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Citizen science, or community science, has emerged as a cost-efficient method to
collect data for wildlife monitoring. To inform research and conservation, citizen science
sampling designs should collect data that match the robust statistical analyses needed
to quantify species and population patterns. Further increasing the contributions of
citizen science, integrating citizen science data with other datasets and datatypes
can improve population estimates and expand the spatiotemporal extent of inference.
We demonstrate these points with a citizen science program called iSeeMammals
developed in New York state in 2017 to supplement costly systematic spatial capture-
recapture sampling by collecting opportunistic data from one-off observations, hikes,
and camera traps. iSeeMammals has initially focused on the growing population of
American black bear (Ursus americanus), with integrated analysis of iSeeMammals
camera trap data with systematic data for a region with a growing bear population. The
triumvirate of increased spatial and temporal coverage by at least twofold compared
to systematic sampling, an 83% reduction in annual sampling costs, and improved
density estimates when integrated with systematic data highlight the benefits of
collecting presence-absence data in citizen science programs for estimating population
patterns. Additional opportunities will come from applying presence-only data, which are
oftentimes more prevalent than presence-absence data, to integrated models. Patterns
in data submission and filtering also emphasize the importance of iteratively evaluating
patterns in engagement, usability, and accessibility, especially focusing on younger adult
and teenage demographics, to improve data quality and quantity. We explore how the
development and use of integrated models may be paired with citizen science project
design in order to facilitate repeated use of datasets in standalone and integrated
analyses for supporting wildlife monitoring and informing conservation.

Keywords: community science, integrated model, point process, presence-only, presence-absence, wildlife
population, engagement, technology

INTRODUCTION

A common objective of citizen science (i.e., community science) is to assist in scientific research
by contributing data beyond the spatial and temporal capacities of professional researchers (Shirk
et al., 2012). Facilitated by widespread internet access, ecological monitoring through citizen science
is increasingly used to document and study wildlife populations across wide spatial distributions
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and timeframes (Bonney et al., 2009; Follett and Strezov, 2015).
For example, iNaturalist has collected over 60 million biodiversity
observations on all 7 continents, from over 3.5 million
contributors since its start in 20081; eBird has collected over
900 million bird observations from approximately 800,000 users
since its start in 2002 (Sullivan et al., 2009). Citizen science has
advanced our knowledge of wildlife patterns, including species
distribution, phenology, and behavior (Dickinson et al., 2012;
Fink et al., 2013; Soroye et al., 2018), and has even discovered new
species (e.g., Amézquita et al., 2013). Importantly, in the age of
rapid habitat change and biodiversity loss, citizen science can also
support wildlife conservation and management. For example,
citizen science has helped confer conservation status to at-risk
species and identify hotspots of human-wildlife conflict (Dwyer
et al., 2016). Management agencies have also long collected
harvest data from hunters, a form of citizen science data, to
estimate population trends (Gove et al., 2002), and have begun
to request public assistance in monitoring wildlife health and
species of concern (Burr et al., 2014; Dissanayake et al., 2019).
To address biodiversity issues, from local to global, citizen
science datasets should endeavor to meet the requirements of
analyses that produce robust inferences for evidence-based action
(Guillera-Arroita et al., 2015; Parrish et al., 2018).

A fundamental design consideration in citizen science
programs is the type of data to collect. Data on species
or individuals may include information only about detected
presences (i.e., presence-only, PO data), or also information
about sampling effort through absence/non-detections (i.e.,
presence-absence, PA data). The most common form of PO data
is one-off observations, such as those submitted to iNaturalist,
while examples of PA data include complete checklists of detected
species (e.g., eBird; Johnston et al., 2020) and data from motion-
triggered trail cameras (i.e., camera traps) when periods of
camera operation are reported (e.g., McShea et al., 2015; Hsing
et al., 2018). Information about sampling effort in PA data
help model the data collection process and account for noise
and variable quality (Isaac et al., 2014) that can occur due to
variation in user expertise (Johnston et al., 2018), imperfect
detection (MacKenzie et al., 2002), and spatial and temporal
sampling biases (Courter et al., 2013; Geldmann et al., 2016). In
contrast, PO data, which do not contain information absences or
sampling effort, are limited to relative patterns of abundance and
occurrence probabilities rather than absolute measures (Royle
et al., 2012; Fithian et al., 2015) and are more prone to unreliable
and biased inferences. Functionally, PA data also enable a broader
range of analyses compared to PO data; PA data can be used
in PO data analyses by removing absence information, but PO
data cannot be used as-is in PA data analyses. As a result, many
have cautioned against the collection of PO data and advocate
instead for PA data collection for rigorous analyses and robust
inferences about population size, distribution, and habitat use
(Brotons et al., 2004; Isaac et al., 2014; Bayraktarov et al., 2019;
Callaghan et al., 2019).

We expand on these recognized benefits of PA data in
citizen science programs by highlighting their ability to improve
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ecological inferences when integrated with other datasets within a
single statistical framework. While standalone analyses of citizen
science data can yield robust inferences (Davies et al., 2012;
Crum et al., 2017; Altwegg and Nichols, 2019), there is also
growing interest in maximizing the value of citizen science data
through joint analysis with other datasets that have partially
overlapping information content (Zipkin and Saunders, 2018).
Integrated models can improve parameter estimates, expand the
spatial and/or temporal extents of inference, and even estimate
latent parameters that were previously unidentifiable (Schaub
and Abadi, 2010; Chandler and Clark, 2014; Robinson et al.,
2018). Small or sparse datasets, such as in nascent citizen
science programs, can both contribute to and benefit from
integrated modeling approaches. In short, integrated analyses
provide opportunities to synthesize new knowledge to support
biodiversity research and conservation (Theobald et al., 2015;
Miller et al., 2019).

Integrated models based on spatial point processes are of
particular interest, because it is natural to understand and
straightforward to model spatial encounter data on species or
individuals as realizations (i.e., sampling/data collection process)
of a spatial point process (i.e., population of individuals) (Royle
et al., 2017; Kery and Royle, 2020) in a hierarchical framework.
Spatially explicit encounter histories of individuals (i.e., spatial
capture-recapture; SCR) are an ideal type of PA data to include in
such integrated approaches because they are highly informative
about the point process. Furthermore, each PA dataset can
be modeled as arising from its own distinct sampling process
that served its original citizen science program or sampling
objective. Most integrated models have therefore focused on PA
data, as incorporating PO data requires new model structure
to either infer missing information about sampling effort based
on other species (Fithian et al., 2015) or explain the PO data
as a thinned point process (Dorazio, 2014). We therefore echo
recommendations for citizen science programs that monitor
wildlife for scientific purposes to collect PA datasets when
possible, given the ease with which they can be incorporated into
integrated models.

Citizen science data collection and submission should also be
accessible and usable while in the pursuit of data. This serves
the practical need to collect sufficient high quality data for
analysis (Lasky et al., 2021) and upholds the democratic spirit and
intention of citizen science (Mueller et al., 2012; Lynn et al., 2019).
Accessibility refers to how easily contributors with different
resources can participate (e.g., collect and submit data), while
usability refers to the effectiveness, efficiency, and satisfaction
of the user experience (Petrie and Kheir, 2007). Limited access
to equipment and onerous protocols can deter participation
(Newman et al., 2010). Indeed, more programs still collect PO
data than PA data because the former are easier to collect (i.e.,
more accessible) (Pocock et al., 2017). Similarly, opportunistic
sampling—in which data are collected upon encounter—may
pose a lower barrier to access compared to systematic sampling—
in which data are collected only under specific spatial and
temporal conditions (Dennis et al., 2017; Bradter et al., 2018).
Further declines in participation due to unfamiliar or inaccessible
technologies, platforms, or poor user-interfaces (Newman et al.,
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2010), can be reduced through multiple submission platforms
(e.g., computer, paper, and devices such as smartphones) to
increase access and engagement with diverse participants. User-
interfaces that build minimum data requirements into succinct
workflows may also create positive and engaging experiences
(Wald et al., 2016). The ability of citizen science programs to
collect data for robust ecological inferences is influenced by
interrelated decisions concerning data types and effective, user-
centered protocols.

Here, we describe a citizen science program called
iSeeMammals that was designed to collect opportunistic species-
level data in New York state, United States. iSeeMammals enables
members of the public to collect any of three types of data: PO
data from one-off observations, PA data from hikes, and PA
data from camera traps (Figure 1). iSeeMammals launched
in 2017 and has focused initially on American black bears
(Ursus americanus), with the objective of assessing how citizen
science efforts could support integrated analyses to improve
population abundance estimates. Exploring the feasibility and
benefits of a citizen science approach was motivated by logistical
and financial limitations of systematic sampling; New York is
141,300 km2 but annual spatial capture-recapture data collection
in June—August since 2015 had been restricted to approximately
241 locations in the southern part of the state (40,079 km2)
due to its high annual cost of approximately $192,000 USD.
We describe the iSeeMammals data collection and submission
process and report results from its first year of black bear
monitoring. Finally, we reflect on the analytical and citizen
science developments that can facilitate more opportunities for
integrated models with citizen science data to meet research and
conservation needs.

MATERIALS AND METHODS

We created iSeeMammals so members of the public could
contribute data on black bears from one-off observations (PO
data), hikes (PA data), and camera traps (PA data) toward
statewide wildlife monitoring and research. We offered both
PO and PA data options because both can be used in joint
models and also to collect as much data as possible given
the popularity of PO data in citizen science approaches. We
considered hikes an accessible extension of PO data, similar
to traveling counts in eBird. Camera traps are already familiar
to and commonly used by many hunters, wildlife enthusiasts,
and citizen science wildlife monitoring programs (McShea et al.,
2015). Prior to launching, iSeeMammals outreach included
social media communications (Twitter, Facebook, Instagram,
radio, television), connecting with established organizations
to share information with their members, meeting with local
communities and interest groups, and attending outdoor and
wildlife-related events. After launching, outreach continued
through newsletters to participants, social media communication,
trainings, and word-of-mouth.

The potential for iSeeMammals to serve as a long-term
monitoring tool motivated the development of an internet-based
portal for data submission, with multiple platforms to increase

access. Data could be submitted through a website2 and a free
eponymous application (app) available in the Apple and Google
app stores (Apple, Inc., Cupertino, CA, United States; Google,
Inc., Mountain View, CA, United States) (Figure 1). We refer
generally to contributors as participants, but specifically as users
when in relation to the data submission platforms. An account
with the iSeeMammals program was not necessary to submit
data but was encouraged so that users could keep track of
their submissions. The website and app included instructions for
submission, tips and tricks for identifying signs of black bear
presence, recommendations for how to set up a camera trap
(height of camera, angle placement relative to the sun, local
habitat, etc.), and additional training materials including images
and quizzes. The app requested access to the user’s (device)
location and camera in order to collect GPS coordinates and
photographs that were critical for data quality. Due to concerns
raised by participants about private property and potentially
sensitive locations, personally identifying information and raw
GPS coordinates were used only for research purposes. A privacy
policy communicated that publically shared results would be
anonymized, and either spatially jittered or displayed at coarser
aggregate scales.

Observations of black bears included detections of bears
or bear signs (e.g., scat, track, hair, or markings). In a series
of multiple choice questions on either the website or app,
iSeeMammals required (1) the category of observation (bear, scat,
track, hair, or markings), (2) verification of the time and GPS
location of the observation based either automatically on the
metadata of an included photograph or by manual entry, (3)
confidence in identification (Could be anything; Might have been
a bear; Probably was a bear; I’m positive this was a bear), and (4)
number of people present for the observation (Just me; 2; 3; 4; or
≥5 people). Questions about confidence of species identification
and party size were collected to potentially help quantify
sampling effort. Users were encouraged to include a photograph
of the observation to help confirm species identification. Users
could also supply a text description. An observation by itself
constituted a one-off observation and provided PO data, while
observations submitted in association with a hike provided PA
data (described below).

Hikes at minimum consisted of sequential, timestamped GPS
coordinates. Users could submit hikes through the app and view
hike submissions on both the app and website. At the start of
a hike, the user would begin the hike function and provide a
unique name for the hike. The app recorded GPS coordinates
at approximately 500 m increments to prevent excessive battery
drainage during long hikes. When a hike was complete, users
would press a button to end the hike. iSeeMammals then required
(1) confirmation of the general accuracy of the route based on
a map outlining the hike route, (2) the number of people in
the hiking party (Just me; 2; 3; 4; or ≥5 people), and (3) the
likelihood of returning at a later date to repeat the hike (Not at all;
Possibly; Most likely). Questions about party size and likelihood
of return were, respectively, collected to potentially help quantify
sampling effort and data quality through repeat visits. Lastly, the

2www.iseemammals.org
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FIGURE 1 | Home screen of iSeeMammals smartphone app and the 3 ways to collect presence-only (PO) and presence-absence (PA) data on black bears in
New York with observations, hikes, and camera traps. Users provide details, including time, location, and descriptions which can be viewed on the website and app.
Some features can only be accessed with the app, including creation and tracking of a hike and recording the location of a camera trap. Other features can only be
accessed with the website (not shown), including submission of camera trap photos.

user could attach observations based on submitted observations
or photographs taken with the app during the hike. Hikes thus
provided PA data, with absence information from the hike GPS
coordinates and presence data from any associated observations.

Camera trap data consisted of the GPS coordinates of
the camera, periods of operation, and any motion-triggered
photographs of bears that were taken. Both the website and
app were required to enter camera trap data; the app was
necessary to automatically obtain GPS coordinates, while the
website was necessary to upload photographs. Both the website
and app could be used to provide records of each time the
camera started and stopped and times of day the camera
was scheduled to take pictures when triggered by motion.
Users were required to explicitly report periods of operation
rather than submit all camera trap photographs because a
lack of motion-triggered photographs could be due to lack
of wildlife rather than low sampling effort. When users
checked on the camera trap to retrieve photographs, the app
confirmed required information about camera trap location
and setup, asked about periods of camera malfunction, and
rhetorically asked whether or not bears were detected on
the camera as a reminder to use the website for submitting
photographs that contained bears. Users could also provide
information about camera trap make and model. Camera traps
thus provided PA data, with submitted photographs providing
presence data and periods of camera operation providing
absence information.

Users could delay submission by answering all questions to
reach the submission page but then choose to save instead of
submit. This enabled data collection on the app even when
internet access or cell service were not immediately available,
such as in rural or remote areas. Saved but un-submitted entries

appeared with a red flag on the app and website to indicate
that outstanding action remained for submission. Users were
required to confirm or change their saved responses before final
submission. On the website, a single page displayed all questions
for each type of data and missing responses would trigger an error
message; in the app, an arrow to proceed to the next question
appeared when the question on the screen was answered.

We summarized the iSeeMammals data collected in its first
year, between 1 January 2017 and 31 October 2017, reporting
summary statistics and describing data filtering, data quality,
and spatial patterns. We filtered out one-off observations that
lacked spatial data or incorrect species identification based on
the provided photograph, and duplicates based on photographs
and descriptions. For hikes, we filtered out duplicates, hikes that
were described as inaccurate by the user, and hikes that lasted
<1 min or contained <2 sets of GPS coordinates. We filtered
out camera traps that were only partially set up, lacked GPS
coordinates, or had periods that monitored a location <1 day.
If camera traps were still operating on 31 October 2017, we
right-censored the period and assumed no malfunctions and no
photographs/detections of bears.

RESULTS

The inaugural year of iSeeMammals was the first coordinated
collection of opportunistic PA data on black bears in New York.
iSeeMammals cost $32,000 USD to develop in the previous
year (2016), which involved a local web and app development
company that we hired on a pay-per services basis to develop
and host the technology, and a team of 4 short-term high school
and undergraduate research assistants compensated through
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university research and course credits. A total of 712 participants
registered within the first 10 months, and 624 (88%) subsequently
activated their accounts, which involved clicking on an email
link sent after registration. iSeeMammals received a total of
629 one-off observations, hikes, and trail camera periods over a
spatial extent of 113,392 km2 (95% minimum convex polygon,
MCP), from 126 users. The majority of submissions were one-
off observations (79%). Most users (n = 118, 94%), submitted
one-off observations, while 9 users submitted multiple types
of data; 7 of 13 users who submitted trail camera data also
submitted one-off observations; 1 of 3 users who submitted hike
data also submitted one-off observations; one user submitted all
three types of data.

iSeeMammals received 373 one-off observations that included
all five types of bear sign (bear, scat, tracks, hair, markings;
Table 1). We accepted 339 (91%) observations, having filtered out
14 misidentifications based on photographs, 8 duplicates, 10 with
no spatial information, and 2 that users rescinded due to incorrect
information. We further removed 49 observations (14%) from
Pennsylvania, resulting in 290 accepted observations (86%) in
New York (Figure 2), across 113,392 km2 in 38 counties (95%
MCP). A greater proportion of accepted observations reported
confident identification compared to rejected observations (1.0
vs. 0.72, exact test 2-tailed p < 0.001). Photographs were included
in 222 one-off observations (77%), although 25 were from
camera traps of unregistered users. A greater proportion of
observations with photographs reported bear signs rather than
bears compared to observations without photographs (0.41 vs.
0.06, exact test 2-tailed p < 0.001). The average party size
was 1.6 people; most observations (88%) were submitted by
parties of 1 or 2 people (n = 150 and n = 105 observations,

TABLE 1 | Between 1 January 2017 and 31 October 2017, iSeeMammals
collected black bear data from one-off observations, hikes, and trail cameras
in New York state.

Data type
(# users)

Data type Total submissions
(% removed)

Accepted
submissions in

NY (% with
pictures)

One-off
observation (118)

Presence-only 373 (9%) 290 (77%)

Bear 221 194 (67%)

Scat 108 63 (94%)

Track 16 8 (100%)

Hair 5 4 (100%)

Markings 23 21 (100%)

Hike (4) Presence-absence 103 (56%) 44 (100%)

Bear 17 17

Scat 12 11

Track 0 0

Hair 0 0

Markings 3 3

Camera Presence-absence 78 60 (53%)

traps (14)

Periods 153 (2%) 120 (67%)

Total (126) 629 (15%) 394

respectively), with 10 observations (3.4%) submitted by parties
of ≥5 people.

iSeeMammals received 103 hikes (Table 1). We accepted 46
hikes (45%), after filtering out 49 hikes due to user-identified
GPS inaccuracy, 5 duplicate hike entries, and 3 hikes with <2
pairs of GPS coordinates. We further filtered out 2 hikes in
Pennsylvania, resulting in 44 accepted hikes (43%) in New York
across 25,400 km2 (95% MCP) in 8 counties (Figure 2). Of the
accepted hikes in New York, 18 (41%) attached observations, with
an average of 0.67 observations per hike. All hike observations
were submitted with confidence. Most hikes (n = 37, 84%)
had only 1 person, and most users indicated they would likely
return to hike again in 3 months (n = 38, 86%). Average hike
duration was 1.9 h (maximum of 4.7 h), totaling 82.3 h of
effort. Hikes collected an average 24 GPS locations (range: 3–138)
(Figure 2), resulting in a total of 1,264 correlated spatial PA data
points in 44 sets.

iSeeMammals received data from 73 camera traps deployed
at a total of 78 different locations (Table 1). We filtered out 16
trail cameras in Massachusetts and 4 periods of camera operation
in New York that were less than 1 day. This resulted in 57 trail
cameras in New York that operated continuously during 120
periods at 60 locations across 86,372 km2 (95% MCP) in 12
counties (Figure 2). Periods of camera operation were an average
57 days per location (range: 8–153 days). However, two cameras
malfunctioned a total of 14 days, resulting in 3,604 camera-days
of sampling effort. iSeeMammals received 835 images of bears
from 32 camera locations in New York, with an average of 25
photographs per location (range: 1–134 photographs). Eighteen
cameras were still operating on October 31, 2017.

DISCUSSION

iSeeMammals collected spatiotemporally extensive PO and PA
data that cost-effectively augmented the limited systematic
PA dataset on black bears in New York state. Specifically,
iSeeMammals collected data at 394 new locations in 38 counties
over 7 additional months compared to the systematic SCR
data that was collected at 241 locations in 17 counties in
3 months. Citizen science therefore increased the spatial extent
of total research data on black bears in 2017 by 2.8-fold, the
number of locations by 1.6-fold, and the temporal extent by 2.3-
fold, while costing 83% less than annual SCR sampling. Data
from neighboring states (i.e., Pennsylvania and Massachusetts)
further highlighted the spatial extensiveness that is possible
with a network of citizen science participants. Hikes and
trail cameras covered one additional county in New York
compared to the more numerous one-off observations, and
importantly, seven counties not represented in the systematic
sampling. iSeeMammals was not developed to replace the
systematic collection of SCR data given the former’s lack of
individual-level information valuable for abundance estimation,
but it successfully collected new and cheaper information
to supplement SCR data and thereby potentially improve
population estimation and ecological inference.
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FIGURE 2 | Location of iSeeMammals one-off observations, hikes, and camera traps collected between 1 January 2017 and 31 October 2017 across New York
state. Also shown, in black dots, are the location of 241 systematic SCR sites deployed from June to August, 2017. Light gray lines indicate county borders. The
minimum convex polygons for the systematic (40,079 km2) and iSeeMammals (113,392 km2) sampling highlight the value of citizen science data for increasing
spatial extent and quantity of data that can be collected. Coordinates shown in latitude and longitude.

Camera trapping is a common method for citizen science
programs to monitor wildlife patterns (McShea et al., 2015;
Willi et al., 2019). Integrated analyses offer an opportunity to
extract even more value from these programs and data sets.
To explore this potential with iSeeMammals, Sun et al. (2019)
developed an integrated model to unite citizen science camera
trap data with the systematic SCR data. They applied the
model to estimate bear abundance in southeastern New York
where the increasing bear population and frequency of human-
bear interactions are of management concern (New York State
Department of Environmental Conservation (NYSDEC), 2003).
iSeeMammals contributed bear detections at 19 of 26 camera
trap locations, adding to the 114 individual bears detected
at 37 of 47 different SCR sites. iSeeMammals and SCR data
were subset to the same time period (June–August 2017) and
region (southeast New York) to ensure that datasets provided
inference on the same population (Tenan et al., 2017). Compared
to using only the SCR data, integrating iSeeMammals data
increased precision of the abundance, estimate, by narrowing
the 95% confidence intervals around the mean estimate by 206
individuals. The point estimate increased slightly from 3,663 to
3,702. The opportunistic iSeeMammals camera trap data thus

contained sufficient information about population structure to
improve abundance estimates, despite lacking individual level
data and being relatively small due to the infancy of the program.
With continued program maintenance, data collection, and
the addition of a dedicated outreach specialist, which would
in total not likely cost as much as annual SCR sampling,
iSeeMammals may also be informative about population trends
and improve estimates of demographic rates such as survival and
recruitment (Sun et al., 2019). To identify optimal combinations
of citizen science and systematic sampling, simulations of data
collection and population analysis paired with cost comparisons
would be required.

Other recently developed integrated models incorporate
opportunistic PO data, presenting additional opportunities, risks,
and challenges. Advances in modeling PO data as a thinned
point process have made it possible to integrate PO data with
systematic data based on an underlying spatial point process
(Dorazio, 2014; Renner et al., 2015; Miller et al., 2019). This offers
PO data additional robust modeling approaches. For PO data in
the iSeeMammals program, the location of one-off observations
could help identify and specify sources of spatial bias, such
as proximity to human development, while party size could
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be used to account for variation in imperfect detection, such
as increased collective effort or reduced effort due to social
distraction. However, we caution that while statistical techniques
can compensate for low quality data or account for variation and
biases common in and across citizen science datasets (Kelling
et al., 2015; Johnston et al., 2018)—PO or otherwise—analytical
fixes are not a substitute for carefully designed data collection
and submission protocols. We therefore highlight the importance
of developing and adopting data and metadata standards and
minimum requirements (Storksdieck et al., 2016; Bowser et al.,
2020), similar to efforts by global networks for camera trap data
to facilitate collaboration across programs (Forrester et al., 2016;
Steenweg et al., 2017). In this way, citizen science datasets can
be used repeatedly to synthesize knowledge across scales, guide
conservation strategies, and shape policy (Newman et al., 2011;
Burgess et al., 2017; Curty et al., 2017; Fritz et al., 2019).

Patterns of iSeeMammals data filtering suggested that not all
forms of PO data may be equally amenable to citizen science
data collection or useful for ecological inference and integrated
analyses. Hikes may not be an efficient source of opportunistic
PA data, given that they were the least submitted and most
filtered data type. Citizen science participants may not be willing
to modify their hiking patterns while recreating in order to
adhere to detection protocols such as minimum durations or
distances. Furthermore, while hikes could be considered transect
data for distance sampling (Buckland et al., 2012; Kumar et al.,
2017), detection probability likely decreases sharply with distance
from the trail path, and so hikes may provide limited spatial
inference. Human activity in general may also hinder detection
and bias sampling with opportunistic approaches, by displacing
wildlife and altering their fine-scale spatial patterns of habitat
use or temporal activity patterns to locations where and times
when humans are not present (Larson et al., 2019; Zeller et al.,
2019; Naidoo and Burton, 2020). Sensitivity analyses would be
needed to explore the value of hike data in integrated models.
Instead, citizen science participants may be more willing to
follow guidelines for camera trap data, which have already proven
useful in integrated analyses. Standards or minimum metadata
requirements such as camera model and placement (e.g., height
off ground and camera angle; Burton et al., 2015), would be
helpful in accounting for detection probability, especially when
focal species for monitoring are smaller-bodied. The marginal
benefit of citizen science data for statistical analyses therefore
depends on the information content about ecological patterns
(Callaghan et al., 2019) as well as the relative ease of collection
while maintaining data quality.

Indeed, citizen science data of sufficient quality and quantity
rely on user-facing protocols that successfully engage with the
target participant demographics. To develop a viable platform
that balanced data needs with accessibility and usability, we
conducted several rounds of beta-testing and expected results
from the first year to provide feedback for improvement (i.e., lean
product development, Poppendieck and Poppendieck, 2003). We
targeted outreach to adults who were likely already familiar with
or interested in wildlife, but the low participation rate (18%)
suggests that protocols could have better matched participant
motivations (Rotman et al., 2012; Beirne and Lambin, 2013;

Eveleigh et al., 2014; Nov et al., 2014). Future iterations of
the platform would benefit from tracking patterns of online
versus smartphone app submission and demographics of the
actual users such as gender, age, access to the outdoors, and
familiarity with wildlife, in order to help develop strategies
for engagement and retention. Importantly, a focus more
on Generation Y and Generation Z participants (i.e., born
since the 1980s), and even younger, could markedly increase
participation and data quantity, given the ease of data collection
with smartphones and the large amount of time that these
age groups spend with developing technologies (Mutchler
et al., 2011)—often to the point of technology mediating their
recreation and time spent in nature (Barton, 2012; Wang
et al., 2012). For example, social media posts of images and
videos with date and timestamps can contain valuable ecological
information (Dylewski et al., 2017; Toivonen et al., 2019)
that could be collected in a formal citizen science framework.
Gamification of data collection tasks have also been found
to be effective at engaging younger demographics, who are
already familiar with apps and features such as augmented
reality (Bowser et al., 2013; Iacovides et al., 2013; Malik et al.,
2020). Incidentally, gamification could also guide sampling to
particular time periods or regions with data gaps in citizen
science or systematic data (Xue et al., 2016; Callaghan et al.,
2019). Additional participant-oriented objectives, such as science
education and addressing the nature-deficit disorder, could
both sustain participation in younger generations (Barton,
2012) and encourage collection of the more complex and
robust PA data (Chase and Levine, 2016). Improving citizen
science data quality and quantity will therefore benefit from
improving engagement, accessibility, and usability, especially for
younger demographics.

Citizen science is increasingly acknowledged for its ability to
contribute to wildlife monitoring and management (McKinley
et al., 2017). Cost efficiencies suggest that citizen science
approaches can become an integral component of long term
monitoring and supplement more costly systematic sampling
(De Barba et al., 2010). iSeeMammals in its first year illustrated
how citizen science programs can collect data for integrated
analyses to support and improve population estimation. We
reiterate calls to prioritize protocols that collect PA data, for
their relative robustness in comparison to PO data for standalone
and integrated analyses. Also critical are approaches to data
collection that reserve the capacity for a range of currently
available and future analyses, and therefore also times that
datasets can be used to answer different questions (Curty
et al., 2017) as statistical developments expand the toolbox
and take advantage of different types of data (Miller et al.,
2019). To further facilitate collaborations and ask new questions
with integrated models, we also recommend greater emphasis
and uptake of data standards and minimum requirements to
ensure data quality across citizen science programs, and that
younger demographics be explicitly considered when developing
strategies for engagement. In this way, citizen science can
continue to meet the increasing need for ecological knowledge
at scales and extents larger than individual datasets (Silvertown,
2009; Theobald et al., 2015).
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