the establishment of
close associations or mutualisms between pollinator and plant, which likely contributed to the
diversification of floral pollinator signals seen in modern flowers (Bronstein et al., 2006; Cardinal
and Danforth, 2013). It is estimated that there are over 77,000 extant beetle species with flower
associations (Wardhaugh, 2015) and flower visitation in these species has arisen via various
evolutionary routes. While some species have retained existing ancestral gymnosperm associations
(e.g., Boganiidae) (Cai et al., 2018), pollination behavior likely transitioned in some beetle lineages
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from gymnosperms to angiosperms (e.g., Oedemeridae and
Kateretidae) (Peris et al., 2017, 2020). In other beetle lineages,
flower associations evolved without preexisting pollination
behavior (e.g., Glaphyridae) (Sabatinelli et al., 2020), as in
Anthophila (bees) (Cardinal and Danforth, 2013; Peters et al.,
2017).

Traditionally, flowers visited by beetles have been described as
dull in coloration and highly scented, suggesting that beetles do
not use or are not reliant on spectral cues to detect flowers (Faegri
and Van der Pijl, 1979). Perhaps unsurprisingly, considering
the diversity of beetles, as more beetle-flower interactions have
been described it has become clear that many beetle species
do use spectral information for flower detection. Pollinators in
the families Meloidae (blister beetles), Glaphyridae (bumble-bee
scarabs), and Scarabaeidae (monkey beetles), use color alone as
a cue for flower detection (Dafni et al., 1990; Steiner, 1998; Van
Kleunen et al., 2007; Paudel et al., 2017). In carabids and fireflies,
heavier investment in vision (larger eyes) rather than olfaction
(reduced antennae) has been shown to be driven by visually
mediated tasks (Bauer and Kredler, 1993; Stanger-Hall et al.,
2018). It is not yet known whether there are similar trade-offs
between flower visiting beetles that utilize predominantly visual
or olfactory cues. Angiosperms that are pollinated primarily by
beetles span at least 34 families (Figure 1; Bernhardt, 2000)
thus there are likely many beetle-flower associations still to be
described and the role of visual cues to be determined.

The role of insect pollinator visual systems in shaping floral
color cues has been well studied in the context of hymenopteran
pollination systems (e.g., Chittka, 1996; Dyer et al., 2012). The
spectral sensitivities of hymenopteran UV-, blue- and green-
sensitive photoreceptors are positioned for optimum wavelength
discrimination of floral spectral cues (Chittka and Menzel, 1992).
Rather than tuning of insect spectral sensitivity, this relationship
is thought to have arisen from spectral tuning of floral reflectance,
to existing photoreceptor sensitivities (Chittka, 1996; Dyer
et al., 2012). The underlying sensitivity of a photoreceptor is
determined by the structure of a GPCR protein (opsin), which is
coupled to a light-absorbing chromophore pigment. Unlike the
vast majority of insects studied, including bees and butterflies,
beetles lack a key opsin (SW) that typically confers sensitivity to
blue wavelengths of light (Jackowska et al., 2007), lost prior to
the radiation of beetles (Sharkey et al., 2017). Based on spectral
sensitivity measurements of beetles with this ancestral condition,
it is assumed that the ancestor of all beetles had a dichromatic
UV-green color visual system (Gribakin, 1981; Warrant and
McIntyre, 1990).

The lack of a dedicated blue-sensitive photoreceptor
channel impacts the discriminatory capabilities of certain
wavelengths, particularly within the violet-blue region of
the light spectrum where photon catch is low. The ancestral
beetle visual system is less complex than bees, for example,
which have retained all three insect opsin classes UV, SW
and LW (long wavelength), resulting in UV- blue- and green-
sensitivity. Opsin duplication events are the major route for
acquiring additional spectral channels. Duplications alone do
not lead to novel spectral sensitivities; selection for changes
in function is required via mutations that lead to changes in

protein (subfunctionalization). In a number of coleopteran
lineages, duplications of the UV opsin and subsequent
subfunctionalization has led to the ability of these taxa to
perceive blue wavelengths (Sharkey et al., 2017) by essentially
“re-evolving” a dedicated blue-sensitive photoreceptor, for
example in coccinellids (Lin, 1993) and chrysomelids (Döring
and Skorupski, 2007). There is also evidence that flower-visiting
lineages of beetles in the families Scarabaeidae, Nitidulidae,
and Curculionidae have expanded their opsin repertoire,
likely expanding their wavelength sensitivities (Sharkey et al.,
2017). It is not known if this is true across the diversity of
beetle pollinators.

We explore opsin expansions across the diversity of
beetle pollinators using publicly available RNA-seq data, opsin
sequences and an additional nine transcriptomes generated
in this study. We aimed to investigate the evolution of the
visual genes (opsins) that underpin sensitivity to spectral
(color) information. Transcriptome data allow us to examine
the diversity of opsin genes and hence putative wavelength
sensitivities, from these flower-visiting species and their close
relatives. In addition, we examine relative eye size in these species
as an indicator of visual system investment.

MATERIALS AND METHODS

RNA Extraction and Assembly
Seven flower-visiting beetle species (Trirhabda eriodictyonis,
Sibinia setosa, Tychius meliloti, Anthrenus lepidus, Mordella
albosuturalis, Nitops pallipennis, and Anaspis rufa) were collected
from flowers in southern Utah into RNAlater and later frozen
(–80◦C) until processed. Multiple individuals were pooled for
RNA extraction with the exception of T. eriodictyonis where
one male was used. Total RNA was extracted from adult whole
bodies using Nucleospin spin columns (Clontech) and reverse
transcribed into cDNAs using the Illumina TruSeq RNA v2 kit.
Sequencing was done on an Illumina HiSeq 2,500 generating 100
bp paired-end reads (BYU DNA sequencing center). RNA from
two additional nitidulid species was extracted using the RNeasy
Mini kit (Qiagen) and transcribed with the KAPA Stranded
mRNA-Seq kit (Roche). Sequencing was completed on an
Illumina HiSeq 2,500 generating 250 bp paired-end reads (BYU
DNA sequencing center). Additionally, paired-end RNA-seq data
from 36 species were downloaded from the Sequence Read
Archive (SRA). Data were trimmed using Trimmomatic (Bolger
et al., 2014), removing adapter sequences and poor-quality bases
using the parameters: SLIDINGWINDOW:4:5 LEADING:5
TRAILING:5 MINLEN:25. Trinity (v2.11.0) (Grabherr et al.,
2011; Haas et al., 2013) was used to assemble the remaining
reads. Completeness of assemblies was estimated by searching
each for the presence of 1367 insect Benchmarking Universal
Single-Copy Orthologs using BUSCO v5 (Simão et al., 2015;
Seppey et al., 2019). See Supplementary Table 1 for all
species information. Opsin sequences have been deposited in
GenBank with accession numbers MW885977—MW886096 and
RNA-seq data have been uploaded to the Sequence Read
Archive (PRJNA718629).
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FIGURE 1 | Flower-visiting beetle families included in this study. From left to right: Cetoniinae (Trichaulax philipsii), Buprestidae (Acmaeodera sp.), Lycidae (Lycus
sp.), Curculionidae and Nitidulidae (Aethina concolor). Images by: Chris Moeseneder, GSP, Russ Anderson, Steven Marshall, GSP.

Opsin Search
Coding regions were predicted using TransDecoder v5.5.0,1

retaining the longest open reading frame (ORF). All predicted
ORFs were also BLASTed2 against a database of known arthropod
opsins (orthodb EOG8NKF98), with the addition of Lampyridae
and Thermonectus marmoratus full-length opsin copies with an
e-value of 0.001. All remaining ORFs were searched against our
insect opsin database using hmmscan in HMMER (v3.3) (Eddy,
2011). Cross-contamination and pseudogenes were removed
using phylogenies of DNA and protein opsin sequences and by
examining alignments. Opsins with > 99% similarity in protein
sequence, likely structurally and functionally identical, were
removed (CD-hit v4.8.1; Li and Godzik, 2006; Fu et al., 2012).
Duplicates with 100% sequence identity using local alignment
(BLASTp) were considered to be one opsin gene (Anthocomus
equestris and Pharaxonotha floridana; see asterisks Figure 2 and
Supplementary Table 2).

Final DNA sequences and additional insect opsins were
subject to codon alignment (MAFFT v7.453; Katoh et al., 2002;
Katoh and Standley, 2013) with automatic alignment strategy
detection. Maximum likelihood opsin DNA gene trees were
generated using IQ-tree (v1.6.12) (Minh et al., 2013; Nguyen
et al., 2015). The substitution model GTR + F + I + G4
was selected automatically using ModelFinder (Kalyaanamoorthy
et al., 2017). A species topology was generated in Mesquite
3.2 (Maddison and Maddison, 2018) based on McKenna et al.
(2019). For statistical analyses, beetle species were categorized
as obligate flower-visitors that require floral resources for food
or reproduction (A), facultative flower visitors with known floral
associations (e.g., facultative pollinators) but no reliance on floral
resources for food or reproduction (B) and non-flower visitors
with no known association with flowers (C).

Eye Size Measurements and Statistics
Relative eye size was generated using the measurement tools in
Adobe Photoshop v.19.1.6 from high resolution habitus photos
(available upon request due to copyright) with an unimpeded
dorsal view of the head. Two measurements were taken for
each photo: total head width including eyes, and interocular
distance (see Supplementary Figure 1 for example image). These
two measurements were used to generate the total width of the

1http://transdecoder.github.io
2https://blast.ncbi.nlm.nih.gov/

eyes in the dorsal view and used to calculate a percentage of
lateral head space dedicated to eye tissue as viewed dorsally.
We tested for a relationship between UV and LW opsin copy
number (Pearson’s correlation test) and if flower visitation
behavior predicted relative eye-size (one-way ANOVA). Both
were included as predictors in the final MANOVA. Because LW
and UV were not correlated, we chose to test the effects of relative
eye size and flower visitation on both LW and UV opsin copy
number (MANOVA). For the purpose of this analysis, species
without UV opsin copies were omitted. All data met required
assumptions, and no data transformations were performed. All
eye size statistical tests were executed in SPSS 27 (IBMCorp.).

RESULTS

Opsin Duplications
A transcriptomics approach was taken to explore the putative
wavelength sensitivities of flower visiting and non-flower visiting
beetle species. To determine possible wavelength sensitivity
expansions, RNA-seq data from 45 species spanning 26 families
were mined for opsins and data were analyzed for the presence
of duplication events. Nine transcriptomes from flower-visiting
species were generated for this study to expand the diversity of
sampled lineages. We recovered 120 opsin copies, 92 of which
were full length copies with a minimum length of 101 amino
acids. We classified 18 beetle species as obligate flower visitors
(category A), seven as facultative flower visitors (category B), and
20 with no known floral associations (category C). Additionally,
we included 18 previously published beetle opsins from five
category A species, 11 opsins from four category B species and
14 opsins from five category C species (Sharkey et al., 2017;
Supplementary Table 1).

In our dataset both obligate (A) and facultative (B) flower
visitors had 2-fold higher proportions of UV duplications
present, 39.1 and 45.5%, respectively, than non-flower visitors (C)
with only 20%. LW duplications were more common in obligate
flower visitors (52.2%) than either facultative (18.2%) or non-
flower visitors (12%). The prevalence of either opsin duplication
was highest in obligate flower visitors (73.9%), lower in flower-
associated species (54.5%) and lowest in non-flower visitors
sampled (28%). We report 33 independent opsin duplication
events (12 UV and 21 LW), which have occurred across the
diversity of Coleoptera (Figure 2). Duplication events occurred
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FIGURE 2 | Patterns of opsin duplication and flower-visitation behavior for 59 beetle species. The cladograms represent a simplified version of beetle relationships
after McKenna et al. (2019) with the position of superfamilies indicated. The left-hand cladogram shows opsin duplication events with opsin copy number at the
terminals and duplication events indicated on the branches. Duplication events were estimated using the opsin tree (see Supplementary Figure 2). Asterisks (*)
denote cases where additional duplication copies were found but determined not to be functionally distinct (see Opsin Search Methods text). The right-hand
cladogram reflects known behavioral categories for the level of flower visitation. No attempt at ancestral reconstruction was made due to the available taxon
sampling.

within all but one superfamily, Bostrichoidea, which has only
a single flower-visiting lineage (the Dermestidae) represented
by Anthrenus lepidus. Percent identity (sequence similarity) of
aligned duplicate opsins (BLASTp, see text footnote 2) ranged

from 64 to 98% sequence identity and a mean of 80% (see
Supplementary Table 2).

Within Scarabaeoidea only flower visiting scarabs exhibit
opsin duplications. These duplications were independent and
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solely among LW opsins in Heterochelus sp. and Eulasia
bombylius with one and two duplications, respectively (Figure 2).
Notably, Protaetia brevitarsis, which can commonly be found
on flowers (B) but is not considered an obligate flower
visitor, did not have opsin duplicates. Among the five Lycidae
(Elateroidea) species sampled, the UV opsin duplicates present
were orthologous (Figure 2 and Supplementary Figure 2) and
therefore represent an early duplication event in this group. Two
LW opsin copies were present in two lycid species Lycostomus
kraatzi and Calopteron sp. However, this was not linked to flower
visiting behavior with the former likely an obligate (A) and
the latter only facultatively associated with flowers (B). Rather,
these species are among the most derived members of this
group and therefore highlight a potential ancestral LW opsin
duplication event that occurred during the lycid radiation. All
flower visiting members (A) of Cleroidea have either UV or LW
duplicates. Each duplication event was independent, including
within the subfamily Clerinae where a UV duplication occurred
in Thanasimus formicarius and a LW duplication in the flower
visitor Trichodes sinae.

Coccinellid opsin UV duplicates have been previously
examined (Sharkey et al., 2017). We add the species Chilocorus
bijugus (tribe: Chilocorini), which has no known associations
with flowers. No UV duplicate was recovered for this species
making this species unique among the coccinellids sampled thus
far. Our opsin phylogeny (Supplementary Figure 2) suggest
that two separate UV duplication events occurred, one prior
to the diversification of the tribe Coccinellini and the other
along lineage sister to the rest of the coccinellids, Cryptolaemus
montrouzieri (tribe: Coccidulini). We note only two opsin
duplication events within the Tenebrionoidea, within the blister
beetles Meloidae (Hycleus chodschenticus) (LW duplication) and
tumbling flower beetles Mordellidae (Mordella sp. and Mordella
albosuturalis) (UV duplication). Opsin orthologs are present in
both Mordella species, suggesting that this duplicate may be
shared among other members of this genus.

A close relationship between flower visitation and opsin copy
number can be clearly seen among the cucujoids (Figure 2).
Single UV and LW opsin copies are present in all non-flower
visiting species but UV and/or LW opsin duplications are present
among all flower-visiting nitidulids sampled (Figure 2). The LW
opsin duplicates form two clades shared among these species
suggesting an early LW duplication event in Nitidulidae that has
potentially been lost in the three non-flower visiting lineages.
Two of the three obligate flower visiting weevils (Curculionidae)
species possess additional opsin copies.

While duplications more commonly occurred amongst flower
visiting species (categories A and B), than in non-flower visitors
(C), 26% of obligate flower visitors have retained the ancestral
UV-LW opsin condition. Among the obligate flower visitors,
four of the seven tenebrionid species sampled have single opsin
copies, including both members of Scraptiidae (Scraptia sp. and
Anaspis rufa), Oedemera nobilis (Oedemeridae), and Macrosiagon
limbatum (Ripiphoridae) (Figure 2). Carpet beetle Anthrenus
lepidus (Dermestidae: Bostrichoidea), Biphyllus sp. (Biphyllidae:
Cleroidea) and two weevil species, Tychius meliloti and Sibinia
setosa (Curculionidae: Curculionoidea) also did not have opsin

duplications. We did not recover UV opsins from four non-
obligate flower visiting species, Rhagonycha fulva, Macrolycus
sp., Aromia moschata or Ips typographus but LW opsins were
recovered from all of these species.

Eye Size, Flower Visitation and Opsin
Copy Number
Relative eye size was used as an approximate measure of
visual investment across the species in this study. We found
no significant correlation between UV and LW opsin copy
number (p = 0.893). Flower visitation category (A, B or C) did
significantly predict relative eye size (F = 8.52, df = 2, p < 0.001).
Post hoc tests revealed obligate flower visiting species (A) have
significantly larger eyes than those without any floral association
(C) (p < 0.001, mean difference = 11.15%). Flower visitation
category in conjunction with relative eye size was a significant
predictor of LW copy number (F = 3.895, df = 32, p = 0.015),
but not UV copy number (F = 2.06.11, df = 32, p = 0.122).
While the overall model showed evidence for the combination of
both flower visitation and eye size influencing LW copy number,
neither was significant individually.

DISCUSSION

A previous study (Sharkey et al., 2017) found opsin duplications
in four of five flower-visiting beetle species. While LW opsin
duplications were not common generally, in the coleopterans
sampled, they were ubiquitous among these flower-visitors. These
findings suggested that there may be a selective advantage for
duplications, such as an expansion of wavelength sensitivity,
among species that may use floral cues. Our opsin analysis
across numerous flower-visiting species of coleopterans suggests
that associations with flowers has often led to or precedes the
expansion of wavelength sensitivity through opsin duplication.
We cannot attribute an opsin duplication event strictly to
the evolution of flower visitation behavior due to associated
factors, such as diurnality (Sondhi et al., 2021) and other
visually guided behaviors (e.g., host-plant seeking), for which
expanded wavelength sensitivity may be beneficial. However,
by including closely related non-flower visiting relatives in
this study, we show that duplication events and particularly
LW opsin duplications, do commonly occur along lineages
associated with flowers, more so than those that have no
floral associations. The frequency of duplications varies among
other pollinator groups. Hymenopterans exhibit relatively stable
opsin copy numbers (Spaethe and Briscoe, 2004; Oeyen et al.,
2020) but in contrast the opsin repertoire of lepidopterans is
highly variable, particularly within the butterflies, Papilionoidea
(Sondhi et al., 2021). Our finding that there have been many
independent duplication events in flower-visiting coleopterans
may be attributed to the ancestral loss of the SW opsin in this
group, or as in butterflies, may suggest increased spectral richness
of the visual system.

Opsin duplications do not in all cases lead to new
photoreceptor sensitivities, as is the extreme case in odonates,
where there is a large excess of opsin copies (Futahashi et al.,
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2015; Suvorov et al., 2016) compared to measured photoreceptor
sensitivities (Laughlin, 1976; Yang and Osorio, 1991). In contrast,
it has been shown that beetles are relatively conservative in opsin
copy number (Sharkey et al., 2017). Therefore, opsin duplicates
can be used as a guide for photoreceptor sensitivity diversity. For
example, all sampled jewel beetles (Buprestidae) and Carabus sp.
(Carabidae) have 2 UV and 2 LW opsin copies (Lord et al., 2016;
Sharkey et al., 2017) that underpin UV-, blue-, green-, and red-
sensitive photoreceptors (Hasselmann, 1962; Meglič et al., 2020),
demonstrating increased function of photoreceptor sensitivity for
these groups as a result of opsin duplication. Further, the presence
of blue-sensitive photoreceptors also aligns well with the presence
of a UV opsin duplication, in coccinellids (Lin and Wu, 1992)
and chrysomelids (Döring and Skorupski, 2007). Additionally,
species with ancestral UV-green sensitivity and complementary
opsin data only possess a single UV and a single LW opsin copy
(e.g., Lampyridae and Dendroctonus) (Groberman and Borden,
1982; Lall et al., 2010; Martin et al., 2015; Sander and Hall, 2015).

UV opsins were absent in four species. The UV opsin typically
has lower expression levels as often UV-sensitive photoreceptors
are less numerous than long wavelength-sensitive receptors in
insects. Thus, we cannot be sure whether this finding reflects
inadequate sequencing depth in these species or a true opsin
loss. The use of head or eye tissue rather than whole body
specimens, or deeper sequencing, may be necessary for future
studies. Additionally, opsin expressed in photoreceptors with
low abundance, such as those used in highly specialized regions
(e.g., the polarization-sensitive dorsal rim area) may also have
low signal. Further study to determine opsin abundance and
expression patterns is required to better understand how well
opsin copy number is estimated from whole body specimens, in
particular those with reduced eyes.

Flowers commonly frequented by beetles have been
traditionally described as dull in coloration (white, green or
yellow) but highly scented, thought to exploit existing attraction
to certain volatile compounds, such as skatole, attractive to
coprophagous beetles (Schiestl and Dötterl, 2012). Despite
compelling evidence that many beetles use floral visual cues
for flower visitation, the study of associated visual adaptations
is lacking. Scarab pollinators provide compelling evidence for
vision as the primary cue for flower detection. Bumble-bee
scarabs (Glaphyridae) and monkey beetles (Hopliini) use the
dark center of a flower as a visual cue, termed “beetle marks”
(Dafni et al., 1990; Johnson and Midgley, 2001). Other non-
scarab beetle pollinators are also attracted to dark spots on
flowers, e.g., nitidulids (Free and Williams, 1978) and mordellids
(Westmoreland and Muntan, 1996).

In scarab beetles, anthophagy (flower feeding) has evolved
at least seven times (Ahrens et al., 2014). Three of these
lineages have been sampled in this study: Glaphyridae, Hopliini
and Cetoniinae. We found LW opsin duplications among
the two lineages that are known to have preferences for red
and orange flowers, Glaphyridae (Sabatinelli et al., 2020) and
Hopliini (Johnson and Midgley, 2001). The bumble-bee scarab
Pygopleurus israelitus (Glaphyridae) has both green- and red-
sensitive photoreceptors (λmax: 631 nm) the latter of which
increase the conspicuousness of red bowl-shaped flowers they

visit (Martínez-Harms et al., 2012). This suggests a role for
LW opsin duplication and subfunctionalization to expand long-
wavelength sensitivity for floral detection. Electrophysiological
measurements of Protaetia brevitarsis (Cetoniinae), a facultative
flower visitor, are in agreement with our finding that this
species only has UV and green sensitivity (Lin and Wu, 1992)
but curiously this species exhibits attraction to red over green
stimuli (Cai et al., 2021). We have yet to find any opsin
duplications in the eight additional scarabs examined thus far
(Sharkey et al., 2017), highlighting flower-visiting scarabs as an
interesting group to study visual systems and signals in the
context of anthophily.

Flower visitation is not always a predictor of an opsin
duplication event; opsin duplications were absent from six
flower-visiting lineages. It is possible that these species rely more
heavily on olfaction than vision, and we may expect to see greater
investment in these sensory structures (e.g., larger antennae),
rather than vision (Bauer and Kredler, 1993; Stanger-Hall et al.,
2018). Such sensory adaptations can be seen in the flabellate
(fan-shaped) antennae of Macrosiagon limbatum (Ripiphoridae).
Additionally, if odor was a primary cue in ancient cycads, as
in modern species (Toon et al., 2020), lineages such as the
false oil beetles (Oedemeridae) may have initially established
olfactory rather than visual specializations that persisted after
they transitioned to angiosperm hosts (Peris et al., 2017). A UV-
green color channel system may be adequate to detect floral
cues commonly attractive to beetles, e.g., white and yellow
(Reverté et al., 2016), but wavelength sensitivity expansion may
be advantageous to detect floral cues that fall outside this spectral
range (e.g., pink or violet).

In this study we measured eye size as a proportion of
the head (i.e., relative eye size), which has been used in
prior studies of beetles to test relationships between visual
investment and behavior (Bauer and Kredler, 1993; Stanger-
Hall et al., 2018). This does not give a perfect estimation
of eye volume due to the variation in eye shape across
coleopterans with extreme morphological diversity. However,
using relative eye size to examine the potential link between
flower visitation, opsin copy number and investment in vision
reveals some interesting findings. For the species examined
in this study, eye size was found to be predicted by flower
visitation behavior with obligate flower visitors having larger
eyes as a proportion of the head. This suggests that flower-
visitation or associated visual ecology may have driven selection
for greater investment in vision. Similarly, flower visitors were
also more likely to have a greater LW opsin copy number,
suggesting that an expansion of long-wavelength sensitivity is
advantageous for behaviors associated with flower visitation in
the species we have examined. This is certainly true among
beetles that prefer orange and red flowers and have dedicated
red-sensitive photoreceptors, but red flower visitation is not
commonplace among other species with LW duplications
examined herein. Interestingly, among all species, LW opsin
copy number was not correlated with eye size suggesting that
it is not eye size alone that predicts the number of opsin
duplicates. This may point to greater visual specialization in
flower visiting beetles.
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Our aim was to demonstrate that there is much more exciting
work that needs to be done to better understand the evolution of
beetle visual systems. This is particularly true for flower visitors,
which have multiple origins within the majority of coleopteran
superfamilies. Equally exciting is the large visual system diversity,
morphological, molecular and certainly functional, among the
anthophilous Coleoptera. In short, beetles represent a largely
untapped area to study insect plant interactions at both the fine
and coarse scales of evolution.
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