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Illumina-based transcriptome sequencing of chemosensory organs has become a
standard in deciphering the molecular bases of chemical senses in insects, especially
in non-model species. A plethora of antennal transcriptomes is now available in the
literature, describing large sets of chemosensory receptors and binding proteins in a
diversity of species. However, little is still known on other organs such as mouthparts,
legs and ovipositors, which are also known to carry chemosensory sensilla. This
is the case of the noctuid Spodoptera littoralis, which has been established as a
model insect species in molecular chemical ecology thanks to the description of
many—but not all—chemosensory genes. To fulfill this gap, we present here an
unprecedented transcriptomic survey of chemosensory tissues in this species. RNAseq
from male and female proboscis, labial palps, legs and female ovipositors allowed us to
annotate 115 putative chemosensory gene transcripts, including 30 novel genes in this
species. Especially, we doubled the number of candidate gustatory receptor transcripts
described in this species. We also evidenced ectopic expression of many chemosensory
genes. Remarkably, one third of the odorant receptors were found to be expressed in
the proboscis. With a total of 196 non-overlapping chemosensory genes annotated, the
S. littoralis repertoire is one of the most complete in Lepidoptera. We further evaluated
the expression of transcripts between males and females, pinpointing sex-specific
transcripts. We identified five female-specific transcripts, including one odorant receptor,
one gustatory receptor, one ionotropic receptor and one odorant-binding protein, and
one male-specific gustatory receptor. Such sex-biased expression suggests that these
transcripts participate in sex-specific behaviors, such as host choice for oviposition in
females and/or mating partner recognition in both sexes.

Keywords: RNAseq, chemosensory transcriptome, Spodoptera littoralis, proboscis, palps, legs, ovipositor

INTRODUCTION

Chemosensation—olfaction and taste—are at the basis of insects’ environmental perception,
triggering vital behaviors such as feeding, mating, ovipositing and avoiding dangers and enemies
(Stocker, 1994; Chapman, 2003; Dahanukar et al., 2005; Nishino et al., 2005). Several organs
for chemical reception are found on the insect body. In moths, the head bears the antennae,
the proboscis and the labial palps. The thorax and the abdomen also harbor sensory organs,
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such as the tarsi and the female ovipositor. Antennae have been
the most studied because of their important role in olfaction,
but they are also involved in other senses such as taste and
mechano/hydroreception (Altner et al., 1977; Keil, 1999). Mouth
parts are known for their role in taste but labial palps are
also involved in sensing carbon dioxide. The tarsi and the
abdomen extremities are also crucial for partner, food and
oviposition site recognition and approval by insects (Fan et al.,
1998; Chapman, 2003; Calas et al., 2007; Hansson and Stensmyr,
2011; Seada, 2015; Seada et al., 2018). These chemosensory
organs contain plethora of different types of innervated hair
structures, the sensilla, adapted to detect a wide range of
molecules. Electrophysiological observations in combination
with immunostaining and behavioral studies showed functional
differences of the different types of chemosensory sensilla (Blaney
and Simmonds, 1988, 1990; Marion-Poll et al., 1992; Marion-
Poll and Van Der Pers, 1996; Laue and Steinbrecht, 1997; Calas
et al., 2009; De Brito Sanchez et al., 2014; Seada, 2015; Seada
et al., 2016, 2018). For instance, sensilla chaetica are devoted to
the detection of soluble molecules, trichoid/basiconic sensilla to
volatiles, coeloconic sensilla to acids and amines (Yao et al., 2005;
Vosshall and Stocker, 2007; Hill et al., 2010).

Olfactory and gustatory cues are detected with these
sensilla by chemoreceptor proteins embedded in the membrane
of the neurons. After interaction with chemoreceptors, the
chemical signals are transduced into electrical signals that
are transmitted to the brain through the primary neuronal
axons, where they are integrated, eventually resulting in a
behavioral response. In insects, there are three main families
of chemoreceptors: the odorant receptors (ORs), the gustatory
receptors (GRs)k, and the ionotropic receptors (IRs), the latter
being likely involved in both olfaction and taste (Benton
et al., 2009; Fleischer et al., 2018). ORs and IRs function
as complexes with co-receptors, such as Orco for ORs and
IR8a/IR25a for IRs (Fleischer et al., 2018). Whether GRs
also function with co-receptor(s) is not clearly established,
but it is known that several GR genes are co-expressed
within the same neuron, suggesting they form multimeric
complexes as well (Freeman and Dahanukar, 2015; Xu and
Anderson, 2015; Ning et al., 2016; Dweck and Carlson, 2020;
Xu et al., 2020). Sensory neuron membrane proteins (SNMPs)
are transmembrane proteins, some of which found expressed in
olfactory neurons and possibly involved in pheromone detection
(Benton et al., 2007; Leal, 2013; Suh et al., 2014; Lemke
et al., 2019). Families of small soluble proteins are also found
within chemosensory sensilla: the odorant-binding proteins
(OBPs) and the chemosensory proteins (CSPs). They have been
proposed to facilitate the diffusion of hydrophobic stimulants
within the sensillum lymph up to the neuronal membrane
(Pelosi et al., 2018).

Sequences of ORs, IRs, GRs, SNMPs, OBPs, and CSPs have
been accumulated in the recent years for various insect species
thanks to the progress in sequencing technologies. Most of the
transcriptomic studies focused on antennae, describing a plethora
of OBPs and CSPs thanks to their high expression facilitating
their detection, and of ORs because of their role in long distance
chemical communication. Larger repertoires of chemosensory

genes have come from genome analyses, including vast arrays of
GRs and IRs. For instance, recent genomic data from Lepidoptera
revealed that Noctuidae genomes contain an incomparable high
number of GR genes compared to ORs, with up to 250 GRs
(and only 70–80 ORs) in polyphagous species such as Helicoverpa
armigera, Spodoptera frugiperda, and S. litura (Cheng et al.,
2017; Gouin et al., 2017; Pearce et al., 2017). However, little is
known on their expression pattern, because transcriptomic data
from taste tissues is scarce (Xu et al., 2016; Cheng et al., 2017;
Guo et al., 2018).

Among Noctuidae, the cotton leafworm S. littoralis has
been established for several years as a model in molecular
chemical ecology. The sex pheromone and many plant volatiles
detected by the antennae and triggering specific behaviors have
been identified. Transcriptomic data have been accumulated
on chemosensory organs such as male and female antennae
(Legeai et al., 2011; Jacquin-Joly et al., 2012; Poivet et al., 2013),
larval antennae and palps (Poivet et al., 2013), and adult non-
chemosensory tissues such as brain, body and proboscis (Walker
et al., 2019), leading to the description of a substantial number
of expressed chemosensory genes in a Lepidoptera. A total of 60
OR transcripts have been described, and the recent functional
characterization of one third of them has been a landmark in
Lepidoptera olfaction (de Fouchier et al., 2017). However, only
17 GR transcripts could be reconstituted in this species (Poivet
et al., 2013; Walker et al., 2019), probably due to the lack of taste
organs in the tissues investigated.

The aim of the present study was to fulfill this gap, by
performing in-depth RNA sequencing of different tissues known
to carry taste sensilla but never investigated before. We generated
new RNAseq data from male and female adult labial palps and
forelegs as well as female ovipositors, and completed previous
data on proboscis. We identified new candidate chemosensory
genes in S. littoralis, and expanded coding sequences of
previously described transcripts. Altogether, these transcriptomic
data offer incomparable resources to explore the molecular
mechanisms of olfaction and taste in a single model and revealed
ectopic expression of most chemosensory gene families.

MATERIALS AND METHODS

Insect Rearing
All S. littoralis individuals were from an inbred colony reared
in the laboratory at 24◦C, 70% relative humidity and under a
16 h:8 h light:dark photoperiod. Larvae were fed on a semi-
artificial diet (Poitout and Bues, 1974) and adults were provided
with sugar water. Males and females were sexed as pupae and
kept in separate rooms, since it has been shown that smelling the
sex pheromone can impact chemosensory gene expression in this
species (Guerrieri et al., 2012).

Tissue Dissections, RNA Extractions, and
Sequencing
Thirty proboscis and 15 pairs of labial palps and forelegs
were dissected from both males and females. For females,
30 ovipositors were also dissected. Adults were 2–3 days
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old upon dissection and all dissections were conducted
between the second and third hours of the scotophase.
Proboscis RNAs (one sample from males, one sample from
females) were extracted separately from the rest of the tissues,
which were pooled together, and formed two samples (one
for males and one for females). These tissue mix samples
(labial palps, forelegs plus ovipositors for the females)
are further designed as “palp/leg” tissue mix to facilitate
description. RNAs were extracted using TRIzolTM Reagent
(Thermo Fisher Scientific, Waltham, MA, United States)
and quality was checked using a NanoDropTM ND-2000
spectrophotometer (Thermo Fisher Scientific). About 5 µg
of total RNA per sample were used for cDNA paired-end
library construction using the Truseq RNA Stranded Sample
Preparation Illumina Kit at the Institut de Génomique
Fonctionnelle, Plateforme Montpellier GenomiX IBiSA
(MGX). Illumina HiSeq2000 sequencing (2 × 100 bp) was
performed at MGX.

Transcriptome Assembly
MGX provided raw reads cleaned by removing 3′ adaptors
and poly-A/T tails. Data were further processed using Galaxy
Version 2.8.3. FastQC was run on each sample and low-
quality reads (<30) and sequences shorter than 20 bp were
trimmed using Trimmomatic (Bolger et al., 2014). Ribosomal
RNAs were removed using Ribopicker (Schmieder et al., 2011).
A reference transcriptome was assembled with all the data
generated in this study using Trinity (Grabherr et al., 2011)
with default parameters. After reconstruction, the transcriptome
was filtered using two criteria: (1) transcripts with no read
support (expected count < 1) were identified using Bowtie
(v1.0.0) (Langmead et al., 2009) and discarded, (2) CD-HIT-
EST was used to remove transcript redundancy with a similarity
threshold of 0.90 and a word size of 8. Open reading frames
(ORFs) encoding proteins of more than 50 amino acids were
predicted by TransDecoder (Haas et al., 2013). We used the
Benchmarking Universal Single-Copy Orthologs tool (BUSCO
v3.0.2) (Simão et al., 2015) against the Insecta odb10 dataset
(1,367 reference genes) to assess the completeness of the
assembled transcriptome.

Identification of Chemosensory Genes
To identify putative chemosensory genes (ORs, GRs, IRs, OBPs,
CSPs, and SNMPs), we used amino acid sequences of proteins
previously annotated in S. littoralis and the related species
S. frugiperda and S. litura (Legeai et al., 2011; Jacquin-Joly et al.,
2012; Poivet et al., 2013; Cheng et al., 2017; Gouin et al., 2017;
Walker et al., 2019) as queries in a blastp search on the translated
ORFs predicted from the reference transcriptome. Annotations
of all retrieved sequences were confirmed by blastp on the NCBI
non-redundant database (NR). Sequences described for the first
time in S. littoralis were named according to their ortholog in
S. frugiperda (Gouin et al., 2017), except IRs that were named
following orthology with S. litura (Zhu et al., 2018). For sequences
previously described we followed the nomenclature of Walker
et al. (2019), except for SlitGR70 that was renamed SlitGR272.

Phylogeny Construction
Phylogenetic analyses were performed using the newly identified
protein sequences (ORs, GRs, IRs and OBPs) together with
previously annotated amino acid sequences in Spodoptera spp.
(S. littoralis, S. frugiperda, S. litura), sequences from other
Lepidoptera (Bombyx mori, Helicoverpa armigera, Heliconius
melpomene) and from species from other insect orders when
relevant (Drosophila melanogaster, Tribolium castaneum, and
Apis melifera). MAFFT v7 (Katoh and Standley, 2013) was
employed for amino acid sequence alignment and maximum-
likelihood phylogenies were constructed using PhyML 3.0
(Guindon et al., 2010) with default parameters. The best-fit
model of amino acid substitution was determined by SMS
(Lefort et al., 2017). Node support was estimated via SH-like
aLRT (Anisimova and Gascuel, 2006). Trees were visualized
with FigTree v1.4.3 and images were edited with Adobe
Illustrator software.

RESULTS AND DISCUSSION

Transcriptome Description
The de novo transcriptome presented in this paper was generated
from four libraries: proboscis from each sex, labial palps and
forelegs from males, and labial palps, forelegs and ovipositors
from females. A total of 418 million raw reads were obtained and
deposited at the NCBI Sequence Read Archive (BioProject ID
PRJNA693435, Biosamples SAMN17386877, SAMN17386878,
SAMN17386879, SAMN17386880). After cleaning, a total of
325 million reads were pooled and assembled to generate a de
novo transcriptome of 234,643 transcripts. Removing transcripts
with no read support led to an assembly of 203,642 transcripts.
Last, CD-HIT-EST was applied to remove transcript redundancy,
leading to a final assembly of 154,302 transcripts. Out of
the transcripts, 47,853 ORFs could be identified. All metrics
are provided in Supplementary Material 1. BUSCO analysis
revealed that the de novo transcriptome contained 89.9% of
complete sequences, with 78.6% as single copy and 11.3% as
duplicated, thus reflecting a good representative transcriptome
(Supplementary Material 1).

Identification of Candidate
Chemosensory Genes and Tissue
Distribution
We sequenced previously unexplored tissues (adult labial palps,
legs and ovipositors) from S. littoralis. These tissues have been
selected as surface contact tissues and candidate tissues for
close range chemoreception (taste), without neglecting their
potential long range (olfaction) chemosensory capacities. These
tissues all carry chemosensory sensilla and are expected to
play a role in assessing the quality and toxicity of food
and oviposition substrates, as well as in close range mate
detection. We thus expected to extend our current knowledge
on S. littoralis chemosensory transcripts. This proved to
be rewarding since we identified a total of 115 candidate
transcripts from the three chemosensory receptor families (GRs,
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TABLE 1 | Summary of S. littoralis chemosensory genes identified in this study.

ORs GRs IRs CSPs OBPs SNMPs Total

Total (this study) 26 34 13 10 31 1 115

New 4 21 5 0 0 0 30

Expressed in proboscis only 3 11 1 0 0 0 15

Expressed in palp/leg only 5 1 2 0 1 0 9

Expressed in female only 1‡ 2‡ 1†† 0 1†† 0 5

Expressed in male only 0 1† 0 0 0 0 1

Total (Walker et al., 2019, this study) 64 38 22 21 49 2 196

‡Proboscis; †palps/legs; ††palps/legs/ovipositor.

ORs and IRs), the pheromone detection associated SNMPs
and the two lipid transporter families (OBPs and CSPs),
including 30 new chemosensory transcripts compared to the
latest published repertoire (Walker et al., 2019; Table 1).
We also identified full-length sequences for 13 previously
published sequences (Supplementary Material 2). In addition,
we got insight into the presence of S. littoralis chemosensory
transcripts according to tissue and sex, as summarized in
Figure 1.

Details per family are described below.

Gustatory Receptors
Great Extension of the SlitGR Repertoire
We identified 34 candidate GRs in our S. littoralis gustatory
transcriptome and we obtained complete ORFs for 14 of them
(Supplementary Material 2). We could retrieve 13 out of the 17
GRs already known from previous work on this species (Jacquin-
Joly et al., 2012; Poivet et al., 2013; Walker et al., 2019) and
identified 21 new GRs (Table 1 and Supplementary Material 2).
A total of 38 GRs are now described for this species (SlitGR158
and SlitGR206, previously described in Walker et al. (2019), as
expressed in the proboscis, were not found here).

The number of 38 GR genes found expressed in the different
S. littoralis transcriptomes is far behind the numbers of GR
genes found in the genomes of Noctuidae (Cheng et al., 2017;
Gouin et al., 2017; Pearce et al., 2017). For instance, 231
GRs have been annotated in the genome of S. frugiperda and
it has been hypothesized that this extended number of GRs
could be linked to the acquisition of polyphagy. With only
38 GR transcripts described by now in S. littoralis, we can
speculate that the vast majority of GRs have probably not been
identified yet in this species. GRs are known to be expressed
at very low levels and their identification may need very deep
sequencing. Alternatively, some may be expressed in tissues not
investigated here, for example the gut, or at different periods
of the life cycle, for example in larvae as already demonstrated
for S. litura (Cheng et al., 2017). Further genomic data will
help to establish a complete set of GRs in S. littoralis. Anyhow,
SlitGRs were found in each of the major clades in the GR
phylogeny (Figure 2). We extended the candidate sugar receptor
subfamily to six GRs (one more than previous studies), all
having orthologs in S. frugiperda, and we identified one of
the two candidate fructose receptor orthologs found in the
genome of S. frugiperda (Gouin et al., 2017). We found the

three candidate CO2 receptors SlitGR1, 2 and 3 (Erdelyan et al.,
2012). All other candidate SlitGRs clustered in the so-called
“bitter” GR subfamily.

Tissue Distribution of Sugar and CO2 Receptors
SlitGR6, 12, 13, and 14 (candidate sugar GRs) were expressed
both in the proboscis and the palps/legs. This suggests their
importance for sugar detection during food intake but also
palps/legs implication in sugar detection in addition to proboscis
and antennae (Walker et al., 2019).

Three candidate CO2 receptors SlitGR1, 2 and 3 were
expressed both in the proboscis and in the palp/leg samples
(Supplementary Material 2). This is in accordance with the
observation that the labial palps—and more specifically the labial
pit organ—are involved in CO2 detection in Lepidoptera (Bogner
et al., 1986; Kent et al., 1986). Previous studies have revealed that
SlitGR2 and 3 are also highly expressed in antennae (Jacquin-Joly
et al., 2012; Walker et al., 2019) and that SlitGR1 is enriched in
female ovipositor (Legeai et al., 2011). This may suggest that most
chemosensory organs participate in CO2 sensing in S. littoralis,
although functional studies on orthologous CO2-sensing GRs
in H. armigera have shown that co-expression of GR1 and 3 is
necessary and sufficient for CO2 detection (Xu and Anderson,
2015; Ning et al., 2016).

Tissue Distribution of the So-Called “Bitter”
Receptors
More than half (57%) of the S. littoralis candidate bitter GRs were
specifically expressed in the proboscis (Supplementary Material
2) and have not been described in previous studies (Jacquin-
Joly et al., 2012; Poivet et al., 2013; Walker et al., 2019). The
remaining candidate bitter GRs were expressed in both proboscis
and palps/legs at the exception of SlitGR16, only found in male
palps/legs. Two other candidate bitter GRs were sex-biased:
SlitGR79 and 149 were exclusively found in the female proboscis,
which may be related with the need for females to eat for their
sexual maturation or to find adequate surface for oviposition
and progeny nutrition. Indeed, it is known that S. littoralis
premating behavior consists in female foraging for flower nectar
while postmating females are more attracted to larval host odors
(Ahmed et al., 2012). Almost no functional data are available for
moth candidate bitter GRs, but impressive expansions of these
GRs have been described in Noctuidae (Cheng et al., 2017; Gouin
et al., 2017; Pearce et al., 2017).
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FIGURE 1 | Venn diagrams showing the expression of chemosensory transcripts in the different tissues and sexes.

Low Expression of GRs in the Palp/Leg Tissue Mix
Although legs are known to harbor taste sensilla and play an
important role in gustation, SlitGRs were surprisingly poorly
represented in the palp/leg tissue mix (Supplementary Material
2). We did not evidence any female-specific GRs in this
tissue mix, although the female palp/leg mix also included
ovipositors. This is intriguing since female moths are known
to use their tarsi and ovipositor to taste oviposition sites
before egg laying. Sensilla chaetica have been found at the
external distal border of the ovipositor papillae in S. littoralis
(Seada et al., 2016). They are uniporous (a hallmark of
taste sensilla) and contain four gustatory sensory neurons
responding mainly to salt, sugars, caffeine and water (Seada
et al., 2016). Although several molecules have been shown to
promote or deter oviposition in moths and several chemosensory
genes seem to be specifically expressed in the ovipositor, no
chemoreceptor/molecule association has been established (Qiu
et al., 1998; van der Goes van Naters and Carlson, 2006; Xu et al.,
2017; Chen et al., 2019).

Odorant Receptors
An Extended Repertoire of ORs in S. littoralis
Sixty S. littoralis ORs (SlitORs) have been previously described
in the literature (Legeai et al., 2011; Jacquin-Joly et al., 2012;
Poivet et al., 2013; Walker et al., 2019). We identified 22 of
these in our transcriptome, including the co-receptor SlitOrco. In
addition, we annotated four ORs that have never been described
in S. littoralis before (Table 1). We named these new ORs as
SlitOR61, SlitOR65, SlitOR68—according to their orthologs in
the S. frugiperda genome (Gouin et al., 2017)—and SlitOR70
(no identified ortholog in S. frugiperda). We obtained complete
ORFs for 7 SlitORs (Supplementary Material 2). As a result,
the S. littoralis OR family reached a total of 64 expressed

ORs in this species. This number is close to the number of
OR genes annotated in the genomes of other noctuid species
(69 in S. frugiperda, 73 in S. litura, 84 in H. armigera and
82 in H. zea) (Cheng et al., 2017; Gouin et al., 2017; Pearce
et al., 2017), suggesting we have identified most—if not all—
of the ORs expressed in S. littoralis. The phylogenetic analysis
(Figure 3) showed that ORs expressed in the mouth parts, legs
and ovipositor are found in the vast majority of lepidopteran OR
clades, thus mirroring the wide diversity of ORs expressed in taste
tissues. Interestingly, there was no representative in the classical
pheromone receptor clade (Figure 3).

An Unexpected Distribution of SlitORs in
Non-antennal Tissues
Out of the 64 SlitORs, we found that one third (21 ORs) were
expressed in the proboscis (Table 1 and Figure 1). We found a
set of 22 ORs expressed in the palp/leg samples of both males
and females (Table 1 and Figure 1), some of which being also
expressed in the proboscis. Seven ORs described as antennal
specific in Walker et al. (2019) and 19 others described as
enriched in the antennae (with only one or two reads in the brain
and/or body) were not retrieved in our transcriptome, supporting
their antennal specific expression or enrichment.

This tissue distribution of ORs in a moth is surprising (half of
the SlitORs expressed in the proboscis, one third in the palps/legs)
and suggests that these organs participate in odorant sensing. Out
of the 83 known ORs in adult H. armigera (Pearce et al., 2017),
only 4 and 3 ORs, including Orco, have been found expressed
in proboscis and palps, respectively (Guo et al., 2018). One type
of multiporous sensilla (sensilla styloconica) was found in the
proboscis ofH. armigera, suggesting a role in olfaction (Guo et al.,
2018). Few studies on S. littoralis have investigated the sensilla
on mouthparts, tarsi and ovipositor (Chadha and Roome, 1980;
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El-Degwi and Gabarty, 2015; Seada et al., 2018, 2016) but none
has described their numbers or their morphology in a resolution
that would permit to distinguish uniporous from multiporous
sensilla. Overall, the number of ORs described here likely exceeds
the number of olfactory sensilla carried by these organs. This
suggests that they might be transcribed but that not all of them
are functional in these tissues.

Comparison Between Tissues and Sexes
SlitOrco was found expressed in the proboscis and in the palp/leg
tissue mix of both sexes. This was expected in view of its role as a
co-receptor for ORs and it predicts that at least some of the ORs
found in these gustatory tissues should form functional olfactory
ligand gated ion channels.

SlitOR45, 61, and 68 were found to be expressed in the
proboscis samples but not in the palps/legs (Supplementary
Material 2). On the contrary, SlitOR20, 28, 58, 60, and 70 were
found exclusively expressed in the palp/leg tissue mix.

We found one OR, SlitOR37, expressed in the female
proboscis but not in male ones, with no expression in palp/leg
mixes (Supplementary Material 2). This transcript was not
previously found expressed in the proboscis (Walker et al.,
2019) but was found in both male and female antennae
with a female bias. Interestingly, SlitOR37 clustered in the

phylogeny with BmorOR19 and MsexOR5, which were found
to be female-specific (Anderson et al., 2009; Grosse-Wilde
et al., 2010; Koenig et al., 2015). BmorOR19 has been functionally
characterized as responding to linalool (Anderson et al., 2009),
an oviposition cue for many female moths (Rostelien et al., 2005)
and a male pheromone component in some Noctuidae, e.g.,
Mamestra brassicae (Heath et al., 1992). The SlitOR37 ortholog
in Helicoverpa assulta, HassOR62, also exhibited the same female-
biased expression pattern (Zhang et al., 2015). Although SlitOR37
has not been functionally characterized yet in S. littoralis, its
expression pattern suggests it may play a role in the detection of
suitable oviposition sites or in male mate recognition. SlitOR38
was clearly male-biased in palps/legs, as it is in antennae (Walker
et al., 2019), suggesting that this receptor presents a general
male-enriched expression. Additionally, SlitOR38 belongs to a
recently described candidate pheromone receptor clade (Bastin-
Héline et al., 2019), which highlights an eventual role in female-
pheromone recognition.

A Sex Pheromone Receptor Is Expressed in All
Tissues Examined
According to the OR phylogeny, none of the SlitORs
retrieved from our transcriptome belonged to the classical
pheromone receptor group (Figure 3). However, we detected
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SlitOR5 expressed in all tissues examined from both sexes
(Supplementary Material 2). This receptor does not belong to
the classical pheromone receptor clade but has been recently
described as highly expressed in male antennae (Walker et al.,
2019) and functionally characterized as an unconventional
pheromone receptor tuned to the major component of the
S. littoralis female sex pheromone (Bastin-Héline et al.,
2019). SlitOR5 expression in antennal and non-antennal
tissue suggests that other tissues than the antennae may
be involved in sex pheromone detection. However, its low
expression levels in the non-antennal tissues calls for further
investigation of its precise expression pattern before any
assumptions and interpretations could be given on its function
in these tissues. Interestingly, we found SlitSNMP1, encoding
a membrane protein probably involved in pheromone delivery
to pheromone receptors (Vogt et al., 2009), in the present
transcriptome (Table 1 and Supplementary Material 2).
Detailed observations of S. littoralis premating behavior are
also needed to investigate if mouthpart and/or leg contacts
occur during courtship and if courtship and mating are
disturbed when these appendices are blocked. Alternatively,
sex pheromone cues may be used in non-sexual behaviors. For
instance, females may detect these cues via mouthparts, legs
or ovipositor in order to regulate their pheromone production
(as proposed in the moth Heliothis virescens, Widmayer
et al., 2009) or to detect traces of sex pheromone from other

females in oviposition sites to avoid over-oviposition on the
same plant and high competition between larvae for the
same food resources.

Ionotropic Receptors
New Candidate Taste IRs in S. littoralis
Thirteen IR transcripts were identified in our transcriptome
(Figure 1 and Table 1)and complete ORFs were obtained for
five of them (Supplementary Material 2). Among these 13 IRs,
we found the three candidate IR coreceptors (SlitIR8a, 25a, and
76b), 4 members of the so-called antennal IR clades (SlitIR41a,
64a, 75d, and 75p.2) supposedly involved in olfaction, and 6
divergent IRs (SlitIR7d.1, 7d.4, 60a, 85a, 100b, and 100i) more
likely to be involved in taste (Figure 4). Five of these divergent
IRs are described for the first time as they were not found in
previous S. littoralis transcriptomes. The total number of IRs
found expressed in S. littoralis is now 22. This is approximately
half of the number of IR genes described in the genomes of
S. frugiperda (43 IRs, Gouin et al., 2017) and H. armigera (39
IRs, Liu et al., 2018). Out of these 22 SlitIRs, 17 have been found
to be expressed in the antennae (Walker et al., 2019), 14 in
the proboscis (Walker et al., 2019 and our study) and 12 were
described, for the first time in this paper, in the palps/legs of
S. littoralis. Of the 5 new S. littoralis divergent IRs discovered
here (thus not previously found expressed in antennae), 4 were
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expressed in both the proboscis and the palp/leg tissue mix and
one (SlitIR7d.4) was exclusively expressed in the proboscis of
both males and females. This expression pattern, together with
their phylogenetic position within divergent IRs, makes these
SlitIRs good candidate taste receptors.

Expression of Antennal IRs Outside Antennae
As already observed in H. armigera (Liu et al., 2018), we showed
that expression of the so-called antennal IRs was not restricted
to antennae (Supplementary Material 2), as four antennal
IRs were expressed either in the proboscis and the palp/leg
tissue mix (SlitIR41a, 64a, 75d) or specifically in the female
palp/leg/ovipositor tissue mix (SlitIR75p.2). As this latter IR was
not expressed in the male palp/leg mix, one could hypothesize
that it is expressed in the ovipositor, playing a potential role
in host quality evaluation for oviposition. Deeper studies of its
expression pattern would be needed to precisely identify in which
tissues of the palp/leg/ovipositor mix this IR is expressed.

Looking at the three candidate IR coreceptor transcripts,
SlitIR25a appeared expressed in the proboscis and in the palp/leg
tissue mix from both sexes, SlitIR76b was also expressed in
all tissues examined here, and SlitIR8a was found only in the
palp/leg tissue mix (Supplementary Material 2). All have been
previously found highly expressed in the antennae (Olivier et al.,
2011; Walker et al., 2019). The expression pattern of these
coreceptors is in line with previous observation in insects. They
are usually described as highly expressed in all insect taxa in
which they have been described. Most are expressed in more
than one tissue and the different expression patterns between
different taxa suggests that insect sensing is differently distributed
between the chemosensory tissues among taxa (Leal et al., 2013;
Sparks et al., 2014; van Schooten et al., 2016; Walker et al.,
2019). Following knowledge on Drosophila IR coreceptors, our
results are not surprising since DmelIR8a has been associated to
olfactory neurons in the antennae and palps and DmelIR76b has
been associated to gustatory neurons which are more prominent
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in the Drosophila antennae, labellum and legs (Benton et al., 2009;
Croset et al., 2010; Abuin et al., 2011; Zhang et al., 2013; Koh et al.,
2014; Hussain et al., 2016; Rimal and Lee, 2018). IR25a is known
to be a more generally and highly expressed coreceptor, which
could be considered as the equivalent of Orco (Benton et al., 2009;
Croset et al., 2010; Abuin et al., 2011; Rimal and Lee, 2018).

Interestingly, the IR phylogeny showed that we found no
SlitIR in the clades housing IRs involved in hygrosensation
and thermosensation (Figure 4). The cool temperature sensing
candidate SlitIR21a and the humidity sensing candidates
SlitIR40a and SlitIR68a (Knecht et al., 2017, 2016) have
been found previously in S. littoralis antennae (Olivier
et al., 2011; Poivet et al., 2013; Walker et al., 2019), yet
the candidate coreceptor involved in hygrosensation and
thermosensation, IR93a (Benton et al., 2009; Corey et al.,
2013; Rytz et al., 2013; Groh-Lunow et al., 2015) was not
retrieved in our transcriptome nor in previous S. littoralis
antennal transcriptomes (Olivier et al., 2011; Poivet et al., 2013;

Walker et al., 2019). All together, these observations suggest
that proboscis, palps and legs are not involved in hygro and
thermosensation in S. littoralis.

Chemosensory Proteins
CSPs are known to be largely expressed in a variety of
chemosensory and non-chemosensory tissues in insects,
including Noctuidae (Zhang et al., 2015; Guo et al., 2018; Walker
et al., 2019). Our results comfort these observations, since among
the 22 SlitCSPs previously identified in S. littoralis antennal
transcriptomes (Poivet et al., 2013; Walker et al., 2019), 10 were
found and they were all expressed in both the proboscis and
palps/legs (Supplementary Material 2). The current hypothesis
is that CSPs would play a general role in hydrophobic molecule
transport (Pelosi et al., 2018). It is thus difficult for now to
propose any specific function of CSPs in olfaction and/or taste in
S. littoralis.
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Odorant-Binding Proteins
Thirty one OBP transcripts were found in the present
transcriptome, all previously described in adult antennae and
larval tissues (Legeai et al., 2011; Jacquin-Joly et al., 2012; Poivet
et al., 2013; Walker et al., 2019). Twenty-seven had a full-length
ORF (Supplementary Material 2). Among the 31 SlitOBPs, we
retrieved the two OBPs classified as general OBPs (GOBPs)
and three of the four candidate pheromone-binding proteins
(PBPs), as shown in Figure 5. At the exception of SlitOBP8 and
SlitOBP33, we also found all OBPs belonging to the Noctuidae-
specific OBP expansion.

First studies on OBPs have suggested that, contrary to
CSPs, they would be antennae-specific and only involved
in olfaction, with some (the PBPs) being sex-specific and
involved in pheromone transportation in the sensillum
lymph. Here, we found 31 SlitOBPs expressed in proboscis
and palps/legs (Supplementary Material 2) SlitOBP6 was
expressed only in the female palp/leg/ovipositor tissue mix.
This OBP has been previously detected in female adult
antennae and caterpillar antennae (Poivet et al., 2013),
suggesting that SlitOBP6 may be female-specific but not tissue-
specific. Whether this OBP is involved in female specific
behaviors, such as oviposition site selection, remains to
be investigated.

Four OBPs expressed in the proboscis (i.e., SlitOBP11, 25, 32,
and 34) belong to the Noctuidae-specific expansion mentioned
above. Interestingly, some of these have also been found to
be more expressed in the proboscis than in antennae (Walker
et al., 2019). Expression of these OBPs in gustatory tissues has
been observed also in H. assulta (five out of seven OBPs of
this clade are also expressed in legs; Zhang et al., 2015) and in
H. armigera (all OBPs of this clade are also expressed in caterpillar
mouthparts; Chang et al., 2017). Whether these OBPs from the
Noctuidae OBP expansion play a role in olfaction has not yet
been determined.

Interestingly enough and rather surprisingly, we found
three SlitPBPs expressed in all tissues tested in this study.
This expression pattern was unexpected for PBPs that are
believed to bind volatile hydrophobic pheromone molecules
and to be expressed in antennae. In addition to the expression
of SlitOR5 and SlitSNMP1 in all samples (see upper),
expression of PBPs revealed that all the machinery for sex
pheromone detection is present in proboscis and palp/leg
tissues. This reinforces our hypothesis that S. littoralis may
use sensory appendages such as proboscis, palps and/or
legs to evaluate mating partners via the detection of long
range sex pheromone and/or close range pheromonal cues
yet unidentified.

CONCLUSION

S. littoralis is a model species in chemical ecology. It is
crucial to combine long term knowledge and accumulate
data on this model for further advances in deciphering the

mechanisms of chemosensation in moths. Our study adds
a large amount of data on chemosensory genes and their
expression specificities in this species, revealing unexpected
expression of many. We pinpointed interesting genes for
further functional studies that will help understanding the
intimate link of the different sensory appendages to olfaction
and taste. Also, we contribute additional evidence that the
sex pheromone communication may be more complex than
previously thought in this species, with involvement of a
probable close range communication. S. littoralis is also an
economically important agricultural pest and a representative
of the Spodoptera genus that contains some of the most
dangerous invasive pest species, such as the fall armyworm
S. frugiperda. Chemosensation drives many detrimental
behaviors in pests, such as food, oviposition site and mate
choice. A better understanding of the chemoreception pathways
will lead to identifying key molecular targets to disturb
such chemical communication in a context of sustainable
pest management.
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